Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Intervalo de año de publicación
1.
Zhongguo Zhen Jiu ; 44(4): 449-454, 2024 Apr 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38621733

RESUMEN

OBJECTIVES: To observe the effects of moxibustion on intestinal barrier function and Toll-like receptor 4 (TLR4)/nuclear factor-κB p65 (NF-κB p65) signaling pathway in obese rats and explore the mechanism of moxibustion in the intervention of obesity. METHODS: Fifty-five Wistar rats of SPF grade were randomly divided into a normal group (10 rats) and a modeling group (45 rats). In the modeling group, the obesity model was established by feeding high-fat diet. Thirty successfully-modeled rats were randomized into a model group, a moxibustion group, and a placebo-control group, with 10 rats in each one. In the moxibustion group, moxibustion was applied at the site 3 cm to 5 cm far from the surface of "Zhongwan" (CV 12), with the temperature maintained at (46±1 ) ℃. In the placebo-control group, moxibustion was applied at the site 8 cm to 10 cm far from "Zhongwan" (CV 12), with the temperature maintained at (38±1) ℃. The intervention was delivered once daily for 8 weeks in the above two groups. The body mass and food intake of the rats were observed before and after intervention in each group. Using ELISA methool, the levels of serum triacylglycerol (TG), total cholesterol (TC) and lipopolysaccharide (LPS) were detected and the insulin resistance index (HOMA-IR) was calculated. HE staining was used to observe the morphology of colon tissue. The mRNA expression of zonula occludens-1 (ZO-1), Occludin, Claudin-1, TLR4 and NF-κB p65 in the colon tissue was detected by quantitative real-time PCR; and the protein expression of ZO-1, Occludin, Claudin-1, TLR4 and NF-κB p65 was detected by Western blot in the rats of each group. RESULTS: Compared with the normal group, the body mass, food intake, the level of HOMA-IR, and the serum levels of TC, TG and LPS were increased in the rats of the model group (P<0.01); those indexes in the moxibustion group were all reduced when compared with the model group and the placebo-control group respectively (P<0.01, P<0.05). Compared with the normal group, a large number of epithelial cells in the mucosa of colon tissue was damaged, shed, and the inflammatory cells were infiltrated obviously in the interstitium in the rats of the model group. When compared with the model group, in the moxibustion group, the damage of the colon tissue was recovered to various degrees and there were few infiltrated inflammatory cells in the interstitium, while, the epithelial injury of the colon tissue was slightly recovered and the infiltrated inflammatory cells in the interstitium were still seen in the placebo-control group. The mRNA and protein expressions of ZO-1, Occludin and Caudin-1 were decreased in the model group compared with those in the normal group (P<0.01). When compared with the model group and the placebo-control group, the mRNA and protein expressions of these indexes were increased in the moxibustion group (P<0.01, P<0.05). In the model group, the mRNA and protein expressions of TLR4 and NF-κB p65 were increased when compared with those in the normal group (P<0.01), and the mRNA and protein expressions of these indexes were reduced in the moxibustion group when compared with those in the model group and the placebo-control group (P<0.01). CONCLUSIONS: Moxibustion can reduce the body mass and food intake, regulate the blood lipid and improve insulin resistance in the rats of obesity. It may be related to alleviating inflammatory response through improving intestinal barrier function and modulating the intestinal TLR4/NF-κB p65 signaling pathway.


Asunto(s)
Resistencia a la Insulina , Moxibustión , Ratas , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Ratas Wistar , Receptor Toll-Like 4/genética , Lipopolisacáridos/metabolismo , Funcion de la Barrera Intestinal , Ocludina/metabolismo , Claudina-1/metabolismo , Transducción de Señal , Obesidad/genética , Obesidad/terapia , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
Int J Biol Macromol ; 264(Pt 1): 130476, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428761

RESUMEN

A whole-cell biocatalyst was developed by genetically engineering pectinase PG5 onto the cell surface of Pichia pastoris using Gcw12 as the anchoring protein. Whole-cell PG5 eliminated the need for enzyme extraction and purification, while also exhibiting enhanced thermal stability, pH stability, and resistance to proteases in vitro compared to free PG5. Magnetic resonance mass spectrometry analysis revealed that whole-cell PG5 efficiently degraded citrus pectin, resulting in the production of a mixture of pectin oligosaccharides. The primary components of the mixture were trigalacturonic acid, followed by digalacturonic acid and tetragalacturonic acid. Supplementation of citrus pectin with whole-cell PG5 resulted in a more pronounced protective effect compared to free PG5 in alleviating colitis symptoms and promoting the integrity of the colonic epithelial barrier in a mouse model of dextran sulfate sodium-induced colitis. Hence, this study demonstrates the potential of utilizing whole-cell pectinase as an effective biocatalyst to promote intestinal homeostasis in vivo.


Asunto(s)
Colitis , Poligalacturonasa , Saccharomycetales , Animales , Ratones , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Funcion de la Barrera Intestinal , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Pectinas/farmacología , Pectinas/metabolismo , Suplementos Dietéticos
3.
J Agric Food Chem ; 72(13): 7230-7243, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38494694

RESUMEN

Long-term high-fat diet (HFD) will induce dysbiosis and a disturbance of intestinal homeostasis. Large yellow tea polysaccharide (LYP) has been shown to improve obesity-associated metabolic disease via modulation of the M2 polarization. However, the contribution of LYP to intestinal barrier impairment and improvement mechanisms in obesity caused by an HFD are still not clear. In this study, we evaluated the impacts of LYP on the mucosal barrier function and microbiota composition in HFD-feeding mice. Results exhibited that dietary LYP supplement could ameliorate the physical barrier function via maintaining intestinal mucosal integrity and elevating tight-junction protein production, strengthen the chemical barrier function via up-regulating the levels of glucagon-like peptide-1 and increasing mucin-producing goblet cell numbers, and enhance the intestinal immune barrier function though suppressing immune cell subsets and cytokines toward pro-inflammatory phenotypes. Moreover, LYP reshaped the constitution and metabolism of intestinal flora by enriching probiotics that produce short-chain fatty acids. Overall, LYP might be used as a critical regulator of intestinal homeostasis to improve host health by promoting gut barrier integrity, modulating intestinal immune response, and inhibiting bowel inflammation.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Dieta Alta en Grasa/efectos adversos , Disbiosis/tratamiento farmacológico , Obesidad/etiología , Obesidad/genética , Polisacáridos/farmacología , Homeostasis , , Ratones Endogámicos C57BL
4.
Dig Dis Sci ; 69(4): 1143-1155, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421507

RESUMEN

BACKGROUND: Intestinal mucosal barrier dysfunction plays a crucial role in the pathogenesis of irritable bowel syndrome with diarrhea (IBS-D). In order to explore the mechanism of electroacupuncture (EA) treatment on intestinal mucosal barrier, this study observed the effect of EA on aquaporins (AQPs), tight junctions (TJs), NF-κB pathway and the gut microbiota in IBS-D rats. METHODS: The IBS-D model was established by acetic acid enema combined with chronic restraint method. The effects of EA on the treatment of IBS-D were examined by the abdominal withdrawal reflex score, Bristol's fecal character score, fecal water content, small intestine propulsion rate and HE staining. AQPs, TJs and inflammation-related molecular mechanisms were explored. The fecal samples were applied for 16S rRNA sequencing to assess the effect of EA intervention to the intestinal bacterial abundance. RESULTS: EA reduced intestinal sensitization, restored intestinal motility and improved inflammatory cell infiltration. Furthermore, EA improved intestinal inflammation and flora environment significantly, inhibited NF-κB signaling and inflammatory factors (IL-1ß and TNF-α). It can also increase the gene and protein expression of AQPs (AQP1, AQP3, and AQP8) and the gene levels of TJs (ZO-1 and Occludin). CONCLUSION: EA has an inhibitory effect on the NF-κB signaling pathway, and regulates the proteins of AQP1, AQP3, AQP8, and TJs to restore the balance of water metabolism and intestinal permeability in IBS-D, which also restored the function of the intestinal mucosa by regulating the intestinal flora.


Asunto(s)
Acuaporinas , Electroacupuntura , Síndrome del Colon Irritable , Ratas , Animales , Síndrome del Colon Irritable/metabolismo , FN-kappa B/metabolismo , Funcion de la Barrera Intestinal , ARN Ribosómico 16S , Diarrea , Acuaporinas/metabolismo , Inflamación , Agua
5.
Int J Biol Macromol ; 261(Pt 2): 129825, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309402

RESUMEN

Raspberry, a traditional medicine food homology species, has important benefits in patients with metabolic syndrome. However, the mechanism of raspberry polysaccharides (RP) on obesity remains unclear. In our study, we showed that RP intervention is negatively associated with body weight gain, hyperlipidemia, inflammation, and fat accumulation in obese mice. RP ameliorated HFD-induced gut microbiota dysbiosis, produced short-chain fatty acids, maintained intestinal barrier integrity, and prevented metabolic endotoxemia, manifested by decreased host lipopolysaccharide level, and increased colon expression of tight junction proteins. These effects might be related with driven by a SCFAs-producing bacterium and downregulation of TLR4/NF-κB signaling transduction. Notably, the abundance of Ruminococcaceae_UCG - 014, Lactobacillus taiwanensis, Bifidobacterium pseudolongum, and Turicibacter are markedly correlated with enhanced intestinal barrier function induced by RP treatment. Thus, we believe that RP could be as a potential health supplement or prebiotic for obesity therapy.


Asunto(s)
Microbioma Gastrointestinal , Rubus , Animales , Ratones , Humanos , Frutas/metabolismo , Obesidad/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Lipopolisacáridos/farmacología , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
6.
Chin J Integr Med ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212494

RESUMEN

OBJECTIVE: To investigate whether Radix Sanguisorbae (RS, Diyu) could restore intestinal barrier function following sepsis using a cecal ligation and puncture (CLP)-induced septic rat model and lipopolysaccharide (LPS)-challenged IEC-6 cell model, respectively. METHODS: Totally 224 rats were divided into 4 groups including a control, sham, CLP and RS group according to a random number table. The rats in the control group were administrated with Ringer's lactate solution (30 mL/kg) with additional dopamine [10 µ g/(kg·min)] and given intramuscular injections of cefuroxime sodium (10 mg/kg) 12 h following CLP. The rats in the RS group were administrated with RS (10 mg/kg) through tail vein 1 h before CLP and treated with RS (10 mg/kg) 12 h following CLP. The rats in the sham group were only performed abdominal surgery without CLP. The rats in the CLP group were performed with CLP without any treatment. The other steps were same as control group. The effects of RS on intestinal barrier function, mesenteric microvessels barrier function, multi-organ function indicators, inflammatory response and 72 h survival window following sepsis were observed. In vitro, the effects of RS on LPS-challenged IEC-6 cell viability, the expressions of zona occludens-1 (ZO-1) and ferroptosis index were evaluated by cell counting kit-8, immunofluorescence and Western blot analysis. Bioinformatic tools were applied to investigate the pharmacological network of RS in sepsis to predict the active compounds and potential protein targets and pathways. RESULTS: The sepsis caused severe intestinal barrier dysfunction, multi-organ injury, lipid peroxidation accumulation, and ferroptosis in vivo. RS treatment significantly prolonged the survival time to 56 h and increased 72-h survival rate to 7/16 (43.75%). RS also improved intestinal barrier function and relieved intestinal inflammation. Moreover, RS significantly decreased lipid peroxidation and inhibited ferroptosis (P<0.05 or P<0.01). Administration of RS significantly worked better than Ringer's solution used alone. Using network pharmacology prediction, we found that ferroptosis and hypoxia inducible factor-1 (HIF-1 α) signaling pathways might be involved in RS effects on sepsis. Subsequent Western blot, ferrous iron measurements, and FerroOrange fluorescence of ferrous iron verified the network pharmacology predictions. CONCLUSION: RS improved the intestinal barrier function and alleviated intestinal injury by inhibiting ferroptosis, which was related in part to HIF-1 α/heme oxygenase-1/Fe2+ axis.

7.
Appl Physiol Nutr Metab ; 49(3): 319-329, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922515

RESUMEN

People living with human immunodeficiency virus (PLWH) have persistent malnutrition, intestinal barrier dysfunction, and gut microbial imbalance. The interplay between gut microbiota and nutrients is involved in the immune reconstitution of PLWH. To evaluate the effects of whole-protein enteral nutrition formula supplementation on T-cell levels, intestinal barrier function, nutritional status, and gut microbiota composition in human immunodeficiency virus (HIV)-infected immunological nonresponders (INRs) who failed to normalize CD4+ T-cell counts, with a number <350 cells/µL, a pilot study was carried out in 13 HIV-infected INRs undergoing antiretroviral therapy who received a 3-month phase supplementation of 200 mL/200 kcal/45 g whole-protein enteral nutrition formula once daily. Our primary endpoint was increased CD4+ T-cell counts. Secondary outcome parameters were changes in intestinal barrier function, nutritional status, and gut microbiota composition. We showed that CD4+ T-cell counts of HIV-infected INRs increased significantly after the 3-month supplementation. Dietary supplementation for 3 months improved the intestinal barrier function and nutritional status of HIV-infected INRs. Furthermore, the enteral nutrition formula significantly decreased the relative abundance of Escherichia at the genus level and increased the alpha diversity of gut microbiota in HIV-infected INRs. The findings demonstrated that the whole-protein enteral nutrition formula aids in reducing Escherichia and improving intestinal barrier function in HIV-infected INRs. This study provides insight into the role of nutrients in the improvement of immune reconstitution in HIV-infected INRs. This study is registered in the Chinese Clinical Trial Registry (Document No. ChiCTR2000037839; http://www.chictr.org.cn/index.aspx).


Asunto(s)
Infecciones por VIH , VIH , Humanos , Nutrición Enteral , Funcion de la Barrera Intestinal , Proyectos Piloto , Infecciones por VIH/terapia , Suplementos Dietéticos
8.
J Ethnopharmacol ; 321: 117402, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967779

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: DHZCP is a traditional Chinese medicinal formula in "The Synopsis of Prescriptions of the Golden Chamber" that has been often used in the treatment of hepatic disorders, gynecopathy and atherosclerosis. However, its underlying mechanisms in preventing hepatic fibrosis remain incompletely understood. AIM OF THE STUDY: This study aims to explore the therapeutic efficacy and potential mechanism of DHZCP in a CCL4-induced experimental hepatic fibrosis rat model. MATERIALS AND METHODS: DHZCP was orally administered at doses of 0.168, 0.084 and 0.042 g⋅kg-1⋅d-1 in a CCL4-induced hepatic fibrosis model using SD rats. Histopathology, immunohistochemistry and biochemical analysis, ELISA, Flow cytometry, WB, RT-PCR, 16 S rRNA, and untargeted metabolomic analysis were used to determine the therapeutic effects and mechanisms of DHZCP in the treatment of CCL4-induced hepatic fibrosis. RESULTS: Pharmacodynamically, DHZCP inhibited ALT and AST, improved liver function, decreased NF-κB, TNF-α and IL-6 in liver tissue, indicating its role in inhibiting CCL4-induced liver inflammation. Most importantly, it reduces the level of fibrosis in serum and liver tissue. Histological analysis also showed that DHZCP could effectively inhibit inflammatory cytokine infiltration and excessive collagen deposition. Mechanistically, DHZCP regulates gut microbiota, improves the proportion of firmicutes and bacteroidota at the phylum level, and increases the abundance of beneficial bacteria at the genus level, such as muribagulaceae unclassified, prevotella, alloprevotella, closteriales unclassified, lachnospiraceae unclassified and phascolarctobacterium. Instead, it reduced the abundance of two harmful bacteria, desulfovibrio and colidextribacter. Four types of metabolites such as hydrocarbons, organic nitrogen compounds, organic oxygen compounds, and organosulfur compounds were added. Furthermore, DHZCP was found to reduce the damage of intestinal barrier caused by changes in gut microbiota and metabolites. CONCLUSION: DHZCP is an effective inhibitor of hepatic fibrosis by regulating gut microbiota and metabolites, improving the integrity of the intestinal barrier.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Ratas , Animales , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/efectos adversos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo
9.
Animals (Basel) ; 13(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38066981

RESUMEN

This experiment was conducted to investigate whether low-dose zinc-loaded montmorillonite (Zn-MMT) could be used as a potential alternative for high-dose conventional ZnO in preventing diarrhea in weaned piglets. In total, 180 piglets were randomly divided to receive either of the three treatments, with six replicates per treatment and 10 piglets per replicate. The treatments were the control group (CT), the Zn-MMT group (ZM), and the ZnO group (ZO). Compared with the CT group, the ZM and ZO groups exhibited increased ADG at 14-28 days and during the whole period (p < 0.05), and a significantly decreased diarrhea rate during the whole period (p < 0.01). The activities of T-AOC and SOD were significantly increased (p < 0.05), whereas the MDA level decreased (p < 0.05) in the serum and colonic mucosa of Zn-MMT- and ZnO-fed piglets. Dietary supplementation with Zn-MMT and ZnO decreased the contents of IFN-γ, TNF-α, IL-1ß, IL-6, DAO, and LPS in the serum and colonic mucosa (p < 0.01), and increased the IL-10 level (p < 0.01). The relative mRNA expressions of TLR-4, claudin 2, Pbd1, and MUC2 were elevated in the colonic mucosa of the Zn-MMT and ZnO groups (p < 0.05). 16S rRNA gene sequencing analysis revealed that the abundances of Proteobacteria and Actinobacteria in the ileum and the populations of Ruminnococcus and Faecalibacterium in the cecum were higher in the CT group than in the other two groups. Collectively, dietary addition of Zn from Zn-MMT was comparable to Zn from ZnO for increasing growth performance, alleviating diarrhea, as well as improving mucosal barrier integrity, and regulating the gut microbiota of weaned piglets.

10.
Front Vet Sci ; 10: 1302801, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144468

RESUMEN

The objective of this study was to examine the effects of dietary Chinese herbal medicine (CHM) consisting of Astragalus membranaceus (Fisch.) Bunge (AMT) and Codonopsis pilosula (Franch.) Nannf (CPO) extracts on growth performance, antioxidant capacity, immune status, and intestinal health of broiler chickens. Two groups were formed, each consisting of six replicates of 12 one-day-old healthy male 817 white feather broilers. Broilers were fed either a basal diet (CON group) or a basal diet supplemented with 500 mg/kg CHM. The trial lasted 50 days. The results showed that CHM supplementation resulted in enhanced feed efficiency and antioxidant capacity in both the serum and liver, while it reduced uric acid and endotoxin levels, as well as diamine oxidase activity (p < 0.05). Additionally, CHM treatment increased the height of jejunum villi and upregulated Claudin-1 expression in the jejunal mucosa accompanied by an increase in the mRNA levels of interleukin-6 (IL-6), interferon-γ (IFN-γ), interferon-ß (IFN-ß), tumor necrosis factor-α (TNF-α), and anti-inflammatory cytokine interleukin-10 (IL-10) (p < 0.05). The presence of dietary CHM caused an increase in the proportions of Bacteroidetes and unclassified Bacteroidales but led to a decrease in those of Firmicutes and Alistipes (p < 0.05). The composition of the jejunal mucosa microbiota was correlated with the feed conversion ratio, serum metabolites, and gene expression based on Spearman correlation analysis. The findings indicated that the consumption of dietary CHM improved the utilization of feed, increased the mRNA expression of pro-inflammatory cytokines in the jejunal mucosa, and decreased the endotoxin level and activities of diamine oxidase and lactate dehydrogenase in the serum, which could potentially be linked to changes in the gut microbiota of broiler chickens.

11.
Nutrients ; 15(22)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38004229

RESUMEN

Objectives: Vitamin D (VitD) and Vitamin D receptor (VDR) are suggested to play protective roles in the intestinal barrier in ulcerative colitis (UC). However, the underlying mechanisms remain elusive. Evidence demonstrates that Na+/H+ exchanger isoform 8 (NHE8, SLC9A8) is essential in maintaining intestinal homeostasis, regarded as a promising target for UC therapy. Thus, this study aims to investigate the effects of VitD/VDR on NHE8 in intestinal protection. Methods: VitD-deficient mice, VDR-/- mice and NHE8-/- mice were employed in this study. Colitis mice were established by supplementing DSS-containing water. Caco-2 cells and 3D-enteroids were used for in vitro studies. VDR siRNA (siVDR), VDR over-expression plasmid (pVDR), TNF-α and NF-κb p65 inhibitor QNZ were used for mechanical studies. The expression of interested proteins was detected by multiple techniques. Results: In colitis mice, paricalcitol upregulated NHE8 expression was accompanied by restoring colonic mucosal injury. In VitD-deficient and VDR-/- colitis mice, NHE8 expression was compromised with more serious mucosal damage. Noteworthily, paricalcitol could not prevent intestinal barrier dysfunction and histological destruction in NHE8-/- mice. In Caco-2 cells and enteroids, siVDR downregulated NHE8 expression, further promoted TNF-α-induced NHE8 downregulation and stimulated TNF-α-induced NF-κb p65 phosphorylation. Conversely, QNZ blocked TNF-α-induced NHE8 downregulation in the absence or presence of siVDR. Conclusions: Our study indicates depressed NHE8 expression is responsible for VitD-deficient-induced colitis aggravation. These findings provide novel insights into the molecular mechanisms of VitD/VDR in intestine protection in UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Deficiencia de Vitamina D , Humanos , Animales , Ratones , Células CACO-2 , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Colitis/metabolismo , Mucosa Intestinal/metabolismo , Vitamina D/metabolismo , Deficiencia de Vitamina D/metabolismo , Ratones Endogámicos C57BL , Sulfato de Dextran/efectos adversos , Colitis Ulcerosa/metabolismo
12.
Front Pharmacol ; 14: 1228969, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876728

RESUMEN

Ulcerative colitis (UC) is an idiopathic inflammatory disease mainly affects the large bowel and the rectum. The pathogenesis of this disease has not been fully elucidated, while the disruption of the intestinal barrier function triggered by various stimulating factors related to the host genetics, immunity, gut microbiota, and environment has been considered to be major mechanisms that affect the development of UC. Given the limited effective therapies, the treatment of this disease is not ideal and its incidence and prevalence are increasing. Therefore, developing new therapies with high efficiency and efficacy is important for treating UC. Many recent studies disclosed that numerous herbal decoctions and natural compounds derived from traditional herbal medicine showed promising therapeutic activities in animal models of colitis and have gained increasing attention from scientists in the study of UC. Some of these decoctions and compounds can effectively alleviate colonic inflammation and relieve clinical symptoms in animal models of colitis via regulating intestinal barrier function. While no study is available to review the underlying mechanisms of these potential therapies in regulating the integrity and function of the intestinal barrier. This review aims to summarize the effects of various herbal decoctions or bioactive compounds on the severity of colonic inflammation via various mechanisms, mainly including regulating the production of tight junction proteins, mucins, the composition of gut microbiota and microbial-associated metabolites, the infiltration of inflammatory cells and mediators, and the oxidative stress in the gut. On this basis, we discussed the related regulators and the affected signaling pathways of the mentioned traditional medicine in modulating the disruption or restoration of the intestinal barrier, such as NF-κB/MAPK, PI3K, and HIF-1α signaling pathways. In addition, the possible limitations of current studies and a prospect for future investigation and development of new UC therapies are provided based on our knowledge and current understanding. This review may improve our understanding of the current progression in studies of traditional medicine-derived therapies in protecting the intestinal barrier function and their roles in alleviating animal models of UC. It may be beneficial to the work of researchers in both basic and translational studies of UC.

13.
Food Chem Toxicol ; 182: 114100, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37838214

RESUMEN

The role of dietary pectin on microbial-induced colitis, oxidative status, barrier function, and microbial composition, as well as the underlying mechanisms, is scarce. In this study, we aimed to investigate whether dietary pectin alleviates Salmonella typhimurium-induced colitis in mice. Male C57BL/6J mice fed an isocaloric and isofibrous diet with 7% pectin or cellulose were administered sterile water or Salmonella typhimurium to induce colitis, which is equal to a human food dose of 0.57% (5.68 g/kg). Dietary pectin alleviated Salmonella typhimurium-induced colitis and oxidative stress as shown by the reduced disease activity index score, decreased colon shortening and histological damage score, colonic hydrogen peroxide, malondialdehyde concentrations, and relative mRNA expressions of coenzyme Q-binding protein COQ10 homologue B (Coq10b), Ccl-2, Ccl-3, Ccl-8, Tnf-α, Il-1ß, Ifn-γ, Ifn-ß, and serum TNF-α protein level. Moreover, pectin administration ameliorated the downregulated colonic abundances of occludin, zonula occludens-1, zonula occludens-2, and the upregulated abundances of TLR2 and p-NF-κB in Salmonella-infected mice. Additionally, 16S rRNA analysis demonstrated that pectin altered the microbial beta-diversity and reduced Salmonella levels. Collectively, pectin ameliorated Salmonella typhimurium-induced colitis, oxidative stress, and tight junction, which may be related to the inactivation of TLR2-NF-κB signalling and reduced abundance of Salmonella.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Humanos , Ratones , Masculino , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Salmonella typhimurium/genética , Receptor Toll-Like 2/genética , Factor de Necrosis Tumoral alfa/metabolismo , Pectinas/farmacología , ARN Ribosómico 16S , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/metabolismo , Dieta , Sulfato de Dextran , Modelos Animales de Enfermedad
14.
Toxicology ; 494: 153593, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442268

RESUMEN

The intestinal epithelial barrier plays a crucial role in maintaining human and animal health. Deoxynivalenol (DON) is a mycotoxin that contaminates cereal-based foods worldwide, which is a serious threat to human and animal health. This study was aimed to investigate the protective effect of selenium nanoparticles (SeNPs) synthesized by Lactobacillus casei ATCC 393 against DON-induced intestinal epithelial barrier dysfunction and its relationship with PERK-mediated signaling pathway. IPEC-J2 cells were randomly assigned to four groups: Con (vehicle), DON (0.6 µg DON/mL, 48 h), SeNPs+DON (8 µg Se/mL, 24 h; 0.6 µg DON/mL, 48 h) and SeNPs (8 µg Se/mL, 24 h). Compared with Con group, the transepithelial electrical resistance (TEER) and the tight junction proteins expression of IPEC-J2 cells exposed to DON was increased and decreased, respectively. In addition, DON exposure led to increased ROS content, decreased antioxidant capacity, structural damage of endoplasmic reticulum (ER), and activation of endoplasmic reticulum stress (ERS)-related protein kinase R-like endoplasmic reticulum kinase (PERK) pathway in IPEC-J2. Compared with SeNPs+DON group, SeNPs alleviated oxidative stress, ER structure damage and PERK pathway activation and the increase of intestinal epithelial permeability of IPEC-J2 cells exposed to DON. PERK agonist (CCT020312) and inhibitor (GSK2656157) treatments were performed to identify the role of PERK signaling pathway in the regulatory effects of SeNPs on DON-induced intestinal epithelial barrier dysfunction. Compared with SeNPs+DON group, PERK agonist increased the expression levels of p-PERK. PERK inhibitor exerted a similar inhibitory effect to SeNPs on the p-PERK expression. In conclusion, SeNPs effectively alleviate DON-induced intestinal epithelial barrier dysfunction in IPEC-J2 cells, which are closely associated with ERS-related PERK signaling pathway. This will provide a potential solution for prevention and control of DON in the aquaculture industry.


Asunto(s)
Enfermedades Intestinales , Nanopartículas , Selenio , Animales , Línea Celular , Células Epiteliales , Mucosa Intestinal/metabolismo , Nanopartículas/toxicidad , Selenio/farmacología
15.
Front Microbiol ; 14: 1185806, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260679

RESUMEN

Introduction: Chinese medicinal herbs play important roles in anti-inflammatory, antioxidant, and antibacterial activities. However, the effects of Chinese herb ultrafine powder (CHUP) on laying hens still need to be elucidated. Therefore, this study aimed to evaluate the effects of dietary CHUP supplementation on jejunal morphology, physical barrier function, and microbiota in laying hens. Methods: A total of 576 Xinyang black-feather laying hens (300 days old) were randomly assigned into eight groups, with eight replicates per group and nine hens per replicate. The hens were fed a basal diet (control group) and a basal diet supplemented with 0.5% Leonuri herba (LH group), 0.25% Ligustri lucidi fructus (LF group), 0.25% Taraxaci herba (TH group), 0.5% LH + 0.25% LF (LH-LF group), 0.5% LH + 0.25% TH (LH-TH group), 0.25% LF + 0.25% TH (LF-TH group), and 0.5% LH + 0.25% LF + 0.25% TH (LH-LF-TH group), respectively, for 120 days. Results: The results showed that dietary LH-LF and LH-LF-TH supplementation increased (p < 0.05) the jejunal villus height to crypt depth ratio of laying hens. Dietary LF-TH supplementation up-regulated jejunal claudin-5 expression, while LH supplementation up-regulated jejunal claudin-1 expression and increased the jejunal abundances of potentially beneficial bacteria related to short-chain fatty acids and bacteriocins production, such as Blautia, Carnobacterium, Clostridiales, and Erysipelotrichales (p < 0.05). In addition, dietary LH supplementation enriched (p < 0.05) the tetracycline biosynthesis, butirosin/neomycin biosynthesis, and D-arginine/D-ornithine metabolism, whereas steroid biosynthesis and limonene/pinene degradation were enriched (p < 0.05) in the LH-LF and LH-LF-TH groups. Moreover, Spearman's correlation analysis revealed the potential correlation between the abundance of the jejunal microbiota and jejunal morphology and the physical barrier function of laying hens. Discussion: Collectively, these findings suggest that dietary CHUP supplementation could enhance the beneficial bacteria abundance, physical barrier function, and metabolic function associated with short-chain fatty acids and bacteriocins production. Moreover, combined supplementation of dietary CHUP showed better effects than the sole CHUP supplementation.

16.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(1): 33-45, 2023 Feb 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37283116

RESUMEN

OBJECTIVES: To explore the effect and mechanism of Chinese medicine Bushen Huatan formula in treatment of polycystic ovary syndrome (PCOS). METHODS: Twenty-four SPF female C57BL/6J mice were randomly divided into 3 groups with 8 animals in each group. Control group was given drinking water ad libitum; PCOS was induced by giving letrozole gavage and high-fat diet in model group and treatment group; treatment group received Bushen Huatan formula suspension for 35 d. The sex hormone levels of mice were detected by enzyme-linked immunosorbent assay. Ovary morphology was observed under light microscope after hematoxylin and eosin staining. The feces in the colon of mice were collected, and the gut microbiota was detected by 16S rRNA sequencing. The short chain fatty acids were detected by gas chromatography-mas spectrometry. The expression of peroxisome proliferator activated receptor (PPARγ) was detected by immunohistochemistry. The mRNA expression of mucin-2, occludin-1, tight junction protein zonula occludens 1 (ZO-1) and PPARγ in intestinal epithelium were detected by realtime RT-PCR. The expression of inducible nitric oxide synthase (iNOS) and PPARγ was detected by Western blotting. RESULTS: Compared with the control group, the body weight, serum levels of follicle stimulating hormone, luteinizing hormone and testosterone in the model group were increased, and serum levels of estradiol were decreased (all P<0.01); the ovarian structure under light microscope was consistent with the characteristics of PCOS. Compared with the model group, the serum levels of sex hormone and ovarian structure in treatment group were improved. The overall structure of gut microbiota in PCOS model mice changed. Compared with control group, there were significantly reduced abundance of Firmicutes, and increased abundance of Verrucomicrobia, Proteobacteria and Actinobacteria inthe model group at phylum level (all P<0.05); there were significantly reduced abundance of Lactobacillus, and increased abundance of Akkermansia, Lachnoclostridium, Lactococcus and Eubacterium_coprostanoligenes at genus level (all P<0.05). The disordered condition of gut microbiota was significantly improved in treatment group. Compared with control group, the contents of acetic acid, propionic acid and butyric acid in feces of model group were significantly decreased (all P<0.05); while the contents of propionic acid and butyric acid in treatment group were significantly increased compared with model control group (both P<0.05). Compared with control group, the mRNA expression of ZO-1 and protein expression of iNOS in model group were significantly increased, and the protein expression of PPARγ and the mRNA expressions of mucin-2 and occludin-1 were significantly decreased (all P<0.05). Compared with model group, the mRNA expression of ZO-1 and protein expression of iNOS in treatment group were decreased, and the protein expression of PPARγ and the mRNA expressions of mucin-2 and occludin-1 were increased. CONCLUSIONS: PCOS induced by letrozole high-fat diet induces microflora imbalance in mice. Chinese medicine Bushen Huatan formula may increase the level of short chain fatty acid by regulating gut microbiota, thereby activating the intestinal PPARγ pathway and improving intestinal barrier function to act as a cure for PCOS.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Ovario Poliquístico , Humanos , Ratones , Femenino , Animales , Síndrome del Ovario Poliquístico/tratamiento farmacológico , PPAR gamma/farmacología , Propionatos/farmacología , Mucina 2 , Letrozol , ARN Ribosómico 16S , Medicina Tradicional China , Ocludina/farmacología , Ratones Endogámicos C57BL , Hormonas Esteroides Gonadales/farmacología , Butiratos/farmacología , ARN Mensajero
17.
Nutrients ; 15(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375702

RESUMEN

Ancientino, a complex dietary fiber supplement mimicking the ancient diet, has improved chronic heart failure, kidney function, and constipation. However, its effect on ulcerative colitis is unknown. This study explores the impact of Ancientino on colitis caused by dextran sulfate sodium (DSS) and its mechanisms. Data analyses showed that Ancientino alleviated bodyweight loss, colon shortening and injury, and disease activity index (DAI) score, regulated levels of inflammatory factors (tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), interleukin-1 beta (IL-1ß), and interleukin 6 (IL-6)), reduced intestinal permeability (d-lactate and endotoxin), fluorescein isothiocyanate-dextran (FITC-dextran), and diamine oxidase (DAO), repaired colonic function (ZO-1 and occludin), and suppressed oxidative stress (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA)) in vivo and in vitro. In short, this study demonstrated that Ancientino alleviates colitis and exerts an anticolitis effect by reducing inflammatory response, suppressing oxidative stress, and repairing intestinal barrier function. Thus, Ancientino may be an effective therapeutic dietary resource for ulcerative colitis.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Dextranos/uso terapéutico , Colitis/tratamiento farmacológico , Inflamación/metabolismo , Colon/metabolismo , Estrés Oxidativo , Interleucina-6/metabolismo , Suplementos Dietéticos , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
18.
J Tradit Chin Med ; 43(3): 494-500, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37147750

RESUMEN

OBJECTIVE: To evaluate the effects and related mechanisms of electroacupuncture (EA) on irritable bowel syndrome (IBS). METHODS: Male C57BL/6 mice were randomly allocated into normal, model, and EA groups. Experimental IBS mice models were established by exposure to water avoidance stress (WAS). Mice in the EA group were treated with EA at bilateral Tianshu (ST 25) and Zusanli (ST 36) for 7 consecutive days, 15 min each day. Abdominal withdrawal reflex (AWR) tests and intestinal motility tests were performed to evaluate visceral sensitivity and intestinal motility of mice. Expression levels of tight junction proteins (TJPs) and inflammatory cytokines in colon tissues were determined through immunofluorescence, real-time polymerase chain reactions (PCR) and Western blot assays. RESULTS: EA alleviated visceral hypersensitivity and intestinal hypermotility in WAS-induced IBS mice. Moreover, EA promoted the expression of zonula occludens (ZO)-1, claudin-1, and occludin while suppressing the expression of interleukin (IL)-8, interferon (IFN)-γ, and tumor necrosis factor (TNF)-αin water avoidance stress (WAS)-induced irritable bowel syndrome (IBS) mice. CONCLUSION: EA alleviated WAS-induced IBS in mice by promoting intestinal barrier functions and suppressing the expression of inflammatory cytokines.


Asunto(s)
Electroacupuntura , Síndrome del Colon Irritable , Ratas , Ratones , Masculino , Animales , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/terapia , Ratas Sprague-Dawley , Citocinas/genética , Ratones Endogámicos C57BL , Puntos de Acupuntura , Agua
19.
Int J Biol Macromol ; 242(Pt 2): 124650, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119914

RESUMEN

Amuc_1100 (hereafter called Amuc) is a highly abundant pili-like protein on the outer membrane of Akkermansia muciniphila and has been found to be effective for in anti-obesity, which is probably through the activation of TLR2. However, the precise mechanisms underlying the contributions of TLR2 to obesity resistance remain unknown. Here, TLR2 knockout mice were used to decipher the anti-obesity mechanism of Amuc. Mice exposed to a high-fat diet (HFD) were treated with Amuc (60 µg) every other day for 8 weeks. The results showed that Amuc supplementation decreased mouse body weight and lipid deposition by regulating fatty acid metabolism and reducing bile acid synthesis by activating TGR5 and FXR and strengthening the intestinal barrier function. The ablation of TLR2 partially reversed the positive effect of Amuc on obesity. Furthermore, we revealed that Amuc altered the gut microbiota composition by increasing the relative abundance of Peptostreptococcaceae, Faecalibaculum, Butyricicoccus, and Mucispirillum_schaedleri_ASF457, and decreasing Desulfovibrionaceae, which may serve as a contributor for Amuc to reinforce the intestinal barrier in HFD-induced mice. Therefore, the anti-obesity effect of Amuc was accompanied by the mitigation of gut microbes. These findings provide support for the use of Amuc as a therapy targeting obesity-associated metabolic syndrome.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Receptor Toll-Like 2 , Verrucomicrobia , Obesidad/etiología , Obesidad/inducido químicamente , Ácidos Grasos/farmacología , Ácidos y Sales Biliares/farmacología , Ratones Endogámicos C57BL
20.
Anim Biotechnol ; 34(8): 3693-3699, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37067399

RESUMEN

The experiment investigated the effect of caffeic acid on bacteria, short-chain fatty acids (SCFA), and the expression of tight junction protein and inflammation related genes in the colon of weaning piglets. Thirty-six weaning piglets were allocated to three treatment groups, which were fed with a basal diet, a basal diet supplemented with 250 mg/kg or 500 mg/kg caffeic acid for 28 days. The results showed that caffeic acid treatment increased the contents of acetate acid, propionate acid and total SCFA. Moreover, real-time quantitative PCR showed that the number of Bifidobacterium (p < 0.05) and Lactobacillus (p < 0.05) were increased and the number of Escherichia coli (p < 0.05) was decreased by caffeic acid in colonic mucosa. Real-time quantitative PCR also showed that the mRNA levels of zonula occludens-1 (p < 0.01), claudin-1 (p < 0.01), occludin (p < 0.01), mucin 1 (MUC1) (p < 0.01), MUC2 (p < 0.01), interleukin 4 (IL-4) (p < 0.01) and IL-10 (p < 0.05) were increased, while the mRNA expression levels of histone deacetylases (p < 0.01), IL-1 (p < 0.01), IL-6 (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.01) were decreased, by caffeic acid in colonic mucosa. These results suggested that caffeic acid could improve intestinal barrier function in weaned pigs, which might be mediated by regulating colonic bacteria and tight junction protein expression and alleviating inflammation.


Asunto(s)
Enfermedades de los Porcinos , Proteínas de Uniones Estrechas , Porcinos , Animales , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Funcion de la Barrera Intestinal , Destete , Suplementos Dietéticos , Escherichia coli/genética , Inflamación/tratamiento farmacológico , ARN Mensajero/metabolismo , Enfermedades de los Porcinos/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA