Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Genet Metab ; 141(3): 108112, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301530

RESUMEN

OBJECTIVE: Liver transplantation (LTx) is an intervention when medical management is not sufficiently preventing individuals with urea cycle disorders (UCDs) from the occurrence of hyperammonemic events. Supplementation with L-citrulline/arginine is regularly performed prior to LTx to support ureagenesis and is often continued after the intervention. However, systematic studies assessing the impact of long-term L-citrulline/arginine supplementation in individuals who have undergone LTx is lacking to date. METHODS: Using longitudinal data collected systematically, a comparative analysis was carried out by studying the effects of long-term L-citrulline/arginine supplementation vs. no supplementation on health-related outcome parameters (i.e., anthropometric, neurological, and cognitive outcomes) in individuals with UCDs who have undergone LTx. Altogether, 52 individuals with male ornithine transcarbamylase deficiency, citrullinemia type 1 and argininosuccinic aciduria and a pre-transplant "severe" disease course who have undergone LTx were investigated by using recently established and validated genotype-specific in vitro enzyme activities. RESULTS: Long-term supplementation of individuals with L-citrulline/arginine who have undergone LTx (n = 16) does neither appear to alter anthropometric nor neurocognitive endpoints when compared to their severity-adjusted counterparts that were not supplemented (n = 36) after LTx with mean observation periods between four to five years. Moreover, supplementation with L-citrulline/arginine was not associated with an increase of disease-specific plasma arithmetic mean values for the respective amino acids when compared to the non-supplemented control cohort. CONCLUSION: Although supplementation with L-citrulline/arginine is often continued after LTx, this pilot study does neither identify altered long-term anthropometric or neurocognitive health-related outcomes nor does it find an adequate biochemical response as reflected by the unaltered plasma arithmetic mean values for L-citrulline or L-arginine. Further prospective analyses in larger samples and even longer observation periods will provide more insight into the usefulness of long-term supplementation with L-citrulline/arginine for individuals with UCDs who have undergone LTx.


Asunto(s)
Trasplante de Hígado , Trastornos Innatos del Ciclo de la Urea , Masculino , Humanos , Citrulina/uso terapéutico , Arginina/metabolismo , Proyectos Piloto , Trastornos Innatos del Ciclo de la Urea/tratamiento farmacológico , Trastornos Innatos del Ciclo de la Urea/cirugía , Suplementos Dietéticos , Urea/metabolismo
2.
Br J Nutr ; 131(3): 474-481, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-37664994

RESUMEN

Postmenopausal women have augmented pressure wave responses to low-intensity isometric handgrip exercise (IHG) due to an overactive metaboreflex (postexercise muscle ischaemia, PEMI), contributing to increased aortic systolic blood pressure (SBP). Menopause-associated endothelial dysfunction via arginine (ARG) and nitric oxide deficiency may contribute to exaggerated exercise SBP responses. L-Citrulline supplementation (CIT) is an ARG precursor that decreases SBP, pulse pressure (PP) and pressure wave responses to cold exposure in older adults. We investigated the effects of CIT on aortic SBP, PP, and pressure of forward (Pf) and backward (Pb) waves during IHG and PEMI in twenty-two postmenopausal women. Participants were randomised to CIT (10 g/d) or placebo (PL) for 4 weeks. Aortic haemodynamics were assessed via applanation tonometry at rest, 2 min of IHG at 30 % of maximal strength, and 3 min of PEMI. Responses were analysed as change (Δ) from rest to IHG and PEMI at 0 and 4 weeks. CIT attenuated ΔSBP (−9 ± 2 v. −1 ± 1 mmHg, P = 0·006), ΔPP (−5 ± 2 v. 0 ± 1 mmHg, P = 0·03), ΔPf (−6 ± 2 v. −1 ± 1 mmHg, P = 0·01) and ΔPb (−3 ± 1 v. 0 ± 1 mmHg, P = 0·02) responses to PEMI v. PL. The ΔPP during PEMI was correlated with ΔPf (r = 0·743, P < 0·001) and ΔPb (r = 0·724, P < 0·001). Citrulline supplementation attenuates the increase in aortic pulsatile load induced by muscle metaboreflex activation via reductions in forward and backward pressure wave amplitudes in postmenopausal women.


Asunto(s)
Presión Arterial , Citrulina , Humanos , Femenino , Anciano , Presión Arterial/fisiología , Citrulina/farmacología , Posmenopausia , Fuerza de la Mano , Músculo Esquelético , Presión Sanguínea , Suplementos Dietéticos
3.
Biomol Ther (Seoul) ; 32(1): 154-161, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38148559

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that causes progressive paralysis. L-Citrulline is a non-essential neutral amino acid produced by L-arginine via nitric oxide synthase (NOS). According to previous studies, the pathogenesis of ALS entails glutamate toxicity, oxidative stress, protein misfolding, and neurofilament disruption. In addition, L-citrulline prevents neuronal cell death in brain ischemia; therefore, we investigated the change in the transport of L-citrulline under various pathological conditions in a cell line model of ALS. We examined the uptake of [14C]L-citrulline in wild-type (hSOD1wt/WT) and mutant NSC-34/ SOD1G93A (MT) cell lines. The cell viability was determined via MTT assay. A transport study was performed to determine the uptake of [14C]L-citrulline. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to determine the expression levels of rat large neutral amino acid transported 1 (rLAT1) in ALS cell lines. Nitric oxide (NO) assay was performed using Griess reagent. L-Citrulline had a restorative effect on glutamate induced cell death, and increased [14C]L-citrulline uptake and mRNA levels of the large neutral amino acid transporter (LAT1) in the glutamate-treated ALS disease model (MT). NO levels increased significantly when MT cells were pretreated with glutamate for 24 h and restored by co-treatment with L-citrulline. Co-treatment of MT cells with L-arginine, an NO donor, increased NO levels. NSC-34 cells exposed to high glucose conditions showed a significant increase in [14C]L-citrulline uptake and LAT1 mRNA expression levels, which were restored to normal levels upon co-treatment with unlabeled L-citrulline. In contrast, exposure of the MT cell line to tumor necrosis factor alpha, lipopolysaccharides, and hypertonic condition decreased the uptake significantly which was restored to the normal level by co-treating with unlabeled L-citrulline. L-Citrulline can restore NO levels and cellular uptake in ALS-affected cells with glutamate cytotoxicity, pro-inflammatory cytokines, or other pathological states, suggesting that L-citrulline supplementation in ALS may play a key role in providing neuroprotection.

4.
Poult Sci ; 102(12): 103136, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37844531

RESUMEN

High ambient temperature is a major environmental stressor affecting poultry production, especially in the tropical and subtropical regions of the world. Nutritional interventions have been adopted to combat thermal stress in poultry, including the use of amino acids. L-citrulline is a nonessential amino acid that is involved in nitric oxide generation and thermoregulation, however, the molecular mechanisms behind L-citrulline's regulation of body temperature are still unascertained. This study investigated the global gene expression in the hypothalamus of chickens fed either basal diet or L-citrulline-supplemented diets under different housing temperatures. Ross 308 broilers were fed with basal diet (CON) or 1% L-citrulline diet (LCT) from day-old, and later subjected to 2 environmental temperatures in a 2 by 2 factorial arrangement as follows; basal diet-fed chickens housed at 24°C (CON-TN); L-citrulline diet-fed chickens housed at 24°C (LCT-TN); basal diet-fed chickens housed at 35°C (CON-HS), and L-citrulline diet-fed chickens housed at 35°C (LCT-HS) from 22 to 42 d of age. At 42-days old, hypothalamic tissues were collected for mRNA analyses and RNA sequencing. A total of 1,019 million raw reads were generated and about 82.59 to 82.96% were uniquely mapped to genes. The gene ontology (GO) term between the CON-TN and LCT-TN groups revealed significant enrichments of pathways such as central nervous system development, and Wnt signaling pathway. On the other hand, GO terms between the CON-HS and LCT-HS groups revealed enrichments in the regulation of corticosteroid release, regulation of feeding behavior, and regulation of inflammatory response. Several potential candidate genes were identified to be responsible for central nervous system development (EMX2, WFIKKN2, SLC6A4 Wnt10a, and PHOX2B), and regulation of feed intake (NPY, AgRP, GAL, POMC, and NMU) in chickens. Therefore, this study unveils that L-citrulline can influence transcripts associated with brain development, feeding behavior, energy metabolism, and thermoregulation in chickens raised under different ambient temperatures.


Asunto(s)
Pollos , Citrulina , Animales , Pollos/fisiología , Suplementos Dietéticos , Dieta/veterinaria , Hipotálamo , Perfilación de la Expresión Génica/veterinaria , Conducta Alimentaria , Alimentación Animal/análisis
5.
Adv Exp Med Biol ; 1428: 127-148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37466772

RESUMEN

In preeclampsia, the shallow invasion of cytotrophoblast cells to uterine spiral arteries, leading to a reduction in placental blood flow, is associated with an imbalance of proangiogenic/antiangiogenic factors to impaired nitric oxide (NO) production. Proangiogenic factors, such as vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), require NO to induce angiogenesis through antioxidant regulation mechanisms. At the same time, there are increases in antiangiogenic factors in preeclampsia, such as soluble fms-like tyrosine kinase type 1 receptor (sFIt1) and toll-like receptor 9 (TLR9), which are mechanism derivates in the reduction of NO bioavailability and oxidative stress in placenta.Different strategies have been proposed to prevent or alleviate the detrimental effects of preeclampsia. However, the only intervention to avoid the severe consequences of the disease is the interruption of pregnancy. In this scenario, different approaches have been analysed to treat preeclamptic pregnant women safely. The supplementation with amino acids is one of them, especially those associated with NO synthesis. In this review, we discuss emerging concepts in the pathogenesis of preeclampsia to highlight L-arginine and L-citrulline supplementation as potential strategies to improve birth outcomes. Clinical and experimental data concerning L-arginine and L-citrulline supplementation have shown benefits in improving NO availability in the placenta and uterine-placental circulation, prolonging pregnancy in patients with gestational hypertension and decreasing maternal blood pressure.


Asunto(s)
Preeclampsia , Femenino , Embarazo , Humanos , Preeclampsia/tratamiento farmacológico , Preeclampsia/metabolismo , Placenta/metabolismo , Citrulina/uso terapéutico , Citrulina/metabolismo , Citrulina/farmacología , Arginina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de Crecimiento Placentario/metabolismo , Factor de Crecimiento Placentario/farmacología , Suplementos Dietéticos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
Nutrients ; 15(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37299579

RESUMEN

Pathophysiological conditions such as endothelial dysfunction and arterial stiffness, characterized by low nitric oxide bioavailability, deficient endothelium-dependent vasodilation and heart effort, predispose individuals to atherosclerotic lesions and cardiac events. Nitrate (NO3-), L-arginine, L-citrulline and potassium (K+) can mitigate arterial dysfunction and stiffness by intensifying NO bioavailability. Dietary compounds such as L-arginine, L-citrulline, NO3- and K+ exert vasoactive effects as demonstrated in clinical interventions by noninvasive flow-mediated vasodilation (FMD) and pulse-wave velocity (PWV) prognostic techniques. Daily L-arginine intakes ranging from 4.5 to 21 g lead to increased FMD and reduced PWV responses. Isolated L-citrulline intake of at least 5.6 g has a better effect compared to watermelon extract, which is only effective on endothelial function when supplemented for longer than 6 weeks and contains at least 6 g of L-citrulline. NO3- supplementation employing beetroot at doses greater than 370 mg promotes hemodynamic effects through the NO3--NO2-/NO pathway, a well-documented effect. A potassium intake of 1.5 g/day can restore endothelial function and arterial mobility, where decreased vascular tone takes place via ATPase pump/hyperpolarization and natriuresis, leading to muscle relaxation and NO release. These dietary interventions, alone or synergically, can ameliorate endothelial dysfunction and should be considered as adjuvant therapies in cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Rigidez Vascular , Humanos , Citrulina/farmacología , Factores de Riesgo , Vasodilatación , Factores de Riesgo de Enfermedad Cardiaca , Arginina/farmacología , Endotelio Vascular , Óxido Nítrico/farmacología
7.
Antioxidants (Basel) ; 12(6)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37371893

RESUMEN

Mitochondrial fission is a crucial process in maintaining metabolic homeostasis in normal physiology and under conditions of stress. Its dysregulation has been associated with several metabolic diseases, including, but not limited to, obesity, type 2 diabetes (T2DM), and cardiovascular diseases. Reactive oxygen species (ROS) serve a vital role in the genesis of these conditions, and mitochondria are both the main sites of ROS production and the primary targets of ROS. In this review, we explore the physiological and pathological roles of mitochondrial fission, its regulation by dynamin-related protein 1 (Drp1), and the interplay between ROS and mitochondria in health and metabolic diseases. We also discuss the potential therapeutic strategies of targeting mitochondrial fission through antioxidant treatments for ROS-induced conditions, including the effects of lifestyle interventions, dietary supplements, and chemicals, such as mitochondrial division inhibitor-1 (Mdivi-1) and other mitochondrial fission inhibitors, as well as certain commonly used drugs for metabolic diseases. This review highlights the importance of understanding the role of mitochondrial fission in health and metabolic diseases, and the potential of targeting mitochondrial fission as a therapeutic approach to protecting against these conditions.

8.
J Diet Suppl ; 20(4): 531-542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293750

RESUMEN

Grape seed extract (GSE) or L-citrulline supplement has been known to increase nitric oxide (NO) bioavailability and enhance endothelial-mediated vasodilation. Accordingly, to examine the additive benefits of combination of the two supplementations on hemodynamic responses to dynamic exercise, young, healthy males were recruited for this study. Effects of 7 days of 1) GSE + L-citrulline, 2) GSE, 3) L-citrulline, and 4) placebo supplementation on systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MAP), cardiac output, total vascular conductance (TVC), and oxygen (O2) consumption were examined at rest and during cycling exercise. Compared with placebo, GSE, L-citrulline, and combined supplementations did not reduce SBP, DBP, and MAP, while cardiac output (placebo; 23.6 ± 1.3 L/min, GSE; 25.7 ± 1.1 L/min; L-citrulline, 25.2 ± 1.2 L/min; GSE + L-citrulline; 25.3 ± 0.9 L/min) and TVC (placebo; 234.7 ± 11.3 ml/min/mmHg, GSE; 258.3 ± 10.6 ml/min/mmHg; L-citrulline, 255.2 ± 10.6 ml/min/mmHg; GSE + L-citrulline; 260.4 ± 8.9 ml/min/mmHg) were increased at only the 80% workload (p < 0.05). Compared with placebo and L-citrulline, GSE and combined supplementations had a reduction in VO2 across workloads (p < 0.05). However, there was no additive benefits on these variables. We conclude that supplementation with GSE, L-citrulline, and combined supplementations increased cardiac output due partially to decreased vascular resistance. Our findings suggest that GSE may act as an ergogenic aid that can improve O2 delivery to exercising muscles.


Asunto(s)
Extracto de Semillas de Uva , Masculino , Humanos , Extracto de Semillas de Uva/farmacología , Citrulina/farmacología , Hemodinámica , Presión Sanguínea , Suplementos Dietéticos
9.
Nutrients ; 15(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37242187

RESUMEN

A pre-workout supplement's (PWS; 200 mg caffeine, 3.3 g creatine monohydrate, 3.2 g ß-alanine, 6 g citrulline malate and 5 g branched chained amino acid (BCAA) per dose) acute effects on the alactic (jumping, sprinting, agility), lactic (Running-Based Anaerobic Sprint Test, RAST) and aerobic performance (Yo-Yo Intermittent Recovery Test Level 1, Yo-Yo IRL1 VO2max) of well-trained basketball players was investigated in this double-blind placebo-controlled study. Thirty players (age 18-31 years, height 166-195 cm, weight 70.2-116.7 kg, body fat 10.6-26.4%) were allocated to pre-workout (PWS, n = 15) or placebo (PL, n = 15) groups. Half of the participants in each group performed the evaluations without PWS or PL, while the rest consumed PWS or PL 30 min before the assessments (1st trial) and vice versa (2nd trial). Significant improvements in counter-movement jump (CMJ) (PWS: 4.3 ± 2.1%; PL: 1.2 ± 1.0%), agility (PWS: -2.9 ± 1.8%; PL: 1.8 ± 1.7%), RAST average (PWS: 18.3 ± 9.1%; PL: -2.2 ± 2.0%), minimum power (PWS: 13.7 ± 8.9%; PL: -7.5 ± 5.9%), and fatigue index (PWS: -25.0 ± 0.9%; PL: -4.6 ± 0.6%) were observed in the PWS group vs. the PL group (p < 0.05). No differences were found regarding sprinting, aerobic performance, and blood lactate concentrations. Thus, although players' alactic and lactic anaerobic performance could be improved, peak power, sprinting and aerobic performance are not.


Asunto(s)
Rendimiento Atlético , Baloncesto , Humanos , Adolescente , Adulto Joven , Adulto , Resistencia Física , Atletas , Ingestión de Alimentos
10.
Nutrients ; 15(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37111214

RESUMEN

BACKGROUND: The repercussions on oxidative and inflammatory stress markers under the effects of arginine and citrulline in response to exercise are not fully reached. We completed a systematic review to investigate the effects of L-Citrulline or L-Arginine on oxidative stress and inflammatory biomarkers following exercise. EMBASE, MEDLINE (PubMed), Cochrane Library, CINAHL, LILACS, and Web of Science databases were used to record the trials. This study includes randomized controlled trials (RCTs) and non-RCTs with subjects over 18 years old. Those under the intervention protocol consumed L-Citrulline or L-Arginine, and the controls ingested placebo. We recognized 1080 studies, but only 7 were included (7 studies in meta-analysis). We observed no difference between pre- vs. post-exercise for oxidative stress (subtotal = -0.21 [CI: -0.56, 0.14], p = 0.24, and heterogeneity = 0%. In the sub-group "L-Arginine" we found a subtotal = -0.29 [-0.71, 0.12], p = 0.16, and heterogeneity = 0%. For the "L-Citrulline" subgroup we observed a subtotal = 0.00 [-0.67, 0.67], p = 1.00, and heterogeneity was not applicable. No differences were observed between groups (p = 0.47), and I² = 0%) or in antioxidant activity (subtotal = -0.28 [-1.65, 1.08], p = 0.68, and heterogeneity = 0%). In the "L-Arginine" sub-group, we found a subtotal = -3.90 [-14.18, 6.38], p = 0.46, and heterogeneity was not applicable. For the "L-Citrulline" subgroup, we reported a subtotal = -0.22 [-1.60, 1.16], p = 0.75, and heterogeneity was not applicable. No differences were observed between groups (p = 0.49), and I² = 0%), inflammatory markers (subtotal = 8.38 [-0.02, 16.78], p = 0.05, and heterogeneity = 93%. Tests for subgroup differences were not applicable, and anti-inflammatory markers (subtotal = -0.38 [-1.15, 0.39], p = 0.34 and heterogeneity = 15%; testing for subgroup differences was not applicable). In conclusion, our systematic review and meta-analysis found that L-Citrulline and L-Arginine did not influence inflammatory biomarkers and oxidative stress after exercise.


Asunto(s)
Citrulina , Suplementos Dietéticos , Humanos , Adolescente , Citrulina/farmacología , Estrés Oxidativo , Biomarcadores , Arginina/farmacología , Ejercicio Físico/fisiología , Ensayos Clínicos Controlados Aleatorios como Asunto
11.
Exp Biol Med (Maywood) ; 248(8): 702-711, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37012677

RESUMEN

This study was conducted with gilts as an animal model to test the hypothesis that dietary supplementation with L-citrulline (Cit) improves placental angiogenesis and embryonic survival. Between Days 14 and 25 of gestation, each gilt was fed a corn- and soybean-meal-based diet (2 kg/day) supplemented with 0.4% Cit or an isonitrogenous amount of L-alanine (Control). On Day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Amniotic and allantoic fluids and placentae were analyzed for NOx [stable oxidation products of nitric oxide (NO)], polyamines, and amino acids (AAs). Placentae were also analyzed for syntheses of NO and polyamines; concentrations of AAs and related metabolites; and the expression of angiogenic factors and aquaporins (AQPs). Compared to the control group, Cit supplementation increased (P < 0.01) the number of viable fetuses by 2.0 per litter, the number and diameter of placental blood vessels (21% and 24%, respectively), placental weight (15%), and total allantoic and amniotic fluid volumes (20% and 47%, respectively). Cit supplementation also increased (P < 0.01) enzymatic activities of GTP-cyclohydrolase-1 (32%) and ornithine decarboxylase (27%) in placentae; syntheses of NO (29%) and polyamines (26%); concentrations of NOx (19%), tetrahydrobiopterin (28%), polyamines (22%), cAMP (26%), and cGMP (24%) in placentae; total amounts of NOx (22-40%), polyamines (23-40%), AAs (16-255%), glucose (22-44%), and fructose (22-43%) in allantoic and amniotic fluids. Furthermore, Cit supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors (eNOS [84%], GTP-CH1 [55%], PGF [61%], VEGFA120 [26%], and VEGFR2 [137%], as well as AQPs - AQP1 [105%], AQP3 [53%], AQP5 [77%], AQP8 [57%], and AQP9 [31%]). Collectively, dietary Cit supplementation enhanced placental NO and polyamine syntheses as well as angiogenesis to improve conceptus development and survival.


Asunto(s)
Citrulina , Placenta , Embarazo , Femenino , Porcinos , Animales , Placenta/metabolismo , Citrulina/metabolismo , Suplementos Dietéticos , Poliaminas/metabolismo , Guanosina Trifosfato/metabolismo , Arginina/metabolismo
12.
Nutrients ; 15(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904267

RESUMEN

The global market for nutritional supplements (NS) is growing rapidly, and the use of L-arginine (Arg), L-citrulline (Cit), and citrulline malate (CitMal) supplements has been shown to enhance cardiovascular health and athletic performance. Over the past decade, Arg, Cit, and CitMal supplements have received considerable attention from researchers in the field of exercise nutrition, who have investigated their potential effects on hemodynamic function, endothelial function, aerobic and anaerobic capacity, strength, power, and endurance. Previous studies were reviewed to determine the potential impact of Arg, Cit, and CitMal supplements on cardiovascular health and exercise performance. By synthesizing the existing literature, the study aimed to provide insight into the possible uses and limitations of these supplements for these purposes. The results showed that both recreational and trained athletes did not see improved physical performance or increased nitric oxide (NO) synthesis with 0.075 g or 6 g doses of Arg supplement per body weight. However, 2.4 to 6 g of Cit per day for 7 to 16 days of various NSs had a positive impact, increasing NO synthesis, enhancing athletic performance indicators, and reducing feelings of exertion. The effects of an 8 g acute dose of CitMal supplement were inconsistent, and more research is needed to determine its impact on muscle endurance performance. Based on the positive effects reported in previous studies, further testing is warranted in various populations that may benefit from nutritional supplements, including aerobic and anaerobic athletes, resistance-trained individuals, elderly people, and clinical populations, to determine the impact of different doses, timing of ingestion, and long-term and acute effects of Arg, Cit, and CitMal supplements on cardiovascular health and athletic performance.


Asunto(s)
Rendimiento Atlético , Citrulina , Humanos , Anciano , Citrulina/farmacología , Arginina/farmacología , Suplementos Dietéticos
13.
Nutrients ; 15(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36839167

RESUMEN

Heart rate variability (HRV) provides a simple method to evaluate autonomic function in health and disease. A reduction in HRV may indicate autonomic dysfunction and is strongly associated with aspects of cardiometabolic disease, including hyperglycemia. Reduced nitric oxide (NO) bioavailability is also implicated in the development of cardiometabolic disease and autonomic dysfunction. Watermelons are natural sources of L-arginine and L-citrulline, substrates used for NO synthesis. Watermelon consumption can improve NO bioavailability. We conducted a randomized, double-blind, placebo-controlled crossover trial to test the effects of 2 weeks of daily watermelon juice (WMJ) supplementation on HRV in response to an oral glucose challenge (OGC) in healthy young adults. We also performed indirect calorimetry to assess if our intervention altered the metabolic response to the OGC. WMJ supplementation preserved high-frequency power (HF) (treatment effect, p = 0.03) and the percentage of successive differences that differ by more than 50 ms (pNN50) (treatment effect, p = 0.009) when compared to the placebo treatment. There was no difference in resting energy expenditure or substate oxidation according to treatment. We report that WMJ supplementation attenuates OGC-induced reductions in HRV. Future work should emphasize the importance of NO bioavailability in autonomic dysfunction in cardiometabolic disease.


Asunto(s)
Enfermedades Cardiovasculares , Citrullus , Adulto Joven , Humanos , Frecuencia Cardíaca , Suplementos Dietéticos , Citrullus/química , Estudios Cruzados , Glucosa/farmacología , Método Doble Ciego
14.
Nutrients ; 15(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36771366

RESUMEN

Nitric-oxide-stimulating dietary supplements are widely available and marketed to strength athletes and weightlifters seeking to increase muscle performance and augment training adaptations. These supplements contain ingredients classified as nitric oxide (NO) precursors (i.e., "NO boosters"). Endogenous NO is generated via a nitric oxide synthase (NOS)-dependent pathway and a NOS-independent pathway that rely on precursors including L-arginine and nitrates, with L-citrulline serving as an effective precursor of L-arginine. Nitric oxide plays a critical role in endothelial function, promoting relaxation of vascular smooth muscle and subsequent dilation which may favorably impact blood flow and augment mechanisms contributing to skeletal muscle performance, hypertrophy, and strength adaptations. The aim of this review is to describe the NO production pathways and summarize the current literature on the effects of supplementation with NO precursors for strength and power performance. The information will allow for an informed decision when considering the use of L-arginine, L-citrulline, and nitrates to improve muscular function by increasing NO bioavailability.


Asunto(s)
Citrulina , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Citrulina/farmacología , Citrulina/metabolismo , Suplementos Dietéticos , Arginina/farmacología , Arginina/metabolismo , Óxido Nítrico Sintasa/metabolismo , Músculo Esquelético/metabolismo , Nitratos/farmacología
15.
Acta Physiol (Oxf) ; 237(3): e13937, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36645144

RESUMEN

The prevalence of type 2 diabetes (T2D) is increasing worldwide. Decreased nitric oxide (NO) bioavailability is involved in the pathophysiology of T2D and its complications. L-citrulline (Cit), a precursor of NO production, has been suggested as a novel therapeutic agent for T2D. Available data from human and animal studies indicate that Cit supplementation in T2D increases circulating levels of Cit and L-arginine while decreasing circulating glucose and free fatty acids and improving dyslipidemia. The underlying mechanisms for these beneficial effects of Cit include increased insulin secretion from the pancreatic ß cells, increased glucose uptake by the skeletal muscle, as well as increased lipolysis and ß-oxidation, and decreased glyceroneogenesis in the adipose tissue. Thus, Cit has antihyperglycemic, antidyslipidemic, and antioxidant effects and has the potential to be used as a new therapeutic agent in the management of T2D. This review summarizes available literature from human and animal studies to explore the effects of Cit on metabolic parameters in T2D. It also discusses the possible mechanisms underlying Cit-induced improved metabolic parameters in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Animales , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Citrulina/metabolismo , Citrulina/farmacología , Citrulina/uso terapéutico , Arginina , Músculo Esquelético/metabolismo , Hipoglucemiantes/uso terapéutico
16.
J Prev Med Hyg ; 63(2 Suppl 3): E239-E245, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36479475

RESUMEN

Nitric oxide (NO) is an essential component of the human body, involved in blood vessel dilation, stimulation of hormone release, signaling and regulation of neurotransmission. Nitric oxide is synthesized by nitric-oxide-synthase-dependent and -independent pathways. Nitric oxide supplementation improves cardiac health, enhances performance during exercise, reduces high blood pressure during pregnancy, reduces erectile dysfunction and improves healing processes and respiratory response. Nitric-oxide-associated benefits are mostly apparent in untrained or moderately trained individuals. L-arginine and L-citrulline supplementation contributes to nitric oxide levels because L-arginine is directly involved in NO synthesis, whereas L-citrulline acts as an L-arginine precursor that is further converted to NO by a reaction catalyzed by NO synthase. L-arginine supplements increase respiratory response and enhance performance during exercise, while L-citrulline with malate and other molecules increase working capacity. Various studies involving beetroot juice have reported a significant increase in plasma nitrite levels, regarded as markers of NO, after intake of beetroot juice. Although NO supplementation may have mild to moderate side-effects, using smaller or divided doses could avoid some of these side-effects. Since nitric oxide supplementation may worsen certain health conditions and may interfere with certain medicines, it should only be taken under medical supervision.


Asunto(s)
Ejercicio Físico , Óxido Nítrico , Humanos , Suplementos Dietéticos , Arginina
17.
Nutrients ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364817

RESUMEN

L-citrulline (L-cit) is a key intermediate in the urea cycle and is known to possess antioxidant and anti-inflammation characteristics. However, the role of L-cit in ameliorating oxidative damage and immune dysfunction against iron overload in the thymus remains unclear. This study explored the underlying mechanism of the antioxidant and anti-inflammation qualities of L-cit on iron overload induced in the thymus. We reported that L-cit administration could robustly alleviate thymus histological damage and reduce iron deposition, as evidenced by the elevation of the CD8+ T lymphocyte number and antioxidative capacity. Moreover, the NF-κB pathway, NCOA4-mediated ferritinophagy, and ferroptosis were attenuated. We further demonstrated that L-cit supplementation significantly elevated the mTEC1 cells' viability and reversed LDH activity, iron levels, and lipid peroxidation caused by FAC. Importantly, NCOA4 knockdown could reduce the intracellular cytoplasmic ROS, which probably relied on the Nfr2 activation. The results subsequently indicated that NCOA4-mediated ferritinophagy was required for ferroptosis by showing that NCOA4 knockdown reduced ferroptosis and lipid ROS, accompanied with mitochondrial membrane potential elevation. Intriguingly, L-cit treatment significantly inhibited the NF-κB pathway, which might depend on restraining ferritinophagy-mediated ferroptosis. Overall, this study indicated that L-cit might target ferritinophagy-mediated ferroptosis to exert antioxidant and anti-inflammation capacities, which could be a therapeutic strategy against iron overload-induced thymus oxidative damage and immune dysfunction.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Humanos , Citrulina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hierro/metabolismo , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/complicaciones , Estrés Oxidativo , Suplementos Dietéticos , Autofagia
18.
Nutrients ; 14(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889869

RESUMEN

The amino acid L-arginine is crucial for nitric oxide (NO) synthesis, an important molecule regulating vascular tone. Considering that vascular dysfunction precedes cardiovascular disease, supplementation with precursors of NO synthesis (e.g., L-arginine) is warranted. However, supplementation of L-citrulline is recommended instead of L-arginine since most L-arginine is catabolized during its course to the endothelium. Given that L-citrulline, found mainly in watermelon, can be converted to L-arginine, watermelon supplementation seems to be effective in increasing plasma L-arginine and improving vascular function. Nonetheless, there are divergent findings when investigating the effect of watermelon supplementation on vascular function, which may be explained by the L-citrulline dose in watermelon products. In some instances, offering a sufficient amount of L-citrulline can be impaired by the greater volume (>700 mL) of watermelon needed to reach a proper dose of L-citrulline. Thus, food technology can be applied to reduce the watermelon volume and make supplementation more convenient. Therefore, this narrative review aims to discuss the current evidence showing the effects of watermelon ingestion on vascular health parameters, exploring the critical relevance of food technology for acceptable L-citrulline content in these products. Watermelon-derived L-citrulline appears as a supplementation that can improve vascular function, including arterial stiffness and blood pressure. Applying food technologies to concentrate bioactive compounds in a reduced volume is warranted so that its ingestion can be more convenient, improving the adherence of those who want to ingest watermelon products daily.


Asunto(s)
Citrullus , Arginina/farmacología , Citrulina/farmacología , Citrullus/química , Ingestión de Alimentos , Tecnología de Alimentos , Tecnología
19.
J Vector Borne Dis ; 59(1): 45-51, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35708403

RESUMEN

BACKGROUND & OBJECTIVES: Malaria affects around 228 million people all over the globe. Malaria causing parasite Plasmodium infection leads to activation of immune responses. The growth of parasite and immune activation requires semi essential amino acids like L-arginine. Malaria infection leads to condition of hyperargininemia and low availability of nitric oxide. However, the effect of L-arginine supplementation in malaria infected mice has not been explored in in-vivo studies. In this study we have compared the effect of oral supplementation of nitric oxide donor, L-arginine and L-citrulline, in malaria infected mice Methods: To examine the effect of oral supplementation of L-arginine and L-citrulline, Plasmodium berghei infected mice were divided in different groups and respective groups were fed with L- arginine and L-citrulline, parasitemia was measured on different days. Mice was sacrificed and immunophenotyping was done on 10 days post infection. RESULTS: our results show that supplementation of L-arginine induces conducive environment for Plasmodium growth due to which the infected mice dies earlier than control wild type infected mice whereas L-citrulline supplementation inhibits parasite growth and mice survives for longer period of time. Flow cytometric analysis shows that supplementation of L-arginine increases cTLA-4 on T cell population, increases Treg cells leading to immunosuppression while supplementation of L-citrulline does not have effect on T cells population and number of Treg cell decrease compared to P. berghei infected mice. INTERPRETATION & CONCLUSION: our results show that L-citrulline can be a better alternative than L-arginine because of lower expression of inhibitory molecules and lower parasitemia as well as increased survival of infected mice.


Asunto(s)
Citrulina , Malaria , Animales , Arginina/metabolismo , Arginina/farmacología , Citrulina/metabolismo , Citrulina/farmacología , Humanos , Malaria/prevención & control , Ratones , Parasitemia/prevención & control , Plasmodium berghei , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología
20.
Eur J Appl Physiol ; 122(7): 1627-1638, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35429293

RESUMEN

INTRODUCTION: Watermelon shows promise as an ergogenic aid due to its high concentration of L-citrulline, vitamins, minerals, and antioxidants. PURPOSE: The purpose of this study was to examine the effect of watermelon supplementation on exercise performance, muscle oxygenation, and vessel diameter. METHODS: In a crossover design fashion, 15 resistance-trained men (22.4 ± 2.9 years; 177.5 ± 7.1 cm; 82.7 ± 11.2 kg) were randomly assigned to supplement with either watermelon juice concentrate (WM; 2.2 g·day-1 L-citrulline) or placebo (PL) for 7 days prior to completing an experimental trial consisting of an isometric mid-thigh pull test and acute bench press protocol. Participants completed two sets of two repetitions at 75% 1 repetition maximum (1-RM) with maximum ballistic intent followed by five repetition-maximum (RM) sets at the same load. Barbell velocity and power were measured via linear position transducer during the first two sets, while volume load and muscle oxygenation were quantified during RM sets. Brachial artery diameter and subjective perception measures were assessed at baseline and immediately pre- and post-exercise. RESULTS: Except for a greater percent change in skeletal muscle oxygenation during WM compared to PL on average and across sets (mean difference = + 4.1%, p = 0.033, BF10 = 2.2-54.5), separate traditional and Bayesian analyses of variance with repeated measures, as well as paired-samples t tests for calculated summary measures, revealed no evidence favoring conditional differences in any measure of performance, perception, or muscle oxygenation. CONCLUSION: Short-term watermelon supplementation does not appear to enhance isometric force production, bench press performance, blood vessel diameter, or muscle oxygenation parameters compared to PL in resistance-trained men.


Asunto(s)
Citrullus , Entrenamiento de Fuerza , Teorema de Bayes , Citrulina , Suplementos Dietéticos , Método Doble Ciego , Humanos , Masculino , Fuerza Muscular , Músculo Esquelético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA