Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Int J Biol Macromol ; 260(Pt 1): 129322, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242404

RESUMEN

Wormwood leaf is a traditional Chinese herbal medicine with a high medicinal value and long application history and its essential oil is a high-purity plant oil extracted from Wormwood leaf. Pharmacological research reveals that Wormwood leaf and Wormwood essential oil are a broad-spectrum antibacterial and antiviral drug, which can inhibit and kill many bacteria and viruses. We loaded wormwood extract on porous calcium carbonate (Porous-CaCO3) and introduced it and Wormwood essential oil into Natural rubber latex (NRL), thus synthesizing NRL composites with excellent vitro and in vivo antibacterial effect, cell compatibility and mechanical properties. This NRL material can delay the light aging and thermal oxidation of some mechanical properties, which provides a broader avenue for its commercialization.


Asunto(s)
Artemisia , Hipersensibilidad al Látex , Aceites Volátiles , Goma , Látex , Porosidad
2.
Biomater Adv ; 157: 213754, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211507

RESUMEN

Chronic wounds pose significant health concerns. Current treatment options include natural compounds like natural rubber latex (NRL) from Hevea brasiliensis. NRL, particularly the F1 protein fraction, has demonstrated bioactivity, biocompatibility, and angiogenic effects. So far, there is no study comparing F1 protein with total NRL serum, and the necessity of downstream processing remains unknown. Here, we evaluated the angiogenic potential of F1 protein compared to total NRL serum and the need for downstream processing. For that, ion exchange chromatography (DEAE-Sepharose), antioxidant activity, physicochemical characterization, cell culture in McCoy fibroblasts, and wound healing in Balb-C mice were performed. Also, the evaluation of histology and collagen content and the levels of inflammatory mediators were quantified. McCoy fibroblast cell assay showed that F1 protein (0.01 %) and total NRL serum (0.01 %) significantly increased cell proliferation by 47.1 ± 11.3 % and 25.5 ± 2.5 %, respectively. However, the AA of F1 protein (78.9 ± 0.8 %) did not show a significant difference compared to NRL serum (77.0 ± 1.1 %). F1 protein and NRL serum were more effective in wound management in rodents. Histopathological analysis confirmed accelerated healing and advanced tissue repair. Similarly, the F1 protein (0.01 %) increased collagen, showing that this fraction can stimulate the synthesis of collagen by fibroblastic cells. Regarding cytokines production (IL-10, TNF-α, IFN-γ), F1 protein and NRL serum did not exert an impact on the synthesis of these cytokines. Furthermore, we did not observe statistically significant changes in dosages of enzymes (MPO and EPO) among the groups. Nevertheless, Nitric Oxide dosage was reduced drastically when the F1 protein (0.01 %) protein was applied topically. These findings contribute to the understanding of F1 protein and NRL serum properties and provide insights into cost-effectiveness and practical applications in medicine and biotechnology. Therefore, further research is needed to assess the economic feasibility of downstream processing for NRL-based herbal medicine derived from Hevea brasiliensis.


Asunto(s)
Hevea , Goma , Animales , Ratones , Látex , Hevea/química , Cicatrización de Heridas , Colágeno , Citocinas
3.
Heliyon ; 9(11): e21843, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027902

RESUMEN

This work investigated the healing properties of proteins extracted of latex (HdLP) on excisional wounds. Cell toxicity of HdLP was investigated carried out in murine fibroblasts after incubation with HdLP (12.5-100 µg/ml). The dermal irritability test was performed to evaluate dermal reactions. The wounds were performed and treated with vehicle or HdLP (0.5 %, 1.0 %, and 2.0 %). The macroscopic parameters, histological analysis and measurement of inflammatory markers and mediators were evaluated. HdLP did not exhibit cytotoxicity and did not induce skin irritation. HdLP stimulated the release of IL-1ß at the beginning of the inflammatory phase. This effect probably favored the earlier release of IL-10 by macrophages, during the proliferative phase. The shortening and completeness of healing were characterized by fibroblast proliferation and the presence of newly synthesized collagen fibers. This was accompanied by well-organized re-epithelialization. The involvement of latex proteins in this activity is reported for the first time.

4.
J Environ Manage ; 346: 119031, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37741194

RESUMEN

This study aimed at investigating the biohydrogen and biomethane potential of co-digestion from palm oil mill effluent (POME) and concentrated latex wastewater (CLW) in a two-stage anaerobic digestion (AD) process under thermophilic (55 ± 3 °C) and at an ambient temperature (30 ± 3 °C) conditions, respectively. The batch experiments of POME:CLW mixing ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 was investigated with the initial loadings at 10 g-VS/L. The highest hydrogen yield of 115.57 mLH2/g-VS was obtained from the POME: CLW mixing ratio of 100:0 with 29.0 of C/N ratio. While, the highest subsequent methane production yield of 558.01 mLCH4/g-VS was achieved from hydrogen effluent from POME:CLW mixing ratio of 70:30 0 with 21.8 of C/N ratio. This mixing ratio revealed the highest synergisms of about 9.21% and received maximum total energy of 19.70 kJ/g-VS. Additionally, continuous hydrogen and methane production were subsequently performed in a series of continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge blanket reactor (UASB) to treat the co-substate. The results indicated that the highest hydrogen yield of POME:CLW mixing ratio at 70:30 of 95.45 mL-H2/g-VS was generated at 7-day HRT, while methane production was obtained from HRT 15 days with a yield of 204.52 mL-CH4/g-VS. Thus, the study indicated that biogas production yield of CLW could be enhanced by co-digesting with POME. In addition, the two-stage AD model under anaerobic digestion model no. 1 (ADM-1) framework was established, 9.10% and 2.43% of error fitting of hydrogen and methane gas between model simulation data and experimental data were found. Hence, this research work presents a novel approach for optimization and feasibility for co-digestion of POME with CLW to generate mixed gaseous biofuel potentially.


Asunto(s)
Aceites de Plantas , Aguas Residuales , Aceite de Palma , Látex , Hidrógeno , Anaerobiosis , Reactores Biológicos , Metano , Biocombustibles
5.
Chemosphere ; 339: 139626, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37487980

RESUMEN

This study evaluated the effects of acetone on the anaerobic degradation of synthetic latex wastewater, which was simulated from the wastewater of the deproteinized natural rubber production process, including latex, acetate, propionate, and acetone as the main carbon sources, at a batch scale in 5 cycles of a total of 60 days. Fe3O4 was applied to accelerate the treatment performance from cycle 3. Acetone was added in concentration ranges of 0%, 0.05%, 0.1%, 0.15%-included latex, and 0.15%-free latex (w/v). In the Fe3O4-free cycles, for latex-added vials, soluble chemical oxygen demand (sCOD) was removed at 43.20%, 43.20%, and 12.65%, corresponding to the input acetone concentrations varying from 0.05% to 0.15%, indicating the interference of acetone for COD reduction. After adding Fe3O4, all flasks reported a significant increase in COD removal efficiency, especially for acetone-only and latex-only vials, from 36.9% to 14.30%-42.95% and 83.20%, respectively. Other highlighted results of COD balance showed that Fe3O4 involvement improved the degradation process of acetate, propionate, acetone, and the other COD parts, including the intermediate products of latex reduction. Besides, during the whole batch process, the order of reduction priority of the carbon sources in the synthetic wastewater was acetate, propionate and acetone. We also found that the acetate concentration appeared to be strongly related to reducing other carbon sources in natural rubber wastewater. Microbial community analysis revealed that protein-degrading bacteria Bacteroidetes vadinHA17 and Proteinniphilum and methylotrophic methanogens might play key roles in treating simulated deproteinized-natural-rubber wastewater.


Asunto(s)
Látex , Aguas Residuales , Látex/metabolismo , Óxido Ferrosoférrico/metabolismo , Anaerobiosis , Acetona , Goma , Propionatos , Reactores Biológicos/microbiología , Carbono , Acetatos , Eliminación de Residuos Líquidos/métodos
6.
Int J Biol Macromol ; 242(Pt 1): 124779, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172697

RESUMEN

Psoriasis is a disease that causes keratinocytes to proliferate ten times faster than normal, resulting in chronic inflammation and immune cell infiltration in the skin. Aloe vera (A. vera) creams have been used topically for treating psoriasis because they contain several antioxidant species; however, they have several limitations. Natural rubber latex (NRL) has been used as occlusive dressings to promote wound healing by stimulating cell proliferation, neoangiogenesis, and extracellular matrix formation. In this work, we developed a new A. vera-releasing NRL dressing by a solvent casting method to load A. vera into NRL. FTIR and rheological analyzes revealed no covalent interactions between A. vera and NRL in the dressing. We observed that 58.8 % of the loaded A. vera, present on the surface and inside the dressing, was released after 4 days. Biocompatibility and hemocompatibility were validated in vitro using human dermal fibroblasts and sheep blood, respectively. We observed that ~70 % of the free antioxidant properties of A. vera were preserved, and the total phenolic content was 2.31-fold higher than NRL alone. In summary, we combined the antipsoriatic properties of A. vera with the healing activity of NRL to generate a novel occlusive dressing that may be indicated for the management and/or treatment of psoriasis symptoms simply and economically.


Asunto(s)
Aloe , Psoriasis , Humanos , Animales , Ovinos , Goma , Látex , Antioxidantes/farmacología , Psoriasis/tratamiento farmacológico , Vendajes
7.
BMC Pharmacol Toxicol ; 24(1): 30, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170269

RESUMEN

BACKGROUND: The plants Aloe weloensis, Lepidium sativum, and Lobelia gibberoa have been used in Ethiopian folklore medicine to treat various diseases including malaria. METHOD: The in vitro anti-plasmodial activity of the three crude extracts was evaluated using parasite lactate dehydrogenase assay against the chloroquine (CQ)-sensitive D10 and the chloroquine (CQ)-resistant W2 strains. RESULT: The methanolic extract of L. gibberoa roots showed the highest in vitro anti-plasmodial effect against both D10 and W2 Plasmodium falciparum strains with IC50 value of 103.83 ± 26.17 µg/mL and 47.11 ± 12.46 µg/mL, respectively. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis were not active with an IC50 value > 200 µg/mL against both D10 and W2 strains. CONCLUSION: The methanolic extract of L. gibberoa roots showed a promising in vitro anti-plasmodial activity against the CQ-sensitive (D10) and CQ-resistant (W2) strains of P. falciparum. Thus, the anti-plasmodial activity of this plant partly justifies and may also support the traditional use against malaria. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis did not exert suppressive activity on the growth of P. falciparum strains.


Asunto(s)
Antimaláricos , Malaria , Plantas Medicinales , Etiopía , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antimaláricos/farmacología , Látex/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/parasitología , Medicina Tradicional , Cloroquina/uso terapéutico
8.
Nat Prod Res ; 37(24): 4267-4273, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36788415

RESUMEN

Ethanol extract from the aerial parts of Euphorbia tirucalli L. as well as the latex of the plant suspended in water are used by the Brazilian population for the treatment of various diseases, including cancer. The purposes of this study were to determine if the ethanol extract is effective as cytotoxic agent against gastric adenocarcinoma cells (AGS) and its chemical composition by GC-MS, ESI-(-)-FT-ICR MS and (-)-ESI-LTQ-MS/MS. The results were compared with that of latex previously described by us. Hexane and aqueous fractions showed higher cytotoxicity on AGS cells. Nine triterpene compounds were detected by GC-MS in hexane fraction, including euphol and friedelin, while ellagic acid was identified as main phenolic compound in aqueous extract. Therefore, the greater cytotoxic activity of the ethanol extract of the aerial parts of Euphorbia tirucalli for gastric cancer, when compared to latex, seems to originate from the antiproliferative effects of ellagic acid and triterpenes.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Euphorbia , Neoplasias Gástricas , Triterpenos , Humanos , Euphorbia/química , Látex/química , Hexanos , Espectrometría de Masas en Tándem , Neoplasias Gástricas/tratamiento farmacológico , Ácido Elágico , Extractos Vegetales/farmacología , Triterpenos/farmacología , Adenocarcinoma/tratamiento farmacológico , Componentes Aéreos de las Plantas , Etanol
9.
Int J Biol Macromol ; 235: 123742, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36806774

RESUMEN

Natural rubber (NR), derived from Hevea brasiliensis, has properties for biomedical applications. Several studies indicate that these properties can be amplified when we associate another bioproduct. However, there are no studies of aging aspects of this biomaterial regarding changes in functionality, structure and composition. The objective was to evaluate the aging process of natural rubber membranes - copaiba (NRC) subjected to controlled conditions of time, light and presence of oxygen. The NRC was prepared and stored in the presence or absence of light and vacuum, for periods of 30, 60 and 90 days. Subsequently, the membranes were characterized through the techniques of wettability, infrared spectroscopy, thermal analysis, scanning microscopy and antioxidant activity. The wettability analysis, showed that NRC membranes both in the zero time and in the aging time were hydrophilic. Through thermogravimetric analysis and differential exploratory analysis the membranes remained thermally stable. The scanning electronic microscopy, indicated no morphological alterations during the observed period. After 90 days, the packaged membranes showed satisfactory antioxidant activity. Our results suggest that the membranes were resistant to the storage period, since they maintained their chemical, thermal, morphological and antioxidant characteristics. Hence, it corroborates to use of membranes as a possible curative for biomedical applications.


Asunto(s)
Hevea , Goma , Goma/química , Látex/química , Antioxidantes/farmacología , Extractos Vegetales , Proteínas de Plantas/química
10.
Immunobiology ; 228(2): 152320, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36621307

RESUMEN

Allergy to natural rubber latex emerged as one of the main allergies at the beginning among some professional groups and the general population. Sensitization and development of latex allergy have been attributed to exposure to products containing residual latex proteins. The prevailing cross-reactivity of latex proteins with other food allergens is of great concern. Numerous purified allergens are currently available, which greatly help in patient management, thus determining their specific profile. We conducted a multicenter study to investigate changes, from the ROC analysis, in the characteristics of patients with latex allergy by measuring its major protein components. Sensitization to latex proteins is crucial because it highlights the cross reactivity to inhalants (pollen) and food (fruit). It is very essential in an accurate and specific clinical setting.


Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad al Látex , Humanos , Hipersensibilidad al Látex/complicaciones , Hipersensibilidad al Látex/epidemiología , Alérgenos , Polen , Reacciones Cruzadas
11.
Front Plant Sci ; 13: 979678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388598

RESUMEN

Latex-bearing plants have been in the research spotlight for the past couple of decades. Since ancient times their extracts have been used in folk medicine to treat various illnesses. Currently they serve as promising candidates for cancer treatment. Up to date there have been several in vitro and in vivo studies related to the topic of cytotoxicity and anticancer activity of extracts from latex-bearing plants towards various cell types. The number of clinical studies still remains scarce, however, over the years the number is systematically increasing. To the best of our knowledge, the scientific community is still lacking in a recent review summarizing the research on the topic of cytotoxicity and anticancer activity of latex-bearing plant extracts. Therefore, the aim of this paper is to review the current knowledge on in vitro and in vivo studies, which focus on the cytotoxicity and anticancer activities of latex-bearing plants. The vast majority of the studies are in vitro, however, the interest in this topic has resulted in the substantial growth of the number of in vivo studies, leading to a promising number of plant species whose latex can potentially be tested in clinical trials. The paper is divided into sections, each of them focuses on specific latex-bearing plant family representatives and their potential anticancer activity, which in some instances is comparable to that induced by commonly used therapeutics currently available on the market. The cytotoxic effect of the plant's crude latex, its fractions or isolated compounds, is analyzed, along with a study of cell apoptosis, chromatin condensation, DNA damage, changes in gene regulation and morphology changes, which can be observed in cell post plant extract addition. The in vivo studies go beyond the molecular level by showing significant reduction of the tumor growth and volume in animal models. Additionally, we present data regarding plant-mediated biosynthesis of nanoparticles, which is regarded as a new branch in plant latex research. It is solely based on the green-synthesis approach, which presents an interesting alternative to chemical-based nanoparticle synthesis. We have analyzed the cytotoxic effect of these particles on cells. Data regarding the cytotoxicity of such particles raises their potential to be involved in the design of novel cancer therapies, which further underlines the significance of latex-bearing plants in biotechnology. Throughout the course of this review, we concluded that plant latex is a rich source of many compounds, which can be further investigated and applied in the design of anticancer pharmaceuticals. The molecules, to which this cytotoxic effect can be attributed, include alkaloids, flavonoids, tannins, terpenoids, proteases, nucleases and many novel compounds, which still remain to be characterized. They have been studied extensively in both in vitro and in vivo studies, which provide an excellent starting point for their rapid transfer to clinical studies in the near future. The comprehensive study of molecules from latex-bearing plants can result in finding a promising alternative to several pharmaceuticals on the market and help unravel the molecular mode of action of latex-based preparations.

12.
Front Plant Sci ; 13: 1008881, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275519

RESUMEN

The genus Euphorbia includes about 2,000 species commonly widespread in both temperate and tropical zones that contain poisonous milky juice fluid or latex. Many species have been used in traditional and complementary medicine for the treatment of various health issues such as dropsy, paralysis, deafness, wounds, warts on the skin, and amaurosis. The medicinal applications of these species have been attributed to the presence of various compounds, and most studies on Euphorbia species have focused on their latex. In this review, we summarize the current state of knowledge on chemical composition and biological activities of the latex from various species of the genus Euphorbia. Our aim was to explore the applications of latex extracts in the medical field and to evaluate their ethnopharmacological potential. The databases employed for data collection, are obtained through Web of Science, PubMed, Google Scholar, Science Direct and Scopus, from 1983 to 2022. The bibliographic data indicate that terpenoids are the most common secondary metabolites in the latex. Furthermore, the latex has interesting biological properties and pharmacological functions, including antibacterial, antioxidant, free radical scavenger, cytotoxic, tumor, anti-inflammatory, healing, hemostatic, anti-angiogenic, insecticidal, genotoxic, and mutagenic activities. However, the role of other components in the latex, such as phenolic compounds, alkaloids, saponins, and flavonoids, remains unknown, which limits the application of the latex. Future studies are required to optimize the therapeutic use of latex extracts.

13.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012505

RESUMEN

Yellow-orange latex of Chelidonium majus L. has been used in folk medicine as a therapeutic agent against warts and other visible symptoms of human papillomavirus (HPV) infections for centuries. The observed antiviral and antitumor properties of C. majus latex are often attributed to alkaloids contained therein, but recent studies indicate that latex proteins may also play an important role in its pharmacological activities. Therefore, the aim of the study was to investigate the effect of the crude C. majus latex and its protein and alkaloid-rich fractions on different stages of the HPV replication cycle. The results showed that the latex components, such as alkaloids and proteins, decrease HPV infectivity and inhibit the expression of viral oncogenes (E6, E7) on mRNA and protein levels. However, the crude latex and its fractions do not affect the stability of structural proteins in HPV pseudovirions and they do not inhibit the virus from attaching to the cell surface. In addition, the protein fraction causes increased TNFα secretion, which may indicate the induction of an inflammatory response. These findings indicate that the antiviral properties of C. majus latex arise both from alkaloids and proteins contained therein, acting on different stages of the viral replication cycle.


Asunto(s)
Chelidonium , Látex , Infecciones por Papillomavirus , Alcaloides/farmacología , Antivirales/farmacología , Chelidonium/química , Humanos , Látex/química , Látex/farmacología , Infecciones por Papillomavirus/tratamiento farmacológico , Proteínas de Plantas/farmacología
14.
Cancers (Basel) ; 14(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35681644

RESUMEN

Colorectal cancer is one of the most diagnosed cancers that is associated with inflammation. Ficus dubia latex is recognized as a remedy with various therapeutic effects in traditional medicine, including anti-inflammatory and antioxidant activity. The present study aims to compare the anti-tumor activity of Ficus dubia latex extract (FDLE) against HCT-116 and HT-29 human colorectal cancer cell lines in normal and inflammatory condition and explore its mechanism of action. FDLE exhibited remarkable antiproliferative activity against HCT-116 and HT-29 colorectal cancer cell lines in both conditions using MTT and colony formation assays and more effective anti-proliferation was observed in inflammatory condition. Mechanistically, FDLE induced cell cycle arrest at G0/G1 phase by down-regulating NF-κB, cyclin D1, CDK4 and up-regulatingp21 in both cell in normal condition. In inflammatory condition, FDLE not only exhibited stronger induction of cell cycle arrest in both cells by down-regulating NF-κB, cyclin D1, CDK4 and down-regulating p21, but also selectively induced apoptosis in HCT-116 cells by down-regulating NF-κB and Bcl-xl and up-regulating Bid, Bak, cleaved caspase-7 and caspase-3 through stronger ability to regulate these proteins. Our results demonstrated that the phytochemical agent in the latex of Ficus dubia could potential be used for treatment and prevention of human colorectal cancer, especially in inflammation-induced hyperproliferation progression.

15.
Anticancer Agents Med Chem ; 22(18): 3163-3171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692152

RESUMEN

BACKGROUND: Calotropis procera is a laticiferous plant (Apocynaceae) found in tropical regions all over the world. The ultrastructural characteristics of laticifers, their restricted distribution among different taxonomic groups, and in some species in each clade, as peptidases from latex, make them very attractive for biological analysis. OBJECTIVE: The study aims to investigate the effects of LP-PII-IAA (laticifer protein (LP) sub-fraction II (PII) of C. procera presenting an iodoacetamide-inhibited cysteine proteinase activity) on irinotecan-induced intestinal mucositis, a serious adverse effect of this medicine for the treatment of cancer. METHODS: LP-PII-IAA is composed of closely related isoforms (90%) of peptidases derived from catalysis and an osmotin protein (5%). Animals receiving co-administration of LP-PII-IAA presented a significant decrease in mortality, absence of diarrhea, histological preservation, and normalization of intestinal functions. RESULTS: Clinical homeostasis was accompanied by a reduction in MPO activity and declined levels of IL-1ß, IL-6 and KC, while the IL-10 level increased in LP-PII-IAA-treated animals. COX-2 and NF-kB immunostaining was reduced and the levels of oxidative markers (GSH, MDA) were normalized in animals that received LP-PII-IAA. CONCLUSION: We suggest that peptidases from the latex of Calotropis procera were instrumental in the suppression of the adverse clinical and physiological effects of irinotecan.


Asunto(s)
Calotropis , Proteasas de Cisteína , Animales , Calotropis/química , Ciclooxigenasa 2 , Interleucina-10 , Interleucina-6 , Yodoacetamida , Irinotecán/farmacología , Látex/química , Látex/farmacología , FN-kappa B , Proteínas de Plantas/farmacología , Proteínas de Plantas/uso terapéutico
16.
J Ethnopharmacol ; 296: 115503, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35753608

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Preparations derived from the plant Calotropis procera, have been used for medicinal purpose though the plant is known for its toxic effects. The aerial parts of the plant contain latex in plenty and have been found effective in treating disorders of gastrointestinal system and cancer. AIM OF THE STUDY: This study evaluated the efficacy of C. procera dried latex extract prepared in methanol (MeDL) against inflammation and oxidative stress in experimental model of colorectal carcinoma (CRC). MATERIALS AND METHODS: Two subcutaneous injections of chemical carcinogen, 1,2-dimethylhydrazine (DMH; 150 mg/kg) were given at an interval of one week to induce CRC in rats. The MeDL (50 and 150 mg/kg) and aspirin (60 mg/kg) were given daily and their effect was evaluated on markers of oxidative stress and inflammation after completion of 8 weeks following second injection of carcinogen. A comparison was made with normal and experimental control groups. The colon tissue levels of glutathione (GSH), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), nitrite and myeloperoxidase (MPO) were determined. Enzyme-linked immunosorbent assay was performed to determine the levels of prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNF-α) and immunohistochemical analysis was performed for IL-1ß. RESULTS: Induction of cancerous changes in the colon resulted in altered oxidative homeostasis as evident from a reduction in GSH level and SOD activity and rise in TBARS level when compared with normal rats. Elevated levels of nitrite, MPO, TNF-α, PGE2 and immunoreactivity of IL-1ß were also observed in these rats. The levels of these markers were normalized when the rats were treated with MeDL or anti-inflammatory drug, aspirin. CONCLUSION: This study demonstrates that suppression of oxidative stress and inflammation contributes to the beneficial effect of MeDL in rat model of colon carcinogenesis.


Asunto(s)
Calotropis , Neoplasias Colorrectales , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Aspirina/farmacología , Calotropis/química , Carcinógenos , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/tratamiento farmacológico , Dinoprostona , Glutatión , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Látex/farmacología , Metanol/uso terapéutico , Nitritos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar , Superóxido Dismutasa , Sustancias Reactivas al Ácido Tiobarbitúrico , Factor de Necrosis Tumoral alfa
17.
Phytomedicine ; 102: 154186, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35617890

RESUMEN

BACKGROUND: The osmotin from the medicinal plant Calotropis procera (CpOsm) has characteristics similar to adiponectin, a human protein with immunoregulatory actions. PURPOSE: This study aimed to investigate whether recombinant osmotin inclusion bodies from C. procera (IB/rCpOsm) produced in E. coli BL21(DE3) can prevent infection-induced inflammation. A virulent strain of Listeria monocytogenes was used as an infection model. METHODS: Cells of E. coli BL21(DE3) carrying the plasmid pET303-CpOsm were used to express the recombinant osmotin, which accumulated at reasonable levels as inclusion bodies (IB/rCpOsm). IB/rCpOsm were purified from induced cells and SDS-polyacrylamide gel electrophoresis followed by mass spectrometry analyses confirmed the identity of the major protein band (23 kDa apparent molecular mass) as CpOsm. Peritoneal macrophages (pMØ) from Swiss mice were cultured with IB/rCpOsm (1 or 10 µg/ml) in 96-well plates and then infected with L. monocytogenes. IB/rCpOsm (0.1, 1 or 10 mg/kg) was also administered intravenously to Swiss mice, which were then infected intraperitoneally with L. monocytogenes. RESULTS: Pretreatment of the pMØ with IB/rCpOsm significantly increased cell viability after infection and reduced the intracellular bacterial load. The infiltration of neutrophils into the peritoneal cavity of mice pretreated with IB/rCpOsm at 10 mg/kg (but not 0.1 and 1 mg/kg) was reduced after infection. In these mice, the bacterial load was high in the peritoneal fluid and the liver, but histological damage was discrete. The treatments with IB/rCpOsm at 10 mg/kg significantly increased the expression of the anti-inflammatory cytokine IL-10. CONCLUSION: This study shows that recombinant osmotin inclusion bodies from C. procera were bioactive and prompted anti-inflammatory actions at therapeutic dosages in the L. monocytogenes infection model.


Asunto(s)
Antiinflamatorios , Calotropis , Listeriosis , Animales , Antiinflamatorios/farmacología , Calotropis/química , Modelos Animales de Enfermedad , Escherichia coli , Cuerpos de Inclusión/metabolismo , Inflamación/tratamiento farmacológico , Látex/química , Listeriosis/tratamiento farmacológico , Ratones , Proteínas de Plantas/farmacología
18.
Molecules ; 27(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35164194

RESUMEN

This study demonstrated that polymerization behavior of plant oil-based acrylic monomers (POBMs) synthesized in one-step transesterification reaction from naturally rich in oleic acid olive, canola, and high-oleic soybean oils is associated with a varying mass fraction of polyunsaturated fatty acid fragments (linoleic (C18:2) and linolenic (C18:3) acid esters) in plant oil. Using miniemulsion polymerization, a range of stable copolymer latexes was synthesized from 60 wt.% of each POBM and styrene to determine the impact of POBM chemical composition (polyunsaturation) on thermal and mechanical properties of the resulted polymeric materials. The unique composition of each plant oil serves as an experimental tool to determine the effect of polyunsaturated fatty acid fragments on POBM polymerization behavior and thermomechanical properties of crosslinked films made from POBM-based latexes. The obtained results show that increasing polyunsaturation in the copolymers results in an enhanced crosslink density of the latex polymer network which essentially impacts the mechanical properties of the films (both Young's modulus and toughness). Maximum toughness was observed for crosslinked latex films made from 50 wt.% of each POBM in the monomer feed.


Asunto(s)
Acrilatos/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Polímeros/metabolismo , Emulsiones
19.
Environ Sci Pollut Res Int ; 29(18): 27460-27478, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34981370

RESUMEN

Migraine which is characterized by a pulsating headache affected an estimated population of 12% worldwide. Herbal products like latex derived from Calotropis gigantea R. Br. (Asclepiadaceae) are a representative intervention to treat migraine traditionally. However, post-harvesting stability issues of latex affect its biological potential. Freeze-drying has been successfully employed for the encapsulation of herbal bioactive compounds resulting in stable dried preparations. Latex derived from Calotropis gigantea (C. gigantea) was microencapsulated using chitosan by freeze-drying (FDCG) method and compared with sun ray-dried latex (ADCG). Current investigation was aimed to improve the shelf life of latex by freeze-drying microencapsulation technique and evaluation of its anti-migraine potential. Dried latex powders (ADCG and FDCG) were evaluated in terms of phenolic content, coloring strength, first-order kinetic, color parameters (L*, a*, b*, C*, and E*), moisture, water activity, solubility, and hygroscopicity. Additionally, apomorphine-induced climbing behavior, L-5-HTP-induced syndrome, and MK-801-induced hyperactivity were used to evaluate the anti-migraine potential of powdered latex. FDCG showed good physicochemical properties due to its higher concentration of phenolic and flavonoid contents. Moreover, FDCG significantly reduced the apomorphine-induced climbing behavior, L-5-HTP-induced syndrome, and MK-801-induced hyperactivity in a dose-dependent manner through an interaction of dopaminergic and serotonergic receptors. In conclusion, the method developed for shelf life improvement of latex offered maximum protection over a period of 10 weeks with retaining its natural biological potential; thus, it can be effectively utilized in the treatment or management of migraine. Anti-migraine effect of Calotropis gigantea freeze-dried latex by inhibition of dopamine and serotonin receptors (D1 and D2: dopamine receptors; 5-HT: serotonin receptors); yellow color represents serotonergic, and blue color indicates dopaminergic neurons.


Asunto(s)
Calotropis , Trastornos Migrañosos , 5-Hidroxitriptófano , Apomorfina , Calotropis/química , Maleato de Dizocilpina , Látex/química , Fenoles , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polvos
20.
Chemosphere ; 287(Pt 3): 132182, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34547564

RESUMEN

Biotechnologies have emerged as a promising solution for indoor air purification with the potential to overcome the inherent limitations of indoor air treatment. These limitations include the low concentrations and variability of pollutants and mass-transfer problems caused by pollutant hydrophobicity. A new latex-based biocoating was herein optimized for the abatement of the volatile organic compounds (VOCs) toluene, trichloroethylene, n-hexane, and α-pinene using acclimated activated sludge dominated by members of the phylum Patescibacteria. The influence of the water content, the presence of water absorbing compounds, the latex pretreatment, the biomass concentration, and the pollutant load was tested on VOC removal efficiency (RE) by varying the formulation of the mixtures. Overall, hexane and trichloroethylene removal was low (<30%), while high REs (>90%) were consistently recorded for toluene and pinene. The assays demonstrated the benefits of operating at high water content in the biocoating, either by including mineral medium or water absorbing compounds in the latex-biomass mixtures. The performance of the latex-based biocoating was likely limited by VOC mass-transfer rather than by biomass concentration in the biocoating. The latex-based biocoating supported a superior toluene and pinene removal than biomass in suspension when VOC loading rate was increased by a factor of 4.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Biopelículas , Látex , Estireno , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA