Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452403

RESUMEN

BACKGROUND: Chronic intestinal inflammatory diseases play a crucial role in the onset of colorectal cancer (CRC). Effectively impeding the progression of colitis-associated colorectal cancer (CAC) can be instrumental in hindering CRC development. Wu-Mei-Pill (WMP), a formulation comprising various herbal extracts, is clinically employed for CAC treatment, yet the underlying mechanism of WMP's efficacy in CAC remains unclear. Our study firstly demonstrated the effects and mechanisms of WMP on transcriptional and metabolic levels based on integrated transcriptomics and untargeted metabolomics and relative experimental validations. MATERIALS AND METHODS: A CAC mouse model was established through a single injection of azoxymethane (AOM) followed by intermittent dextran sodium sulfate (DSS) intervention, with subsequent WMP administration. Initially, the therapeutic impact of WMP on the CAC model was assessed by observing survival rate, body weight change, colon length, tumor number, tumor load, and pathological changes in the colon tissue of CAC mice post-WMP intervention. Subsequently, differential genes and metabolites in the colorectal tissue of CAC mice following WMP intervention were identified through transcriptomics and non-targeted metabolomics. Finally, the influence of WMP on the peroxisome proliferator activated receptor (PPAR) pathway, Wnt pathway, and CC motif chemokine ligand 3 (CCL3)/ CC motif chemokine receptor 1 (CCR1) axis in CAC mice was verified through western blot, immunofluorescence, and ELISA based on the results of transcriptomics and non-targeted metabolomics. RESULTS: WMP intervention enhanced survival, alleviated body weight loss, shortened colon length, tumor occurrence, and pathological changes in the colorectal tissue of CAC mice, such as glandular damage, tumourigenesis, and inflammatory cell infiltration. Transcriptomic and non-targeted metabolomic results revealed that WMP intervention up-regulated the expression of key regulatory mechanisms of fatty acid oxidation PPAR pathway-related genes (Pparg, Ppara, Cpt1a, and Acadm) and metabolites (L-carnitine and L-palmitoylcarnitine). Additionally, it down-regulated Wnt pathway-related genes (Wnt3, Axin2, Tcf7, Mmp7, Lgr5, Wnt5a, Fzd6, Wnt7b, Lef1, and Fzd10 etc.) and pro-inflammatory related genes (Il1b, Il6, Il17a, Ccl3, and Ccr1 etc.). Experimental validation demonstrated that WMP up-regulated PPAR pathway-related proteins [PPARγ, PPARα, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase medium chain (ACADM)] in the colorectal tissue of CAC mice. It also down-regulated Wnt pathway-related proteins [ß-catenin, T-cell factor (TCF), lymphoid enhancer-binding factor (LEF), and matrix metallopeptidase 7 (MMP7)], inhibited the nuclear translocation of the key transcription factor ß-catenin in the Wnt pathway, and suppressed epithelial-to-mesenchymal transition (EMT) activation induced by the Wnt pathway (up-regulated E-cadherin and down-regulated Vimentin). Furthermore, WMP intervention reduced pro-inflammatory factors [interleukin (IL)-6, IL-1ß, and IL-17A] and decreased CCL3/CCR1 axis factors, including CCL3 protein levels and diminished F4/80+CCR1+ positive expressed cells. CONCLUSION: WMP significantly inhibits CAC tumorigenesis by up-regulating PPARα-mediated fatty acid oxidation, inhibiting the Wnt signaling pathway-mediated EMT, and suppressing CCL3/CCR1-mediated inflammatory responses.


Asunto(s)
Azoximetano , Neoplasias Asociadas a Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Metabolómica , Transcriptoma , Animales , Medicamentos Herbarios Chinos/farmacología , Ratones , Masculino , Neoplasias Colorrectales , Ratones Endogámicos C57BL , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Colitis/inducido químicamente
2.
J Ethnopharmacol ; 319(Pt 3): 117364, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38380576

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As a traditional Chinese medicine, Artemisia argyi has been used medicinally and eaten for more than 2000 years in China. It is widely reported in treating inflammatory diseases such as eczema, dermatitis, arthritis, allergic asthma and colitis. Although several studies claim that its volatile oil and organic reagent extracts have certain anti-inflammatory effects, the water-soluble fractions and molecular mechanisms have not been studied. AIM OF THE STUDY: To evaluate the therapeutic effect of A. argyi water extract (AAWE) on lipopolysaccharide (LPS)-induced inflammatory responses and to identify the most effective water-soluble subfractions. Moreover, the relevant pharmacological and molecular mechanisms by which the active subfraction mitigates inflammation were further investigated. MATERIALS AND METHODS: Firstly, RAW 264.7 cells stimulated with LPS were treated with AAWE (50, 100, and 200 µg/mL) or the water-soluble subfractions separated by D101 macroporous resin (AAWE1-AAWE4, 100 µg/mL), and NO production and mRNA levels of inflammatory genes were evaluated to determine the most effective water-soluble subfractions. Secondly, the chemical components of the active subfraction (AAWE4) were analyzed by UPLC-QTOF-MS. Thirdly, transcriptome and network pharmacology analysis, RT-qPCR and Western blotting assays were conducted to explore the underlying anti-inflammatory mechanism and active compounds of AAWE4. Subsequently, the binding ability of the potential active components in AAWE4 to the core targets was further determined by molecular docking. Eventually, the in vivo anti-inflammatory activity of AAWE4 (1.17, 2.34 and 4.68 g/kg, administered per day for 7 d) was evaluated in mice with LPS-induced systemic inflammation. RESULTS: In this study, AAWE showed excellent anti-inflammatory effects, and its water-soluble subfraction AAWE4 exhibited the strongest inhibitory effect on NO concentration and inflammatory gene mRNA expression after LPS stimulation, indicating that it was the most effective subfraction. Thereafter, four main compounds in AAWE4 were confirmed or tentatively identified by UPLC-QTOF-MS, including three flavonoid glycosides and one phenolic acid. Furthermore, the transcriptome and network pharmacology analysis showed that AAWE4 inhibited inflammation via multiple pathways and multiple targets. Based on the RT-qPCR and Western blotting results, AAWE4 downregulated not only the p38, PI3K, CCL5, MMP9, AP-1, and BCL3 mRNA expression levels activated by LPS but also their upstream and downstream protein expression levels and protein phosphorylation (p-AKT/AKT, p-p38/p38, p-ERK/ERK, p-JNK/JNK). Moreover, four identified compounds (isochlorogenic acid A, vicenin-2, schaftoside and isoschaftoside) could significantly inhibit NO content and the overexpression of inflammatory factors TNF-α, IL-1ß, iNOS and COX-2 mRNA induced by LPS, and the molecular docking confirmed the high binding activity of four active compounds with selected core targets (p38, AKT1, MMP9, and CCL5). In addition, the mRNA expression and immunohistochemical analysis showed that AAWE44 could inhibit lung inflammation via multiple pathways and multiple targets in vivo. CONCLUSIONS: The findings of this study suggest that the water-soluble subfraction AAWE4 from A. argyi ameliorated the inflammation caused by LPS through multiple pathways and multiple targets in vitro and in vivo, providing scientific support for the medicinal use of A. argyi. Importantly, it shows that the A. argyi subfraction AAWE4 can be developed as an anti-inflammatory drug.


Asunto(s)
Artemisia , Lipopolisacáridos , Animales , Ratones , Lipopolisacáridos/toxicidad , Extractos Vegetales/farmacología , Metaloproteinasa 9 de la Matriz , FN-kappa B/metabolismo , Agua , Artemisia/química , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-akt , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , ARN Mensajero
3.
Front Immunol ; 15: 1342210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318186

RESUMEN

This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1ß and interferon γ), while increasing transforming growth factor ß1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.


Asunto(s)
Lubina , Cardamine , Selenio , Animales , Antioxidantes/metabolismo , Catalasa , Lubina/genética , Muramidasa/metabolismo , Selenio/farmacología , Cardamine/genética , Cardamine/metabolismo , Glutatión Reductasa/genética , Peróxido de Hidrógeno , Intestinos , Selenoproteínas , ARN Mensajero/genética , Glutatión Peroxidasa/genética , Superóxido Dismutasa/genética , Claudinas
4.
Fish Shellfish Immunol ; 146: 109378, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272333

RESUMEN

In this experiment, we investigated the effects of adding chlorogenic acid (CGA) to the diet on growth performance, immune function, inflammation response, antioxidant capacity and its related mechanisms of common carp (Cyprinus carpio). A total of 600 fish were selected and randomly divided into five treatment groups and fed with CGA containing 0 mg/kg (CK), 100 mg/kg (L100), 200 mg/kg (L200), 400 mg/kg (L400) and 800 mg/kg (L800) for 56 days. The results of the experiment were as follows: addition of CGA significantly increased the WGR, SGR, FER, and PER of common carp (P < 0.05). The addition of 400-800 mg/kg of CGA significantly increased the serum levels of LZM, AKP activity, C3 and C4 concentration, and increased immune function of common carp (P < 0.05). Regarding antioxidant enzyme activities, adding CGA significantly increased SOD, CAT, and GsH-Px activities, while decreasing MDA content (P < 0.05). Compared with the CK group, the mRNA expression levels of NF-κB, TNF-α, and IL-1ß were decreased. The IL-10 and TGF-ß were increased in the liver and intestines of the CGA supplemented group. Meanwhile, the addition of CGA also significantly up-regulated the mRNA expression levels of Nrf2, HO-1, SOD, CAT, and GPX (P < 0.05). CGA also positively contributed to the development of the carp intestinal tract, as demonstrated by decreased serum levels of DAO, D-LA, and ET-1. And the mucosal fold height was increased significantly with increasing levels of CGA. In conclusion, the addition of CGA in the feed can enhance the growth performance, immune function and antioxidant capacity of common carp, and improve the health of the intestine and liver. According to the results of this experiment, the optimal addition amount in common carp diets was 400 mg/kg.


Asunto(s)
Antioxidantes , Carpas , Animales , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Carpas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Clorogénico/farmacología , Transducción de Señal , Suplementos Dietéticos , Dieta/veterinaria , Intestinos , Hígado/metabolismo , Inmunidad Innata , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis
5.
Fish Shellfish Immunol ; 146: 109414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296006

RESUMEN

This experiment was conducted to investigate the impacts of dietary selenium yeast (SeY) on the growth performance, fish body composition, metabolic ability, antioxidant capability, immunity and inflammatory responses in juvenile black carp (Mylopharyngodn piceus). The base diet was supplemented with 0.00, 0.30 and 0.60 g/kg SeY (0.04, 0.59 and 1.15 mg/kg of selenium) to form three isonitrogenous and isoenergetic diets for juvenile black carp with a 60-day. Adequate dietary SeY (0.30 and 0.60 g/kg) could significantly increase the weight gain (WG), special growth rate (SGR) compared to the SeY deficient groups (0.00 g/kg) (P < 0.05). Meanwhile, 0.30 and 0.60 g/kg SeY elevated the mRNA levels of selenoprotein T2 (SEPT2), selenoprotein H (SEPH), selenoprotein S (SEPS) and selenoprotein M (SEPM) in the liver and intestine compared with the SeY deficient groups (P < 0.05). Adequate dietary SeY could promote glucose catabolism and utilization through activating glucose transport (GLUT2), glycolysis (GCK, HK, PFK, PK, PDH), tricarboxylic acid cycle (ICDH and MDH), glycogen synthesis (LG, GCS and GBE) and IRS/PI3K/AKT signal pathway molecules (IRS2b, PI3Kc and AKT1) compared with the SeY deficient groups (P < 0.05). Similarly, adequate dietary SeY could improve lipid transport and triglycerides (TG) synthesis through increasing transcription amounts of CD36, GK, DGAT, ACC and FAS in the fish liver compared with the SeY deficient groups (P < 0.05). In addition, adequate SeY could markedly elevate activities of antioxidant enzymes (T-SOD, CAT, GR, GPX) and contents of T-AOC and GSH, while increased transcription amounts of Nrf2, Cu/Zn-SOD, CAT, and GPX in fish liver and intestine (P < 0.05). However, adequate SeY notably decreased contents of MDA, and the mRNA transcription levels of Keap1 in the intestine compared with the SeY deficient groups (P < 0.05). Adequate SeY markedly increased amounts or levels of the immune factors (ALP, ACP, LZM, C3, C4 and IgM) and the transcription levels of innate immune-related functional genes in the liver and intestine (LZM, C3 and C9) compared to the SeY deficient groups (P < 0.05). Moreover, adequate SeY could notably reduce levels of IL-8, IL-1ß, and IFN-γ and elevate TGF-1ß levels in fish intestine (P < 0.05). The transcription levels of MAPK13, MAPK14 and NF-κB p65 were notably reduced in fish intestine treated with 0.30 and 0.60 g/kg SeY (P < 0.05). In conclusion, these results suggested that 0.30 and 0.60 g/kg SeY could not only improve growth performance, increase Se, glucose and lipid metabolic abilities, enhance antioxidant capabilities and immune responses, but also alleviate inflammation, thereby supplying useful reference for producing artificial feeds in black carp.


Asunto(s)
Carpas , Selenio , Animales , Antioxidantes/metabolismo , Carpas/genética , Carpas/metabolismo , Selenio/metabolismo , Saccharomyces cerevisiae/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Inmunidad Innata , Fosfatidilinositol 3-Quinasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , ARN Mensajero , Glucosa , Selenoproteínas/metabolismo , Lípidos , Superóxido Dismutasa/metabolismo , Alimentación Animal/análisis , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
6.
Biol Trace Elem Res ; 202(4): 1568-1581, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37407885

RESUMEN

Klebsiella pneumoniae (K. pneumoniae) is one of the major pathogens causing bovine clinical mastitis. Autophagy maintains cellular homeostasis and resists excessive inflammation in eukaryotic organisms. Selenomethionine (Se-Met) is commonly used as a source of selenium supplementation for dairy cows. This study aimed to investigate the effects of Se-Met on inflammatory responses mediated by nuclear factor-kappa B (NF-κB) through autophagy. We infected bovine mammary epithelial cell line (MAC-T) with K. pneumoniae and examined the expression of autophagy-related proteins and changes in autophagic vesicles, LC3 puncta, and autophagic flux at various intervals. The results showed that K. pneumoniae activated the early-stage autophagy of MAC-T cells. The levels of LC3-II, Beclin1, and ATG5, as well as the number of LC3 puncta and autophagic vesicles, increased after 2 h post-treatment. However, the late-stage autophagic flux was blocked. Furthermore, the effect of autophagy on NF-κB-mediated inflammation was investigated with different autophagy levels. The findings showed that enhanced autophagy inhibited the K. pneumoniae-induced inflammatory responses of MAC-T cells. The opposite results were found with the inhibition of autophagy. Finally, we examined the effect of Se-Met on NF-κB-mediated inflammation based on autophagy. The results indicated that Se-Met alleviated K. pneumoniae-induced autophagic flux blockage, inhibited NF-κB-mediated inflammation, and decreased the adhesion of K. pneumoniae to MAC-T cells. The inhibitory effect of Se-Met on NF-κB-mediated inflammation could be partially blocked by the autophagy inhibitor chloroquine (CQ). Overall, Se-Met attenuated K. pneumoniae-induced NF-κB-mediated inflammatory responses by enhancing autophagic flux.


Asunto(s)
FN-kappa B , Selenometionina , Femenino , Bovinos , Animales , FN-kappa B/metabolismo , Selenometionina/farmacología , Selenometionina/metabolismo , Klebsiella pneumoniae , Autofagia , Inflamación/metabolismo , Células Epiteliales/metabolismo
7.
Therap Adv Gastroenterol ; 16: 17562848231202133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829561

RESUMEN

Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.

8.
Drug Des Devel Ther ; 17: 1963-1978, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426627

RESUMEN

Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedades Respiratorias , Saponinas , Triterpenos , Humanos , Estrés Oxidativo , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Enfermedades Respiratorias/tratamiento farmacológico
9.
Nutrients ; 15(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513681

RESUMEN

The placenta is particularly susceptible to inflammation and oxidative stress, leading to placental vascular dysfunction and placental insufficiency, which is associated with fetal intrauterine growth restriction (IUGR). It is unknown whether folic acid (FA) supplementation can alleviate high-fat diet-induced IUGR in rats by improving placental function. In this study, pregnant rats were randomized into one of four diet-based groups: (1) control diet (CON), (2) control diet supplemented with FA, (3) high-fat diet (HFD), and (4) high-fat diet supplemented with FA (HFD + FA). Dams were sacrificed at gestation day 18.5 (GD18.5). The results indicated that dietary FA supplementation normalized a maternal HFD-induced decrease in fetal weight. The decrease in placental efficiency, labyrinth zone (LZ) area, blood sinusoid area, vascular density, and the levels of angiogenesis factors induced by a maternal HFD were alleviated by the addition of FA, suggesting that FA supplementation can alleviate placental vascular dysplasia. Furthermore, FA supplementation increased the protein expressions of SIRT1, inhibited NF-κB transcriptional activation, attenuated the levels of NF-κB/downstream pro-inflammatory cytokines, induced Nrf2 activation, and increased downstream target protein expression. In conclusion, we found that dietary FA supplementation during pregnancy could improve maternal HFD-induced IUGR by alleviating placental inflammation and oxidative stress, which may be associated with the regulation of SIRT1 and its mediated NF-κB and Nrf2 signaling pathways.


Asunto(s)
Dieta Alta en Grasa , Placenta , Animales , Femenino , Humanos , Embarazo , Ratas , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Retardo del Crecimiento Fetal/metabolismo , Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Inflamación/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Placenta/metabolismo , Sirtuina 1/metabolismo
10.
J Ethnopharmacol ; 315: 116684, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37230281

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: QiShenYiQi pill (QSYQ), a Chinese compound medicine, originate from BuYangHuanWu decoction in the Qing dynasty, and has been used to treat ischemic cardiovascular diseases for more than two hundred years in China. Multi-central randomized double-blind controlled studies have proved that QSYQ has similar efficacy as enteric coated aspirin in the secondary prevention of myocardial infarction. AIM OF STUDY: The aim of study was to explore the effect of QSYQ on reverse cholesterol transport (RCT) pathway during atherosclerosis. MATERIALS AND METHODS: Eight-week-old male apoE-/- mice (on the gene background of C57BL/6J) were fed with a high-fat western diet and treated with low dose and high dose of QSYQ, as well as the positive control agent, liver X receptor-α (LXR-α) agonist GW3965. Eight weeks later, mice were sacrificed and the aorta was collected for atherosclerotic analysis. The aortic root was stained with Oil red O to evaluate the area of atherosclerotic lesion, and stained with immunohistochemistry to analyze the intra-plaque component and RCT protein in atherosclerotic plaque. The thoracic aorta was used to detect differentially expressed genes by comparative transcriptome RNA-seq and the protein expression of RCT pathway by western blotting. RESULTS: After eight weeks of treatment, we found that both of QSYQ and LXR-α agonist reduced atherosclerotic plaque area significantly, and decreased the intra-plaque component, including the lipid, the smooth muscle cell and the macrophage. Compared with the control group, there were 49 differentially expressed genes in low-dose QSYQ group, including 21 up-regulated genes and 28 down-regulated genes. The results of GO and KEGG analysis showed that the differentially expressed genes mainly concentrated in the negative regulation of lipid biosynthesis, positive regulation of lipid metabolism, cell response to lipids, negative regulation of lipid storage, fatty acid degradation, and glycerol ester metabolism. Both of QSYQ and LXR-α agonist reduced the protein expression of CD36 and increased the protein expression of PPARγ-LXRα/ß-ABCA1 in atherosclerotic plaque. CONCLUSION: The anti-atherosclerotic mechanism of QSYQ was involved in inhibiting lipid phagocytosis and promoting reverse cholesterol transport, therefore reducing lipid deposition and inflammatory cells in plaque.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Masculino , Ratones , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/genética , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Colesterol/metabolismo , Lípidos , Ratones Endogámicos C57BL , Placa Aterosclerótica/tratamiento farmacológico , PPAR gamma/metabolismo , Ratones Noqueados para ApoE
11.
Fish Shellfish Immunol ; 133: 108537, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36639066

RESUMEN

Heat stress-induced intestinal damage is a key event in fish pathology. Nano-selenium (nano-Se) shows remarkably high biological activity and low toxicity, making it an ideal and ecological Se formulation; however, to date, the protective effects of nano-Se against heat stress-induced intestinal injury and pertinent molecular mechanisms remain unknown. Herein, rainbow trout (Oncorhynchus mykiss) were fed either a basal diet or basal diet + 5 mg/kg nano-Se. Samples were collected before (18 °C for 9 days; CG18 and Se18 groups) and after (24 °C for 8 h; CG24 and Se24 groups) heat stress treatment. On heat stress exposure, intestinal villus height, muscularis thickness, and goblet cell number decreased, and expression of tight junction proteins (ZO-1, occludin, and claudin-8d) was downregulated; dietary supplementation with nano-Se alleviated these effects. Furthermore, in the presence of nano-Se, catalase activity was elevated, and expression of diverse heat shock proteins (Hsp70b, Hsp90α, and Hsp30), selenoproteins (Gpx1a, Gpx1b1, and Trx), and anti-inflammatory cytokine (TGF-ß) was upregulated. In contrast, nano-Se supplementation significantly alleviated the increase of the expression of pro-inflammatory cytokines (IL-1ß and TNF-α) and the malondialdehyde content. We also observed that heat stress markedly increased the relative abundance of Actinobacteria, Firmicutes, Methylobacterium, Akkermansia, and Deinococcus and decreased that of Proteobacteria; nano-Se supplementation restored these changes, making their distribution similar to that in the control group. Overall, our findings suggest that nano-Se plays a protective role against heat stress-induced intestinal damage in rainbow trout by promoting the recovery of antioxidant enzyme activity, enhancing protein repair, alleviating inflammatory responses, and restoring intestinal microbiota composition.


Asunto(s)
Microbiota , Oncorhynchus mykiss , Selenio , Animales , Antioxidantes/metabolismo , Oncorhynchus mykiss/fisiología , Dieta/veterinaria , Selenio/farmacología , Selenio/metabolismo , Respuesta al Choque Térmico
12.
J Diet Suppl ; 20(6): 811-831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36073362

RESUMEN

Tribulus terrestris L. contains compounds with antioxidant and anti-inflammatory properties, but its effects on exercise-induced oxidative stress and inflammatory responses are unclear. The aim of this study was to examine whether Tribulus terrestris L. supplementation can attenuate oxidative stress and inflammatory responses to acute aerobic exercise and improve DOMS. In a randomized, double-blind, crossover design study, thirteen healthy men received either a daily supplement of Tribulus terrestris L. or a placebo for 4 weeks (2-week wash-out period between trials). Before and after the supplementation periods, participants performed an exercise test to exhaustion (75% VO2max). DOMS, thigh girth, and knee joint range of motion (KJRM) were assessed before and after the exercise (2, 24, and 48 h). Blood samples were analyzed for reduced (GSH) and oxidized (GSSG) glutathione, GSH/GSSG ratio, protein carbonyls, total antioxidant capacity, creatine kinase activity, white blood cell count, and TBARS. Acute exercise to exhaustion induced inflammatory responses and changed the blood redox status in both Tribulus and Placebo groups (p < 0.050). Tribulus terrestris L. improved GSH fall (p = 0.005), GSSG rise (p = 0.001) and maintained a higher level of GSH/GSSG ratio at the 2 h point (p = 0.034). TBARS were lowered, protein carbonyls, creatine kinase activity, and white blood cell count elevation diminished significantly (p < 0.050). Tribulus terrestris L. administration did not affect DOMS, thigh girth, or KJRM (p > 0.050). 4-weeks of Tribulus terrestris L. supplementation effectively attenuates oxidative stress responses but cannot improve DOMS.


Asunto(s)
Mialgia , Tribulus , Humanos , Masculino , Antioxidantes/farmacología , Antioxidantes/metabolismo , Creatina Quinasa , Suplementos Dietéticos , Glutatión , Disulfuro de Glutatión/metabolismo , Mialgia/tratamiento farmacológico , Estrés Oxidativo , Proyectos Piloto , Sustancias Reactivas al Ácido Tiobarbitúrico , Tribulus/metabolismo
13.
Curr Med Chem ; 30(4): 390-406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35546761

RESUMEN

The immune system's role in maintaining the health of the gastrointestinal (GI) system is like a double-edged sword. Simultaneously, it could reduce the risk of pathogen invasion by the inflammatory response. However, if regulated improperly, it could also propagate oncogenic signaling that transfers a normal cell into the malignant counterpart. Thus, several mechanisms have been proposed, such as the immune system could disturb the GI homeostasis and increase the survival and proliferative capacity of cells, leading to the formation of a wide range of malignancies. Among the endless list of these mechanisms, inflammatory responses are currently fascinating research areas, as this response regulation is by the gut microbiota. Given this, microbiota manipulation might be a convenient and efficient way to prevent GI cancer. Probiotics could potentially achieve this by overturning the milieu in favor of normal gut homeostasis. In addition to the safety of the use of probiotics, along with their potential ability to interact with immune system responses, these bacteria are also being analyzed from the perspective of dietary supplements. In the present review, we aimed to look into the mechanisms through which probiotics modulate immune response to stimulate anti-inflammatory responses and promote immune surveillance against neoplastic cells.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Gastrointestinales , Probióticos , Humanos , Probióticos/uso terapéutico , Bacterias , Neoplasias Gastrointestinales/terapia , Antiinflamatorios
14.
Probiotics Antimicrob Proteins ; 15(5): 1113-1123, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35838945

RESUMEN

Acute diverticulitis is inflammation of a colon diverticulum; it represents a major cause of morbidity and mortality. The alteration of gut microbiota contributes to the promotion of inflammation and the development of acute diverticulitis disease. Probiotics can modify the gut microbiota, so they are considered a promising option for managing diverticulitis disease. This study aimed to investigate the potential protective effect of probiotics, alone or in combination with amoxicillin, on the experimentally induced model of acute diverticulitis disease. Forty-two rats were divided into seven groups as follows: control group: received water and food only; DSS group: received 3% dextran sulfate sodium (DSS) daily for 7 days; LPS group: injected with lipopolysaccharide (LPS) enema at the dose of (4 mg/kg); probiotics group: treated with probiotics (Lactobacillus acidophilus and Bifidobacterium lactis) each of which (4 × 108 CFU suspended in 2 ml distilled water) orally for 7 days; DSS/LPS group: received DSS and LPS; DSS/LPS treated with probiotics group; DSS/LPS treated with probiotics and amoxicillin group. The results revealed that both treatments (probiotics and probiotics-amoxicillin) attenuated DSS/LPS-induced diverticulitis, by restoring the colonic antioxidant status, ameliorating inflammation (significantly reduced TNF-α, interleukins, interferon-γ, myeloperoxidase activity, and C-reactive protein), decreasing apoptosis (through downregulating caspase-3), and reduction of the colon aerobic bacterial count. These probiotic strains were effective in preventing the development of the experimentally induced acute diverticulitis through the anti-inflammatory and immunomodulatory effects and have affected gut microbiota, so they can be considered a potential option in treating acute diverticulitis disease.


Asunto(s)
Colitis , Diverticulitis , Probióticos , Ratas , Animales , Colitis/inducido químicamente , Lipopolisacáridos/efectos adversos , Inflamación , Amoxicilina/efectos adversos , Modelos Animales de Enfermedad
15.
Eur J Pharmacol ; 931: 175185, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987252

RESUMEN

BACKGROUND: Anemoside B4 (AB4) is a representative component of Pulsatilla decoction that is used in traditional Chinese medicine for treating inflammatory conditions. It is not known whether AB4 has beneficial effects on multiple sclerosis (MS). METHODS: In the present study, we examined the preventative and therapeutic effects of AB4, and the possible mechanism by which it protects female mice against experimental autoimmune encephalomyelitis (EAE). RESULTS: Preventative treatment with AB4 (given orally at 100 and 200 mg/kg for 18 days) reduced the clinical severity of EAE significantly (from 3.6 ± 1.3 to 1.8 ± 1.5 and 1.6 ± 0.6, respectively), and inhibited demyelination and inflammatory infiltration of the spinal cord. In the therapeutic protocol, oral administration of 200 mg/kg AB4 for 21 days after initiation of EAE significantly alleviated disease severity (from 2.6 ± 1.3 to 0.9 ± 0.6) and was as effective as the clinically used drug fingolimod (0.3 ± 0.6). Furthermore, both doses of AB4 significantly inhibited mRNA expression of TNF-α, IL-6, and IL-17, and STAT3 activation, in the spinal cord; and the ex vivo and iv vitro AB4 treatment markedly inhibited secretion of the three cytokines from lymphocytes of EAE mice upon in vitro restimulation. In addition, AB4 reversed the changes in the composition of the intestinal microbiome observed in EAE mice. CONCLUSION: We reveal for the first time that AB4 protects against EAE by modulating inflammatory responses and the gut microbiota, demonstrating that AB4 may have potential as a therapeutic agent for treating MS in humans.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Microbioma Gastrointestinal , Esclerosis Múltiple , Saponinas , Animales , Citocinas/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Saponinas/farmacología
16.
Front Pharmacol ; 13: 922130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899121

RESUMEN

Dao-Chi powder (DCP) has been widely used in the treatment of inflammatory diseases in the clinical practice of traditional Chinese medicine, but has not been used in acute pancreatitis (AP). This study aimed to evaluate the effect of DCP on severe AP (SAP) and SAP-associated intestinal and cardiac injuries. To this end, an SAP animal model was established by retrograde injection of 3.5% taurocholic acid sodium salt into the biliopancreatic ducts of rats. Intragastric DCP (9.6 g/kg.BW) was administered 12 h after modeling. The pancreas, duodenum, colon, heart and blood samples were collected 36 h after the operation for histological and biochemical detection. The tissue distributions of the DCP components were determined and compared between the sham and the SAP groups. Moreover, molecular docking analysis was employed to investigate the interactions between the potential active components of DCP and its targets (Nrf2, HO-1, and HMGB1). Consequently, DCP treatment decreased the serum levels of amylase and the markers of gastrointestinal and cardiac injury, further alleviating the pathological damage in the pancreas, duodenum, colon, and heart of rats with SAP. Mechanistically, DCP rebalanced the pro-/anti-inflammatory cytokines and inhibited MPO activity and MDA levels in these tissues. Furthermore, Western blot and RT-PCR results showed that DCP intervention enhanced the expression of Nrf2 and HO-1 in the duodenum and colon of rats with SAP, while inhibiting the expression of HMGB1 in the duodenum and heart. HPLC-MS/MS analysis revealed that SAP promoted the distribution of ajugol and oleanolic acid to the duodenum, whereas it inhibited the distribution of liquiritigenin to the heart and ajugol to the colon. Molecular docking analysis confirmed that the six screened components of DCP had relatively good binding affinity with Nrf2, HO-1, and HMGB1. Among these, oleanolic acid had the highest affinity for HO-1. Altogether, DCP could alleviated SAP-induced intestinal and cardiac injuries via inhibiting the inflammatory responses and oxidative stress partially through regulating the Nrf2/HO-1/HMGB1 signaling pathway, thereby providing additional supportive evidence for the clinical treatment of SAP.

17.
Nutrients ; 14(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35807940

RESUMEN

Coarse cereals rich in polyphenols, dietary fiber, and other functional components exert multiple health benefits. We investigated the effects of cooked oats, tartary buckwheat, and foxtail millet on lipid profile, oxido-inflammatory responses, gut microbiota, and colonic short-chain fatty acids composition in high-fat diet (HFD) fed rats. Rats were fed with a basal diet, HFD, oats diet (22% oat in HFD), tartary buckwheat diet (22% tartary buckwheat in HFD), and foxtail millet diet (22% foxtail millet in HFD) for 12 weeks. Results demonstrated that oats and tartary buckwheat attenuated oxidative stress and inflammatory responses in serum, and significantly increased the relative abundance of Lactobacillus and Romboutsia in colonic digesta. Spearman's correlation analysis revealed that the changed bacteria were strongly correlated with oxidative stress and inflammation-related parameters. The concentration of the butyrate level was elevated by 2.16-fold after oats supplementation. In addition, oats and tartary buckwheat significantly downregulated the expression of sterol regulatory element-binding protein 2 and peroxisome proliferator-activated receptors γ in liver tissue. In summary, our results suggested that oats and tartary buckwheat could modulate gut microbiota composition, improve lipid metabolism, and decrease oxidative stress and inflammatory responses in HFD fed rats. The present work could provide scientific evidence for developing coarse cereals-based functional food for preventing hyperlipidemia.


Asunto(s)
Fagopyrum , Microbioma Gastrointestinal , Setaria (Planta) , Animales , Avena , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Grano Comestible/química , Fagopyrum/química , Microbioma Gastrointestinal/fisiología , Metabolismo de los Lípidos , Ratas
18.
Front Vet Sci ; 9: 947276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898543

RESUMEN

Vitamin D signaling is important for intestinal homeostasis. An increase in vitamin D receptors in immune cells can modulate cell phenotype and cytokine secretion. Cytokines regulate both pro- (interleukin 17; IL-17) and anti-inflammatory (IL-10) responses triggered by external stimuli. Inflammation in intestinal tissues can disrupt the structure and the remodeling of epithelial tight junction complexes, thus, compromising the protective barrier. The objective of the study was to determine the impact of dietary supplementation with 25-hydroxycholecalciferol (25OHD3), a hydroxylated metabolite of vitamin D, on intestinal cytokine abundance and epithelial barrier integrity over time in broilers. A randomized complete block design experiment was conducted to evaluate the effect of dietary 25OHD3 inclusion on relative protein expression of the cytokines, IL-17 and IL-10, and tight junction proteins, Zona Occludens 1 (ZO-1), and Claudin-1 (CLD-1), in broiler chicken duodenum and ileum from 3 to 21 days post-hatch. On day 0, male chicks (n = 168) were randomly assigned to raised floor pens. Experimental corn-soybean meal-based treatments were as follows: (1) a common starter diet containing 5,000 IU of D3 per kg of feed (VITD3) and (2) a common starter diet containing 2,240 IU of D3 + 2,760 IU of 25OHD3 per kg of feed (25OHD3) fed from days 0 to 21. On days 3, 6, 9, 12, 15, 18, and 21, 12 birds per treatment were euthanized to collect tissue samples for quantitative, multiplex, and fluorescent Western blot analysis. Target proteins were quantified using Image Quant TL 8.1 and expressed relative to total protein. Feeding 25OHD3 post-hatch decreased ileal IL-10 (anti-inflammatory) protein expression in 21-day-old broilers compared with VITD3 only (P = 0.0190). Broilers fed only VITD3 post-hatch had greater IL-17 (pro-inflammatory) protein expression in the ileum at 18 and 21 days-of-age (P = 0.0412) than those that fed 25OHD3. Dietary inclusion of 25OHD3 lowered the abundance of key inflammatory cytokines in the ileum of young broilers.

19.
Phytomedicine ; 101: 154113, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35490493

RESUMEN

BACKGROUND: With the development of economy and increased workload, chronic a high-fat/alcohol diet intake may lead to alcoholic fatty liver disease (AFLD), which is considered as a crucial health problem worldwide. E Se tea is produced of the leaves and leaf buds of Malus toringoides (Rehd.) Hughes in Tibet and has human health benefits with anti-hyperglycemia, hypertension, and hyperlipidemia effects. PURPOSE: The objective of this work was to investigate the protective effect of aqueous-ethanol and hot-water extracts of E Se tea against chronic high-fat/alcohol diet induced AFLD rats. METHODS: Firstly, to determine the chemical profiling of E Se tea extracts, UHPLC-ESI-HRMS analysis was conducted. Secondly, Sprague-Dawley male rats were used to establish the AFLD animal model by feeding with high-fat/alcohol diet. The animals were treated with E Se tea extracts for 12 weeks. Serum parameters were determined, histologic sections were prepared, and activities of enzymes related to inflammatory response and lipid metabolism imbalance were analyzed. The underlying mechanisms of E Se tea extracts alleviating AFLD were analyzed by immunofluorescence staining and Western blotting analysis. Lastly, key targets of 11-MT against AFLD were verified through molecular docking. RESULTS: In this study, seven main compounds were confirmed or tentatively identified in E Se tea extracts by UHPLC-ESI-HRMS. The results revealed that both the extracts could reverse histopathological steatotic alternation of the liver and reduced the activity of liver damage markers (ALT, AST). E Se tea extracts mitigated oxidative stress by inhibiting CYP2E1 protein and lipid peroxidation parameters (MDA), but enhancing the endogenous antioxidants (CAT, GSH, SOD). Moreover, E Se tea extracts ameliorated inflammation by restraining the activation of NF-κB, consequently releasing the expression of proinflammatory cytokines (TNF-α, IL-6, IL-1ß, COX-2 and iNOS). Subsequently, E Se tea extracts reduced hepatocyte apoptosis by increasing capase-9, caspase-3 and Bax protein expression but decreasing Bcl-2 protein expression. Furthermore, E Se tea extracts improved metabolism imbalance by stimulating AMPK/SREBP1/FAS and PPAR-α/CPT1 signaling pathway by regulating lipid metabolism parameters (TC, TG, HDL-C, LHD-C). Furthermore, molecular docking results indicated that 7 chemical constituents of E Se tea extracts had strong docking affinity with 4 key target proteins (AMPK, PPAR-α, NF-кB and Caspase-9). CONCLUSION: E Se tea ameliorated AFLD through ameliorating inflammatory response, apoptosis, and lipid metabolism imbalance.


Asunto(s)
Hígado Graso Alcohólico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Etanol/farmacología , Hígado Graso Alcohólico/tratamiento farmacológico , Hígado Graso Alcohólico/prevención & control , Hígado , Masculino , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Estrés Oxidativo , PPAR alfa/metabolismo , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley ,
20.
J Agric Food Chem ; 70(15): 4755-4764, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35394776

RESUMEN

Patulin (PAT) is a common mycotoxin. Oral ingestion of PAT could damage the intestinal mucosa. Both selenium and probiotics can alleviate intestinal damage, but there are few reports on selenium-enriched probiotics. Here, we studied the protective effects of a new selenium-enriched Pediococcus acidilactici MRS-7 (SeP) on PAT-induced jejunum injuries in mice. Results show that PAT induced jejunum injuries such as loss of crypts, ulceration of the mucosa, and intestinal epithelial barrier function impairment. However, SeP could protect against PAT-induced jejunum injuries and significantly inhibit the reduction of goblet cell numbers. SeP could not only alleviate PAT-induced oxidative stress by decreasing malondialdehyde (MDA) and increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels in the jejunum tissues but also alleviate the inflammatory response caused by PAT by reducing the levels of inflammatory factors (interleukin (IL)-6 snd IL-1ß and tumor necrosis factor-α (TNF-α)) in the serum and jejunum tissues. In addition, SeP also inhibited the expression of nuclear factor-κB (NF-κB) and Toll-like receptor 4 (TLR-4), increased the expression of tight junction proteins (occludin, ZO-1, and claudin-1), and increased the selenium content in the jejunum, thereby antagonizing the jejunum injuries caused by PAT exposure. Finally, SeP rebalanced the intestinal microbiota and improved probiotic abundance such as Turicibacter, Bifidobacterium, Ileibacterium, and Pediococcus in PAT-treated mice. These results support the possibility of SeP as a novel protective agent to mitigate the toxicity of PAT.


Asunto(s)
Patulina , Pediococcus acidilactici , Selenio , Animales , Mucosa Intestinal/metabolismo , Yeyuno/metabolismo , Ratones , Estrés Oxidativo , Patulina/toxicidad , Pediococcus acidilactici/metabolismo , Selenio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA