Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9299, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653843

RESUMEN

Phthorimaea absoluta is a global constraint to tomato production and can cause up to 100% yield loss. Farmers heavily rely on synthetic pesticides to manage this pest. However, these pesticides are detrimental to human, animal, and environmental health. Therefore, exploring eco-friendly, sustainable Integrated Pest Management approaches, including biopesticides as potential alternatives, is of paramount importance. In this context, the present study (i) evaluated the efficacy of 10 Bacillus thuringiensis isolates, neem, garlic, and fenugreek; (ii) assessed the interactions between the most potent plant extracts and B. thuringiensis isolates, and (iii) evaluated the gut microbial diversity due to the treatments for the development of novel formulations against P. absoluta. Neem recorded the highest mortality of 93.79 ± 3.12% with an LT50 value of 1.21 ± 0.24 days, Bt HD263 induced 91.3 ± 3.68% mortality with LT50 of 2.63 ± 0.11 days, compared to both Bt 43 and fenugreek that caused < 50% mortality. Larval mortality was further enhanced to 99 ± 1.04% when Bt HD263 and neem were combined. Furthermore, the microbiome analyses showed that Klebsiella, Escherichia and Enterobacter had the highest abundance in all treatments with Klebsiella being the most abundant. In addition, a shift in the abundance of the bacterial genera due to the treatments was observed. Our findings showed that neem, garlic, and Bt HD263 could effectively control P. absoluta and be integrated into IPM programs after validation by field efficacy trials.


Asunto(s)
Bacillus thuringiensis , Extractos Vegetales , Trigonella , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Trigonella/química , Control Biológico de Vectores/métodos , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Larva/efectos de los fármacos , Larva/microbiología , Ajo/química , Microbioma Gastrointestinal/efectos de los fármacos , Solanum lycopersicum/microbiología
2.
J Med Case Rep ; 18(1): 157, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38493134

RESUMEN

INTRODUCTION: This case study reports on a suicide attempt involving indoxacarb and vitamin C. Indoxacarb is a neurotoxic insecticide used in agriculture and as a flea controller in pets. Cotton, vegetables, and fruits are treated with indoxacarb, an insecticide that can be applied both indoors and outdoors. It causes skin allergies, methemoglobinemia, and hemolytic anemia. It is also attributed to allergic reactions through ingestion, inhalation, physical contact, and translaminar action. This case report highlights use of vitamin C in methemoglobinemia caused by indoxacarb poisoning. Indoxacarb poisoning has the potential to be extremely serious and even lethal. In this instance, the patient initially had no symptoms after ingesting a substance containing indoxacarb in an attempt at suicide. However, further tests revealed methemoglobinemia and low oxygen levels. CASE PRESENTATION: A 28-year-old south-east Asian female patient ingested an insecticide containing 5.25% novaluron, 4.5% indoxacarb, and 25% thiamethoxam, and reported that she noticed muddy brown urine but presented with no active signs or symptoms of poisoning. Upon examination, the patient was fully conscious, alert, and hemodynamically stable, but had an oxygen saturation of 84%. Gastric lavage was performed, and blood investigations revealed a muddy-brown-colored blood sample and methemoglobin levels of 12%. The patient was treated with high-dose vitamin C and showed significant improvement, with a drop in methemoglobin levels to 1.2% and an increase in oxygen saturation to 97%. DISCUSSION: Indoxacarb poisoning can cause severe methemoglobinemia. Vitamin C may be a useful treatment option for methemoglobinemia caused by indoxacarb, particularly in cases in which traditional treatment with methylene blue is contraindicated or not tolerated. Hence high doses of ascorbic acid, that is, vitamin C, were administered to the patient, which lowered their methemoglobin levels and improved oxygen levels without much safety concerns. CONCLUSION: This example emphasizes the significance of early indoxacarb poisoning detection and treatment as well as the possible advantages of utilizing ascorbic acid in the management of methemoglobinemia, and highlights the use of vitamin C in the treatment of methemoglobinemia caused by indoxacarb poisoning. Therefore, it is important for healthcare professionals to be aware of the potential for indoxacarb to cause methemoglobinemia and to consider vitamin C as a treatment option.


Asunto(s)
Insecticidas , Metahemoglobinemia , Oxazinas , Adulto , Femenino , Humanos , Ácido Ascórbico/uso terapéutico , Insecticidas/envenenamiento , Metahemoglobina , Metahemoglobinemia/diagnóstico , Oxígeno , Vitaminas/uso terapéutico
3.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397109

RESUMEN

Insecticide resistance has long been a problem in crop pest control. Bactericera gobica is a major pest on the well-known medicinal plants Lycium barbarum L. Investigating insecticide resistance mechanisms of B. gobica will help to identify pesticide reduction strategies to control the pest. Gene expression normalization by RT-qPCR requires the selection and validation of appropriate reference genes (RGs). Here, 15 candidate RGs were selected from transcriptome data of B. gobica. Their expression stability was evaluated with five algorithms (Delta Ct, GeNorm, Normfinder, BestKeeper and RefFinder) for sample types differing in response to five insecticide stresses and in four other experimental conditions. Our results indicated that the RGs RPL10 + RPS15 for Imidacloprid and Abamectin; RPL10 + AK for Thiamethoxam; RPL32 + RPL10 for λ-cyhalothrin; RPL10 + RPL8 for Matrine; and EF2 + RPL32 under different insecticide stresses were the most suitable RGs for RT-qPCR normalization. EF1α + RPL8, EF1α + ß-actin, ß-actin + EF2 and ß-actin + RPS15 were the optimal combination of RGs under odor stimulation, temperature, developmental stages and both sexes, respectively. Overall, EF2 and RPL8 were the two most stable RGs in all conditions, while α-TUB and RPL32 were the least stable RGs. The corresponding suitable RGs and one unstable RG were used to normalize a target cytochrome P450 CYP6a1 gene between adult and nymph stages and under imidacloprid stress. The results of CYP6a1 expression were consistent with transcriptome data. This study is the first research on the most stable RG selection in B. gobica nymphs exposed to different insecticides, which will contribute to further research on insecticide resistance mechanisms in B. gobica.


Asunto(s)
Perfilación de la Expresión Génica , Insecticidas , Neonicotinoides , Nitrocompuestos , Masculino , Femenino , Humanos , Perfilación de la Expresión Génica/métodos , Insecticidas/farmacología , Actinas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transcriptoma , Estándares de Referencia
4.
Pestic Biochem Physiol ; 198: 105721, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225076

RESUMEN

Developing new pesticides poses a significant challenge in designing next-generation natural insecticides that selectively target specific pharmacological sites while ensuring environmental friendliness. In this study, we aimed to address this challenge by formulating novel natural pesticides derived from secondary plant metabolites, which exhibited potent insecticide activity. Additionally, we tested their effect on mitochondrial enzyme activity and the proteomic profile of Ae. aegypti, a mosquito species responsible for transmitting diseases. Initially, 110 key compounds from essential oils were selected that have been reported with insecticidal properties; then, to ensure safety for mammals were performed in silico analyses for toxicity properties, identifying non-toxic candidates for further investigation. Subsequently, in vivo tests were conducted using these non-toxic compounds, focusing on the mosquito's larval stage. Based on the lethal concentration (LC), the most promising compounds as insecticidal were identified as S-limonene (LC50 = 6.4 ppm, LC95 = 17.2 ppm), R-limonene (LC50 = 9.86 ppm, LC95 = 27.7 ppm), citronellal (LC50 = 40.5 ppm, LC95 = 68.6 ppm), R-carvone (LC50 = 61.4 ppm, LC95 = 121 ppm), and S-carvone (LC50 = 62.5 ppm, LC95 = 114 ppm). Furthermore, we formulated a mixture of R-limonene, S-carvone, and citronellal with equal proportions of each compound based on their LC50. This mixture specifically targeted mitochondrial proteins and demonstrated a higher effect that showed by each compound separately, enhancing the insecticidal activity of each compound. Besides, the proteomic profile revealed the alteration in proteins involved in proliferation processes and detoxification mechanisms in Ae. aegypti. In summary, our study presents a formulation strategy for developing next-generation natural insecticides using secondary plant metabolites with the potential for reducing the adverse effects on humans and the development of chemical resistance in insects. Our findings also highlight the proteomic alteration induced by the formulated insecticide, showing insight into the mechanisms of action and potential targets for further exploration in vector control strategies.


Asunto(s)
Monoterpenos Acíclicos , Aedes , Aldehídos , Monoterpenos Ciclohexánicos , Insecticidas , Animales , Humanos , Insecticidas/farmacología , Insecticidas/química , Limoneno/farmacología , Proteínas Mitocondriales/farmacología , Proteómica , Mosquitos Vectores , Larva , Extractos Vegetales/farmacología , Mamíferos
5.
Exp Parasitol ; 256: 108657, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043764

RESUMEN

Aedes aegypti serves as the primary vector for viruses like dengue, Chikungunya, Zika, and yellow fever, posing a significant public health challenge in Brazil. Given the absence of approved vaccines for these diseases, effective mosquito control becomes paramount in preventing outbreaks. However, currently available chemical insecticides face issues related to toxicity and the emergence of resistance, necessitating the exploration of new active compounds. Drawing inspiration from natural products, we identified the 1,3-benzodioxole group as a key pharmacophore associated with insecticidal activity. Therefore, this study aimed to synthesize and assess the larvicidal activity of 1,3-benzodioxole acids against Ae. aegypti, as well as their toxicity in mammals. Among the compounds evaluated, 3,4-(methylenedioxy) cinnamic acid (compound 4) demonstrated larvicidal activity. It exhibited LC50 and LC90 values of 28.9 ± 5.6 and 162.7 ± 26.2 µM, respectively, after 24 h of exposure. For reference, the positive control, temephos, displayed both LC50 and LC90 values below 10.94 µM. These findings underline the significance of the 3,4-methylenedioxy substituent on the aromatic ring and the presence of a double bond in the aliphatic chain for biological activity. Furthermore, compound 4 exhibited no cytotoxicity towards human peripheral blood mononuclear cells, even at concentrations up to 5200 µM. Lastly, in mice treated with 2000 mg kg-1, compound 4 showed mild behavioral effects and displayed no structural signs of toxicity in vital organs such as the kidney, liver, spleen, and lungs.


Asunto(s)
Aedes , Insecticidas , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Larva , Leucocitos Mononucleares , Mosquitos Vectores , Extractos Vegetales/farmacología , Insecticidas/farmacología , Insecticidas/química , Mamíferos
6.
Ecotoxicol Environ Saf ; 267: 115649, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37913580

RESUMEN

Pesticide resistance inflicts significant economic losses on a global scale each year. To address this pressing issue, substantial efforts have been dedicated to unraveling the resistance mechanisms, particularly the newly discovered microbiota-derived pesticide resistance in recent decades. Previous research has predominantly focused on investigating microbiota-derived pesticide resistance from the perspective of the pest host, associated microbes, and their interactions. However, a gap remains in the quantification of the contribution by the pest host and associated microbes to this resistance. In this study, we investigated the toxicity of phoxim by examining one resistant and one sensitive Delia antiqua strain. We also explored the critical role of associated microbiota and host in conferring phoxim resistance. In addition, we used metaproteomics to compare the proteomic profile of the two D. antiqua strains. Lastly, we investigated the activity of detoxification enzymes in D. antiqua larvae and phoxim-degrading gut microbes, and assessed their respective contributions to phoxim resistance in D. antiqua. The results revealed contributions by D. antiqua and its gut bacteria to phoxim resistance. Metaproteomics showed that the two D. antiqua strains expressed different protein profiles. Detoxifying enzymes including Glutathione S-transferases, carboxylesterases, Superoxide Dismutase, Glutathione Peroxidase, and esterase B1 were overexpressed in the resistant strain and dominated in differentially expressed insect proteins. In addition, organophosphorus hydrolases combined with a group of ABC type transporters were overexpressed in the gut microbiota of resistant D. antiqua compared to the sensitive strain. 85.2% variation of the larval mortality resulting from phoxim treatment could be attributed to the combined effects of proteins from both from gut bacteria and D. antiqua, while the individual contribution of proteins from gut bacteria or D. antiqua alone accounted for less than 10% of the variation in larval mortality caused by phoxim. The activity of the overexpressed insect enzymes and the phoxim-degrading activity of gut bacteria in resistant D. antiqua larvae were further confirmed. This work enhances our understanding of microbiota-derived pesticide resistance and illuminates new strategies for controlling pesticide resistance in the context of insect-microbe mutualism.


Asunto(s)
Microbioma Gastrointestinal , Plaguicidas , Animales , Cebollas , Proteómica , Transportadoras de Casetes de Unión a ATP , Arildialquilfosfatasa , Larva
7.
J Econ Entomol ; 116(6): 1998-2008, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37942675

RESUMEN

Wireworms are primary pests of potatoes in Canada with relatively few effective control options. Recently, a new meta-diamide insecticide, broflanilide, was registered in Canada and the United States as an in-furrow spray applied at planting that provides protection of tubers from feeding damage and dramatically reduces wireworm populations. As part of our routine screening of wireworm response to novel insecticides, we exposed wireworms (predominantly Agriotes obscurus; N=2320) to field soil collected from plots to which either bifenthrin (Capture 2EC) or broflanilide (Cimegra) had been applied at registered rates 124-145 and 314-335 days previously in 2018, 2019, and 2021. Wireworm behavioral responses were assessed using a previously developed numerical scale, and indicated residues were present in sufficient quantity in all broflanilide and most bifenthrin-treated plots to induce morbidity. Transfer of affected wireworms to untreated soil indicated morbidity was generally reversible after exposure to bifenthrin, but not after exposure to broflanilide. There was an inverse relation between wireworm size and the degree of morbidity induced by exposure to broflanilide, but not bifenthrin. Analyses of soil residues indicated readily quantifiable levels of broflanilide still present in undisturbed (not harvested) field soil 314-335 days after application. Insecticide residues in soil samples from disturbed (harvested) sections of the potato plots were lower, as was the degree of morbidity of wireworms exposed to this soil. The use of wireworms as bioindicators of insecticide residues, and the implications of insecticide persistence for wireworm management are discussed.


Asunto(s)
Escarabajos , Insecticidas , Solanum tuberosum , Animales , Insecticidas/farmacología , Suelo , Larva
8.
J Econ Entomol ; 116(6): 2116-2123, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37931224

RESUMEN

Onion thrips (Thrips tabaci Lindeman, Thysanoptera: Thripidae) is a significant insect pest of onions (Allium cepa L., Asparagales: Amaryllidaceae). In addition to feeding on onion foliage, they may spread plant pathogens. Currently, onion thrips and pathogens are managed as separate pests with insecticides and fungicides. It may be beneficial to manage these pests simultaneously as limiting onion thrips may reduce pathogen damage. We tested combinations of bio- and conventional pesticides in a season-long management program in Michigan onion fields. From 2020 to 2022, we counted onion thrips weekly and visually estimated plant foliage necrotic damage (%) in experimental plots each year. In 2020, we tested 6 treatment programs including: azadirachtin, spinosad, a copper-based fungicide, azadirachtin + copper-based fungicide, spinosad + copper-based fungicide, and untreated control. The thrips populations were not significantly reduced compared to the control, but necrotic damage was reduced significantly in spinosad-treated plots. In 2021, we tested a combination of 8 bio- and conventional pesticide programs. Compared to the control, the bioinsecticides did not reduce onion thrips populations, but the conventional pesticide programs reduced both onion thrips numbers and necrotic damage. In 2022, we tested only conventional insecticide programs but included 3 different action thresholds for initiation and applied them with or without a fungicide, for 8 treatments. All insecticide programs reduced onion thrips compared to the control, the action threshold did not impact thrips numbers significantly. Overall, the use of action thresholds can lead to fewer insecticide applications and a lower incidence of leaf damage.


Asunto(s)
Fungicidas Industriales , Insecticidas , Plaguicidas , Thysanoptera , Animales , Cebollas , Cobre , Insectos , Fungicidas Industriales/farmacología
9.
Saudi J Biol Sci ; 30(12): 103853, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38020224

RESUMEN

In the current study, the biological effects of various solvents concentrations of Artemisia absinthium were assayed on different stages (larva, pupa and adult) of Aedes aegypti under controlled laboratory conditions. The life initiation and mortality for each insect stage were evaluated. Different lethal concentrations were measured. Aedes aegypti L. was susceptible to all plant extract solvents in different conc. ANOVA test, correlation analysis and simple linear regression were used to evaluate the significance. The results correlated with other comparative studies with different Artemisia sp. to put the studied species in the proper way in Asteraceae family. The study gave A. absinthium L. its bright position as a perfect natural insecticide especially as larvicidal due to the low Lc50 degree. Scientists welcome to use natural insecticide at initial stages of insect not in later ones.

10.
Environ Entomol ; 52(6): 1162-1171, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37823556

RESUMEN

Agricultural insect herbivores show a remarkable ability to adapt to modern agroecosystems, making them ideal for the study of the mechanisms underlying rapid evolution. The mobilization of transposable elements is one mechanism that may help explain this ability. The Colorado potato beetle, Leptinotarsa decemlineata, is a highly adaptable species, as shown by its wide host range, broad geographic distribution, and tolerance to insecticides. However, beetle populations vary in insecticide tolerance, with Eastern US beetle populations being more adaptable than Western US ones. Here, we use a community ecology approach to examine how the abundance and diversity of transposable elements differs in 88 resequenced genomes of L. decemlineata collected throughout North America. We tested if assemblages and mobilization of transposable elements differed between populations of L. decemlineata based on the beetle's geography, host plant, and neonicotinoid insecticide resistance. Among populations of North American L. decemlineata, individuals collected in Mexico host more transposable elements than individuals collected in the United States. Transposable element insertion locations differ among geographic populations, reflecting the evolutionary history of this species. Total transposable element diversity between L. decemlineata individuals is enough to distinguish between populations, with more TEs found in beetles collected in Mexico than in the United States. Transposable element diversity does not appear to differ between beetles found on different host plants, or relate to different levels of insecticide resistance.


Asunto(s)
Escarabajos , Insecticidas , Solanum tuberosum , Animales , Escarabajos/genética , Elementos Transponibles de ADN , Insecticidas/farmacología , Neonicotinoides , Resistencia a los Insecticidas/genética
11.
Pestic Biochem Physiol ; 194: 105492, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532318

RESUMEN

Nanomaterials have been produced with the use of bio-nanotechnology, which is a low-cost approach. Currently, research is being conducted to determine whether actinomycetes isolated from Egyptian soil can biosynthesize Ag nanoparticles (Ag NPs) and characterized by using the following techniques: Transmission electron microscopy (TEM), Dynamic light scattering (DLS), Fourier transforms infrared (FT-IR), Energy-dispersive X-ray spectroscopy (EDX), UV-Vis spectroscopy and X-ray diffraction (XRD). The most promising actinomycetes isolate were identified, morphologically, biochemically, and molecularly. Streptomyces avermitilis Azhar A.4 was found to be able to reduce silver metal nanoparticles from silver nitrate in nine isolates collected from Egyptian soil. Toxicity of biosynthesized against 2nd and 4th larval instar of Agrotis ipsilon (Hufn.) (Lepidoptera: Noctuidae) was estimated. In addition, activity of certain vital antioxidant and detoxifying enzymes as well as midgut histology of treated larvae were also investigated. The results showed appositive correlations between larval mortality percentage (y) and bio-AgNPs concentrations (x) with excellent (R2). The 4th larval instar was more susceptible than 2nd larval instar with LC50 (with 95% confirmed limits) =8.61 (2.76-13.89) and 26.44(13.25-35.58) ppml-1, respectively of 5 days from treatment. The initial stages of biosynthesized AgNps exposure showed significant increases in carboxylesterase (CarE) and peroxidases (PODs) activity followed by significant suppression after 5 days pos-exposure. While protease activity was significantly decreased by increasing time post-exposure. Midgut histology showed abnormality and progressive damage by increasing time post exposure leading to complete destruction of midgut cells after 5 days from exposure. These results make biosynthesized AgNPs an appropriate alternative to chemical insecticide in A. ipsilon management.


Asunto(s)
Actinobacteria , Nanopartículas del Metal , Animales , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Actinomyces , Espectroscopía Infrarroja por Transformada de Fourier , Plata/toxicidad , Larva , Extractos Vegetales/farmacología , Antibacterianos/farmacología
12.
Recent Adv Food Nutr Agric ; 14(3): 144-154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37537931

RESUMEN

Humans and many other creatures depend on agriculture for survival, but it is impossible to cultivate without the use of pesticides. Different types of harmful organism or pest exists in every agricultural crop. Synthetic pesticides are widely utilised around the world as a solution to this problem, but there are drawbacks associated with their application, the most significant of which are the severe negative impacts on ecosystems and human health. Organically made pesticides should be used instead of synthetic pesticides to reduce their harmful effects. Unlike chemical pesticides, natural pesticides do not cause any harm to non-target creatures and are inexpensive. Most botanical pesticides degrade rapidly, usually in only a few days but sometimes may even take hour. One of the most promising approaches to reducing pesticide pollution and protecting crops, food, and the environment is to use botanical insecticides. Beneficial insects such as earthworms are much less likely to be killed by biopesticides. The source of herbal insecticides is herbal plants. Each plant has distinct effect since every plant have their own chemical constituent. This review explains about numerous herbs and shrubs that feature distinct insecticidal, pesticidal and repelling effect. Insecticidal activity is discovered in a broad variety of herbal plants, and this review analyses those plants in detail, defining the major active ingredient responsible for these effects.


Asunto(s)
Repelentes de Insectos , Insecticidas , Plaguicidas , Animales , Humanos , Insecticidas/farmacología , Ecosistema , Plaguicidas/farmacología , Insectos , Productos Agrícolas , Repelentes de Insectos/farmacología
13.
Insects ; 14(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37367307

RESUMEN

In recent years, the control of pear psyllid in northern Italy has not been particularly problematic, due to the presence of two insecticides (abamectin and spirotetramat) specifically for this pest, and due to the adoption of integrated pest management. However, the withdrawal of these two specific insecticides is imminent and, therefore, it has become necessary to find alternative control tools. More recently, potassium bicarbonate, known for its fungistatic activity against many phytopathogenic fungi, has also shown some activity against some insect pests. In the present study, the efficacy and possible phytotoxicity of potassium bicarbonate were tested in two field trials on second generation Cacopsylla pyri by spraying two different salt concentrations (5 and 7 kg ha-1), with or without polyethylene glycol as an adjuvant. Spirotetramat was used as a commercial reference. The results showed that potassium bicarbonate could positively control the number of juvenile forms (with a mortality percentage of up to 89% at the infestation peak), even though spirotetramat was still more effective. Therefore, potassium bicarbonate appears to be a sustainable integrated tool for psyllid control, especially in the wake of the imminent withdrawal of spirotetramat and other insecticides currently used on this pest.

14.
Environ Res ; 231(Pt 1): 116079, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156353

RESUMEN

The tobacco cutworm, Spodoptera litura and cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) are important pests of various agricultural crops that cause sevier economic loses throughout the world. Indiscriminate and frequent use of insecticide may lead to development of resistance in these pests. Nanotechnology has given an alternative to manage and overcome insecticide resistance for pest management strategies. In the present study the iron nanoparticles derived from Trigonella foenum-graecum leaf extract (FeNPs) was investigated for its ecofriendly management of pyrethroid resistance in two lepidopteron pest species at 24 h, 48 h and 72 h post treatment. The result showed high mortality (92.83% and 91.41%) of S. litura and H. armigera at 72 h treatment upon FeNPs and fenvalerate (Fen + FeNPs) teratment. Probit analysis revealed high LC50 upon Fen + FeNPs treatment (130.31 and 89.32 mg/L) with a synergism ratio of 1.38 and 1.36. Antifeedant activity of six dofferent concentration of FeNPs revelaed increased antifeedant activity with respect to increasing concentration of nanoparticles ranging from 10 to 90% and 20-95% againt both insects (p<0.05). Detoxification activity of carboxylesterase was elevated at 630 µmol/mg protein/min (p<0.05) in fenvalerate treatment, whereas decreased activity was found (392umole/mg protein/min) in FeNPs and Fen + FeNPs treatment (P<0.001). GST and P450 activity was also increased in fenvalerate treatment, whereas decreased activity was observed in FeNPs and Fen + FeNPs. Esterase isoenzyme banding pattern revealed four bands in fenvalerate treatment and two bans (E3 and E4) in Fen + FeNPs combination. Hence the present study concludes that T. foenum-graecum synthesized iron nanoparticles could be an effective alternate for ecofriendly management of S. litura and H. armigera.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Nanopartículas , Trigonella , Animales , Spodoptera , Larva
15.
Curr Res Toxicol ; 4: 100104, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020602

RESUMEN

Carapa guianensis (Andiroba, Meliaceae) is considered a multipurpose tree. In Brazil, Indigenous people have used it as insect repellent and in the treatment of various diseases. Most biological activities and popular uses are attributed to limonoids, which are highly oxygenated tetranortriterpenoids. More than 300 limonoids have been described in Meliaceae family. Limonoids from Andiroba oil have shown high anti-inflammatory and anti-allergic activities in vivo, by inhibiting platelet activating factors and many inflammatory mediators such as IL-5, IL-1ß and TNF-α. It also reduced T lymphocytes, eosinophils and mast cells. In corroboration with the wide popular use of Andiroba oil, no significant cytotoxicity or genotoxicity in vivo was reported. This oil promotes apoptosis in a gastric cancer cell line (ACP02) at high concentrations, without showing mutagenic effects, and is suggested to increase the body's nonspecific resistance and adaptive capacity to stressors, exhibit some antioxidant activity, and protect against oxidative DNA damages. Recently, new methodologies of toxicological assays have been applied. They include in chemico, in vitro, in silico and ex vivo procedures, and take place to substitute the use of laboratory animals. Andiroba by-products have been used in sustainable oil production processes and as fertilizers and soil conditioners, raw material for soap production, biodegradable surfactants and an alternative natural source of biodegradable polymer in order to reduce environmental impacts. This review reinforces the relevance of Andiroba and highlights its ability to add value to its by-products and to minimize possible risks to the health of the Amazonian population.

16.
Ecotoxicology ; 32(3): 383-393, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36995476

RESUMEN

Despite their environmental implications, ecotoxicological information regarding pesticide mixtures is relatively scarce. This study aimed to determine the ecotoxicity of individual pesticide formulations and their mixtures (insecticides and fungicides), which are applied during the production cycle of potato, according to agricultural practices from a Latin American region in Costa Rica. Two benchmark organisms were employed: Daphnia magna and Lactuca sativa. First, the evaluation of individual formulations (chlorothalonil, propineb, deltamethrin+imidacloprid, ziram, thiocyclam and chlorpyrifos) revealed differences between available EC50 for active ingredients (a.i.) and their respective formulations toward D. magna; on the contrary, no information could be retrieved from scientific literature for comparison in the case of L. sativa. In general, acute toxicity was higher toward D. magna than L. sativa. Moreover, interactions could not be determined on L. sativa, as the chlorothalonil formulation was not toxic at high levels and the concentration-response to propineb could not be fitted to obtain an IC50 value. The commercial formulation composed of deltamethrin+imidacloprid followed the concentration addition model (when compared with parameters retrieved from individual a.i.) and the other three mixtures evaluated (I: chlorothalonil-propineb-deltamethrin+imidacloprid; II: chlorothalonil-propineb-ziram-thiocyclam; III: chlorothalonil-propineb-chlorpyrifos) produced an antagonistic effect on D. magna, thus suggesting less acute toxicity than their individual components. Subsequent chronic studies showed that one of the most toxic mixtures (II) negatively affected D. magna reproduction at sublethal concentrations indicating that this mixture poses a risk to this species if these pesticides co-exist in freshwater systems. These findings provide useful data to better estimate the impact of real agricultural practices related to the use of agrochemicals.


Asunto(s)
Cloropirifos , Plaguicidas , Solanum tuberosum , Ziram , Animales , Plaguicidas/toxicidad , Plaguicidas/análisis , Cloropirifos/toxicidad , Costa Rica , Ziram/farmacología , Daphnia
17.
Mol Ecol ; 32(6): 1425-1440, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36591939

RESUMEN

Structural variation has been associated with genetic diversity and adaptation. Despite these observations, it is not clear what their relative importance is for evolution, especially in rapidly adapting species. Here, we examine the significance of structural polymorphisms in pesticide resistance evolution of the agricultural super-pest, the Colorado potato beetle, Leptinotarsa decemlineata. By employing a parent offspring trio sequencing procedure, we develop highly contiguous reference genomes to characterize structural variation. These updated assemblies represent >100-fold improvement of contiguity and include derived pest and ancestral nonpest individuals. We identify >200,000 structural variations, which appear to be nonrandomly distributed across the genome as they co-occur with transposable elements and genes. Structural variations intersect with exons in a large proportion of gene annotations (~20%) that are associated with insecticide resistance (including cytochrome P450s), development, and transcription. To understand the role structural variations play in adaptation, we measure their allele frequencies among an additional 57 individuals using whole genome resequencing data, which represents pest and nonpest populations of North America. Incorporating multiple independent tests to detect the signature of natural selection using SNP data, we identify 14 genes that are probably under positive selection, include structural variations, and SNPs of elevated frequency within the pest lineages. Among these, three are associated with insecticide resistance based on previous research. One of these genes, CYP4g15, is coinduced during insecticide exposure with glycosyltransferase-13, which is a duplicated gene enclosed within a structural variant adjacent to the CYP4g15 genic region. These results demonstrate the significance of structural variations as a genomic feature to describe species history, genetic diversity, and adaptation.


Asunto(s)
Escarabajos , Insecticidas , Solanum tuberosum , Animales , Escarabajos/genética , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , Evolución Molecular
18.
Pest Manag Sci ; 79(3): 1131-1139, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36358028

RESUMEN

BACKGROUND: Bradysia procera, a ginseng stem fungus gnat, is one of the most serious insect pests of Korean ginseng (Panax ginseng), causing significant damage to plant growth. The goal of this study was to determine the toxicity and mechanism of action of phenylpropanoids (trans-anethole and estragole) isolated from the methanol extract and hydrodistillate of Illicium verum fruit against third-instar larvae and eggs of Bradysia procera. RESULTS: The filter-paper mortality bioassay revealed that estragole [median lethal concentration (LC50 ) = 4.68 g/cm2 ] has a significant fumigant effect, followed by trans-anethole (LC50 = 43.92 g/cm2 ). However, estragole had the lowest toxic effect when compared to commercially available insecticides. After 7 days, estragole and trans-anethole at 75 g/cm2 inhibited egg hatchability up to 97% and 93%, respectively. At 0.09 g/cm2 , insecticides had an inhibitory effect on egg-hatching ability ranging from 88% to 94%. Furthermore, in both closed and open containers, these active constituents were able to consistently induce vapor-phased toxicity. Both estragole and trans-anethole have the ability to inhibit acetylcholinesterase (AChE), which is involved in neurotransmitter function. However, the active constituent estragole from I. verum fruit acted as a potent AChE inhibitor and had a slightly lower effect on cyclic adenosine monophosphate (AMP) than octopamine alone. CONCLUSION: This finding suggests that estragole may influence Bradysia procera neurotransmitter function via both the AChE and octopaminergic receptors. More research is needed to demonstrate the potential applications of I. verum fruit-derived products as potential larvicides and ovicides for Bradysia procera population control. © 2022 Society of Chemical Industry.


Asunto(s)
Illicium , Insecticidas , Animales , Insecticidas/química , Illicium/química , Frutas/química , Acetilcolinesterasa , Extractos Vegetales/farmacología , Nematocera
19.
Pest Manag Sci ; 79(4): 1295-1304, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36349434

RESUMEN

BACKGROUND: Aphids are significant pests of cash crops and food farm crops. Botanical insecticides are safe for aphid control, especially for organic farming. In this study, Eleocharis dulcis (Burm. f.) Trin. peel extract (EDPE), a new botanical insecticide, was investigated for its active compositions against several agricultural aphids. RESULTS: The results showed that the EDPE had high insecticidal activity against Sitobion avenae Fabricius, Aphis gossypii Glover, Megoura crassicauda Mordvilko, and Acyrthosiphon pisum Harris, with half-lethal concentration (LC50 ) values of 95.92, 81.04, 140.31, and 255.73 mg/L after 48 h of treatment. In the pot culture assay, the aphicidal effects of 25% EDPE soluble liquid (SL) at a concentration of 0.016% were 68.98 ± 5.61%, 79.33 ± 8.27%, and 88.82 ± 3.91% after the first, third, and seventh days of treatment, respectively. Nine compounds were identified by bioactivity-directed fractionation: 4',5'-dimethoxy-6,6-dimethylpyranoisoflavone (1), 3-methoxy-4-hydroxylonchocarpin (2), 4-hydroxylonchocarpin (3), 4-methoxylonchocarpin (4), barbigerone (5), lonchocarpusone (6), 6a,12a-dehydrodeguelin (7), 13-homo-13-oxa-6a, 12a-dehydrodeguelin (8) and deguelin (9). Among them, 4-hydroxylonchocarpin (3) showed the highest aphidicidal activity against M. crassicauda, S. avenae, and A. pisum, with LC50 values of 97.24, 140.63, and 112.31 mg/L, respectively. CONCLUSION: These data contribute to a better understanding of the aphicidal activity of EDPE and its main component, 4-hydroxylonchocarpin. This will help to develop new botanical insecticides to contro aphids. © 2022 Society of Chemical Industry.


Asunto(s)
Áfidos , Eleocharis , Insecticidas , Animales , Insecticidas/farmacología , Dosificación Letal Mediana , Extractos Vegetales/farmacología
20.
Arch Insect Biochem Physiol ; 112(3): e21993, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36546461

RESUMEN

The Colorado potato beetle (Leptinotarsa decemlineata (Say)) is an insect pest that threatens potato crops. Multiple options exist to limit the impact of this pest even though insecticides remain a primary option for its control. Insecticide resistance has been reported in Colorado potato beetles and a better understanding of the molecular players underlying such process is of utmost importance to optimize the tools used to mitigate the impact of this insect. Resistance against the insecticide spinosad has been reported in this insect and this work thus aims at exploring the expression of targets previously associated with insecticide response in Colorado potato beetles exposed to this compound. Amplification and quantification of transcripts coding for cytochrome P450s and glutathione S-transferases were conducted via qRT-PCR in insects treated with varying doses of spinosad and for different time duration. This approach notably revealed differential expression of CYP6a23 and CYP12a5 in insects exposed to low doses of spinosad for 4 h as well as modulation of CYP6a13, CYP6d4, GST, GST1, and GST1-Like in insects treated with high doses of spinosad for the same duration. RNAi-based targeting of CYP4g15 and CYP6a23 was associated with marked reduction of transcript expression 7 days following dsRNA injection and reduction of the former had a marked impact on insect viability. In general, results presented here provide novel information regarding the expression of transcripts relevant to spinosad response in Colorado potato beetles and reveal a novel target to consider in the development of RNAi-based strategies aimed at this potato pest.


Asunto(s)
Escarabajos , Insecticidas , Solanum tuberosum , Animales , Insecticidas/metabolismo , Escarabajos/genética , Neonicotinoides , Solanum tuberosum/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Transferasas/metabolismo , Glutatión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA