Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Intervalo de año de publicación
1.
Sci Total Environ ; 926: 171850, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38521255

RESUMEN

Agriculture is expanding rapidly across the tropics. While cultivation can boost socioeconomic conditions and food security, it also threatens native ecosystems. Oil palm (Elaeis guineensis), which is grown pantropically, is the most productive vegetable oil crop worldwide. The impacts of oil palm cultivation have been studied extensively in Southeast Asia and - to a lesser extent - in Latin America but, in comparison, very little is known about its impacts in Africa: oil palm's native range, and where cultivation is expanding rapidly. In this paper, we introduce a large-scale research programme - the Sustainable Oil Palm in West Africa (SOPWA) Project - that is evaluating the relative ecological impacts of oil palm cultivation under traditional (i.e., by local people) and industrial (i.e., by a large-scale corporation) management in Liberia. Our paper is twofold in focus. First, we use systematic mapping to appraise the literature on oil palm research in an African context, assessing the geographic and disciplinary focus of existing research. We found 757 publications occurring in 36 African countries. Studies tended to focus on the impacts of palm oil consumption on human health and wellbeing. We found no research that has evaluated the whole-ecosystem (i.e., multiple taxa and ecosystem functions) impacts of oil palm cultivation in Africa, a knowledge gap which the SOPWA Project directly addresses. Second, we describe the SOPWA Project's study design and-using canopy cover, ground vegetation cover, and soil temperature data as a case study-demonstrate its utility for assessing differences between areas of rainforest and oil palm agriculture. We outline the socioecological data collected by the SOPWA Project to date and describe the potential for future research, to encourage new collaborations and additional similar projects of its kind in West Africa. Increased research in Africa is needed urgently to understand the combined ecological and sociocultural impacts of oil palm and other agriculture in this unique region. This will help to ensure long-term sustainability of the oil palm industry-and, indeed, all tropical agricultural activity-in Africa.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Aceites de Plantas , Agricultura , África Occidental
2.
J Environ Manage ; 356: 120603, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513587

RESUMEN

Simulations of sustainable land use and management are required to achieve targets to reduce pollution and carbon emissions. Limited research has been conducted on synergistic pollution and carbon reduction (SPCR) in land-use simulations. This study proposed a framework for land-use simulation focused on SPCR. The non-dominated sorting genetic algorithm (NSGA-Ⅱ) and the entropy weight-based technique for order of preference by similarity to an ideal solution (TOPSIS) were used to optimize the land-use structure according to minimum net carbon, nitrogen, and phosphorus emissions. The cellular automata (CA) Markov model was then utilized to simulate the land-use spatial pattern according to the optimal conditions. The proposed framework was applied to the Dongjiang River Basin, South China, and three other scenarios (natural development (ND), carbon minimization (CM), and pollution minimization (PM)) were designed to validate the effectiveness of pollution and carbon emissions reduction under the SPCR scenario. The land-use structure and the pollution and carbon emissions in the scenarios were compared. The results showed the following. (1) The proportions of cultivated land, woodland, grassland, water, and construction land In the SPCR scenario accounted for 14%, 72%, 4%, 3%, and 7% of the total area, respectively. The carbon, nitrogen, and phosphorus emissions were 42.4%, 6.6%, and 7.8% lower, respectively, in the SPCR scenario than in the ND scenario, demonstrating the advantages of simultaneous pollution and carbon reduction. (2) The kappa coefficient of the CA-Markov model was 0.8729, indicating high simulation accuracy. (3) The simulated land-use spatial patterns exhibited low spatial heterogeneity under the CM, PM, and SPCR scenarios. However, there were significant disparities between the ND and SPCR scenarios. The cultivated and construction land areas were significantly smaller in the SPCR scenario than in the ND scenario. In contrast, the woodland and grassland areas were larger, with most differences in the central and southwestern regions of the Dongjiang River Basin. The results of the current study can be used to formulate effective land use policies and strategies in the Dongjiang Basin and similar areas to achieve the Coupling coordination between pollution reduction and carbon reduction. Policy recommendations include increasing the proportion of woodland and grassland, implementing reasonable constraints on expanding cultivated and construction lands, and establishing farmland red lines to promote synergistic pollution and carbon reduction.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Simulación por Computador , China , Nitrógeno , Fósforo , Carbono
3.
Sci Rep ; 14(1): 6475, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499614

RESUMEN

Wild medicinal plants are prominent in the field of Traditional Chinese Medicine (TCM), but their availability is being impacted by human activities and ecological degradation in China. To ensure sustainable use of these resources, it is crucial to scientifically plan areas for wild plant cultivation. Thesium chinense, a known plant antibiotic, has been overharvested in recent years, resulting in a sharp reduction in its wild resources. In this study, we employed three atmospheric circulation models and four socio-economic approaches (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) to investigate the primary environmental factors influencing the distribution of T. chinense. We also examined changes in its suitable area using the Biomod2 package. Additionally, we utilized the PLUS model to project and analyze future land use changes in climate-stable regions for T. chinense. Our planning for wild tending areas of T. chinense was facilitated by the ZONATION software. Over the next century, the climate-stable regions for T. chinense in China is approximately 383.05 × 104 km2, while the natural habitat in this region will progressively decline. Under the current climate conditions, about 65.06% of the habitats in the high suitable areas of T. chinense are not affected by future land use changes in China. Through hotspot analysis, we identified 17 hotspot cities as ideal areas for the wild tending of T. chinense, including 6 core hotspot cities, 6 sub-hotspot cities, and 5 fringe hotspot cities. These findings contribute to a comprehensive research framework for the cultivation planning of T. chinense and other medicinal plants.


Asunto(s)
Plantas Medicinales , Santalaceae , Humanos , Ecosistema , Clima , Medicina Tradicional China , Cambio Climático
4.
Environ Sci Technol ; 58(10): 4627-4636, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38417148

RESUMEN

Socioeconomic factors and mitigation potentials are essential drivers of the dynamics of nutrient emissions, yet these drivers are rarely examined at broad spatiotemporal scales. Here, we combine material flow analysis and geospatial analysis to examine the past and future changes of nitrogen and phosphorus emissions in China. Results show that anthropogenic nitrogen and phosphorus emissions increased by 17% and 32% during 2000-2019, respectively. Meanwhile, many regions witnessed decreasing nitrogen emissions but rising phosphorus discharged to waterbody, leading to a 20% decrease in the nitrogen/phosphorus ratio. In addition to many prominent factors like fertilizer use, the increasing impervious land area around cities is a notable factor driving the emissions, indicating the urgency to limit building expansion, especially in North China Plain and other less-developed regions. Improving land-use efficiency and consuming behaviors could reduce nitrogen and phosphorus emissions by 65-77% in 2030, but the nitrogen/phosphorus ratio will increase unintendedly due to larger reduction potentials for phosphorus, which may deteriorate the aquatic ecosystem. We highlight that nitrogen and phosphorus emissions should be reduced with coordinated but differentiated measures by prioritizing nitrogen reduction through cropland and food-system management.


Asunto(s)
Nitrógeno , Fósforo , Nitrógeno/análisis , Fósforo/análisis , Ecosistema , Agricultura , Alimentos , China
5.
Water Res ; 253: 121286, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38341974

RESUMEN

By integrating soil and water assessment tool (SWAT) modeling and land use and land cover (LULC) based multi-variable statistical analysis, this study aimed to identify driving factors, potential thresholds, and critical source areas (CSAs) to enhance water quality in southern Alabama and northwest Florida's Choctawhatchee Watershed. The results revealed the significance of forest cover and of the lumped developed areas and cultivated crops ("Source Areas") in influencing water quality. The stepwise linear regression analysis based on self-organizing maps (SOMs) showed that a negative correlation between forest percent cover and total nitrogen (TN), organic nitrogen (ORGN), and organic phosphorus (ORGP), highlighting the importance of forests in reducing nutrient loads. Conversely, Source Area percentage was positively correlated with total phosphorus (TP) loads, indicating the influence of human activities on TP levels. The receiver operating characteristic (ROC) curve analysis determined thresholds for forest percentage and Source Area percentage as 37.47 % and 20.26 %, respectively. These thresholds serve as important reference points for identifying CSAs. The CSAs identified based on these thresholds covered a relatively small portion (28 %) but contributed 47 % of TN and 50 % of TP of the whole watershed. The study underscores the importance of considering both physical process-based modeling and multi-variable statistical analysis for a comprehensive understanding of watershed management, i.e., the identification of CSAs and the associated variables and their tipping points to maintain water quality.


Asunto(s)
Contaminación Difusa , Contaminantes Químicos del Agua , Humanos , Calidad del Agua , Suelo , Contaminación Difusa/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Ríos , Fósforo/análisis , Nitrógeno/análisis , China
6.
Environ Sci Pollut Res Int ; 31(7): 11010-11025, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38217810

RESUMEN

As the main supply source of lakes, the water quality of the rivers entering the lakes directly determines the water safety and sustainable development of the lakes. Human activities are the direct cause of changes in the water quality of rivers entering lakes, and land use intensity is the direct manifestation of human activities on the land surface. Although significant progress has been made in studying the relationship between land use changes and water quality in lakes, there is still a lack of research on exploring the relationship between land use intensity and water quality at multiple scales, especially in comparative studies of different pollution source areas. To address this problem, this study used Pearson's correlation analysis and land use intensity index method to explore the response relationship between river water quality and land use intensity at different spatial and temporal scales and different pollution source areas using three lakes in central Yunnan as examples. The results showed that land use intensity was generally positively correlated with water quality, but the response relationship between land use intensity and different water quality indicators was significantly different at different scales and for different pollution source areas. Compared to non-urban areas, the impact of land use intensity on water quality is more significant in urban areas. Compared to the rainy season, the correlation between CODNa, TP, and NH3-N values and land use intensity is stronger during the dry season, while the correlation between COD, TN, and land use intensity is weaker during the dry season. When viewed at different scales, different water quality indicators have different scale effects, but overall, the larger the scale, the stronger the correlation. Therefore, in the work of lake water environmental governance, it is necessary to consider comprehensively from multiple scales and perspectives and adopt measures that are more suitable for regional water pollution prevention and control.


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Humanos , Lagos , Ríos , Monitoreo del Ambiente/métodos , Conservación de los Recursos Naturales , Contaminantes Químicos del Agua/análisis , Nitrógeno/análisis , Fósforo/análisis , China , Política Ambiental
7.
Sci Total Environ ; 916: 170288, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266736

RESUMEN

Pesticides use raises concerns regarding environmental sustainability, as pesticides are closely linked to the decline of biodiversity and adverse human health outcomes. This study proposed a holistic approach for assessing the potential risks posed by pesticides for human health and the environment in the eastern region of Michoacan, where extensive agricultural lands, especially corn and avocado fields, surround the Monarch Butterfly Biosphere Reserve. We used a combination of qualitative (semi-structured interviews) and quantitative (chemical analysis) data. Fifty-five interviews with smallholder farmers allowed us to identify pesticide types, quantities, frequencies, and application methods. A robust and precise analytical method based on solid-phase extraction and LC-MS/MS was developed and validated to quantify 21 different pesticides in 16 water samples (rivers, wells, runoff areas). We assessed environmental and human health risks based on the pesticides detected in the water samples and reported in the interviews. The interviews revealed the use of 28 active ingredients, including glyphosate (29 % of respondents), imidacloprid (27 %), and benomyl (24 %). The pesticide analysis showed the presence of 13 different pesticides and degradation products in the water samples. The highest concentrations were found for imidacloprid (1195 ngL-1) and carbendazim (a degradation product of benomyl; 932 ngL-1), along with the metabolite of pyrethroid insecticides, 3-PBA (494 ngL-1). The risk assessment indicates that among the most used pesticides, the fungicide benomyl and carbendazim pose the highest risk to human health and aquatic ecosystems, respectively. This study unveils novel insights on agricultural practices for the avocado, a globally consumed crop that is undergoing rapid production expansion. It calls for the harmonisation of crop protection with environmental responsibility, safeguarding the health of the people involved and the surrounding ecosystems.


Asunto(s)
Bencimidazoles , Carbamatos , Neonicotinoides , Nitrocompuestos , Persea , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Plaguicidas/análisis , Agua/análisis , Ecosistema , Benomilo/análisis , México , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ríos , Medición de Riesgo , Encuestas y Cuestionarios , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
8.
Sci Total Environ ; 914: 169882, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215842

RESUMEN

Aligning crop production with conservation initiatives has long been a topic of debate, with agricultural intensification threatening biodiversity across the globe. Shade-grown coffee allows farmers to preserve biodiversity by providing viable habitat, but its conservation value remains unclear. In this meta-analysis, we screened existing literature using the PRISMA protocol to compare the effect of three shade intensities on species diversity and individual abundance: sun, low shade (LS) and high shade (HS). Furthermore, we examine differences between taxa, within taxa and between regions to establish which species benefit most from shade and whether these benefits vary dependent on geographical location. Out of 1889 studies, we included 69 studies in the analysis, and performed random-effects meta-analyses and meta-regressions. Overall, we found that species diversity was significantly higher in HS when compared to sun and LS, and species diversity in LS tended to be higher than in sun. In each treatment, the species diversity of birds was higher in the higher shade treatment, i.e., HS and LS. In addition, mammal and epiphyte species diversity was higher in HS when compared to LS. Similarly, studies from Latin America showed significantly higher species diversity and abundance in shaded farms when compared to sun farms. Studies conducted in Africa detailed the opposite relationship, with abundance being significantly higher in less shaded systems, highlighting that land-use strategies must be region-specific. Moving forward, strategies to conserve biodiversity within coffee farms should: 1) account for region-specific variables; 2) end further encroachment; 3) maintain connectivity; and 4) optimise yield through prioritising faunal and floral diversity.


Asunto(s)
Café , Conservación de los Recursos Naturales , Animales , Granjas , Conservación de los Recursos Naturales/métodos , Biodiversidad , Ecosistema , Agricultura/métodos , Mamíferos
9.
Ambio ; 53(3): 452-469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37973703

RESUMEN

Eutrophication assessments in water management to quantify nutrient loads and identify mitigating measures seldom include the contribution from horse facilities. This may be due to lack of appropriate methods, limited resources, or the belief that the impact from horses is insignificant. However, the recreational horse sector is growing, predominantly in multi-functional peri-urban landscapes. We applied an ecosystem management approach to quantify nutrient loads from horse facilities in the Stockholm Region, Sweden. We found that horses increased the total loads with 30-40% P and 20-45% N, with average area-specific loads of 1.2 kg P and 7.6 kg N ha-1 year-1. Identified local risk factors included manure management practices, trampling severity, soil condition and closeness to water. Comparisons of assessment methods showed that literature standard values of area-specific loads and water runoff may be sufficient at the catchment level, but in small and more complex catchments, measurements and local knowledge are needed.


Asunto(s)
Ecosistema , Calidad del Agua , Caballos , Animales , Eutrofización , Suelo , Suecia , Fósforo/análisis , Monitoreo del Ambiente/métodos , Nitrógeno/análisis
10.
Chemosphere ; 349: 140934, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092164

RESUMEN

As non-point source pollution has emerged as a significant global and regional concern, climate change (CC), land use/cover transformation (LUCT), and management practices (MP) play vital roles in addressing nutrient pollution. However, current studies lack comprehensive quantification and consistent conclusions on the response to these factors, especially for management practices. To quantify and elucidate the impact of representative environmental factors on rapidly urbanizing regions, this study focused on the Shenzhen River, which serves as the most typical urbanizing watershed. Using a process-based distributed hydrological model with a factor-controlled simulation method, we identified significant differences in nutrient concentrations and the impacts of climate variability, land use/cover changes, and anthropogenic interventions from 2003 to 2020. Moreover, effective measures greatly improved water quality in the Shenzhen River during study period, as evident from trend and cluster analysis. However, ecological water supplements implemented since 2016 have led to a slight reduction in simulated runoff performance, and CC may amplify the synergistic effects of precipitation and temperature on the river system. While the implemented practices have been effective in reducing total nitrogen (TN) and total phosphorus (TP) loads, strong TN pollution control is still needed in rapidly urbanizing areas due to the results of land use/cover type changes. Our findings emphasize the intricate interplay among CC, LUCT, and MP in shaping water quality and hydrological processes in rapidly urbanizing watersheds, and clarify the independent effects of these factors on nutrients. This study contributes to a better understanding of the complex interactions between multiple factors in watersheds and provides guidance for sustainable watershed management.


Asunto(s)
Contaminación Difusa , Calidad del Agua , Simulación por Computador , Ríos , Contaminación Difusa/análisis , Nitrógeno/análisis , Fósforo/análisis , Monitoreo del Ambiente/métodos , China
11.
Sci Total Environ ; 912: 169253, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38101630

RESUMEN

Coastal harmful algal blooms (HABs) have become one of the challenging environmental problems in the world's thriving coastal cities due to the interference of multiple stressors from human activities and climate change. Past HAB predictions primarily relied on single-source data, overlooked upstream land use, and typically used a single prediction algorithm. To address these limitations, this study aims to develop predictive models to establish the relationship between the HAB indicator - chlorophyll-a (Chl-a) and various environmental stressors, under appropriate lagging predictive scenarios. To achieve this, we first applied the partial autocorrelation function (PACF) to Chl-a to precisely identify two prediction scenarios. We then combined multi-source data and several machine learning algorithms to predict harmful algae, using SHapley Additive exPlanations (SHAP) to extract key features influencing output from the prediction models. Our findings reveal an apparent 1-month autoregressive characteristic in Chl-a, leading us to create two scenarios: 1-month lead prediction and current-month prediction. The Extra Tree Regressor (ETR), with an R2 of 0.92, excelled in 1-month lead predictions, while the Random Forest Regressor (RFR) was most effective for current-month predictions with an R2 of 0.69. Additionally, we identified current month Chl-a, developed land use, total phosphorus, and nitrogen oxides (NOx) as critical features for accurate predictions. Our predictive framework, which can be applied to coastal regions worldwide, provides decision-makers with crucial tools for effectively predicting and mitigating HAB threats in major coastal cities.


Asunto(s)
Cambio Climático , Floraciones de Algas Nocivas , Humanos , Clorofila A , Ciudades , Fósforo
12.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-38037395

RESUMEN

Wild pollinators and their microbiota are sensitive to land use changes from anthropogenic activities that disrupt landscape and environmental features. As urbanization and agriculture affect bee habitats, human-led disturbances are driving changes in bee microbiomes, potentially leading to dysbiosis detrimental to bee fitness. This study examines the bacterial, fungal, and plant compositions of the small carpenter bee, Ceratina calcarata, and its pollen provisions across an urban-rural divide. We performed metabarcoding of C. calcarata and provisions in Toronto by targeting the 16S rRNA, ITS, and rbcL regions. Despite similar plant composition and diversity across bees and their provisions, there was a greater microbial diversity in pollen provisions than in bees. By characterizing the differences in land use, climate, and pesticide residues that differentiate urban and rural landscapes, we find that urban areas support elevated levels of microbial diversity and more complex networks between microbes and plants than rural areas. However, urban areas may lead to lower relative abundances of known beneficial symbionts and increased levels of pathogens, such as Ascosphaera and Alternaria fungi. Further, rural pollen provisions indicate elevated pesticide residues that may dysregulate symbiosis. As anthropogenic activities continue to alter land use, ever changing environments threaten microbiota crucial in maintaining bee health.


Asunto(s)
Microbiota , Residuos de Plaguicidas , Humanos , Abejas , Animales , ARN Ribosómico 16S/genética , Polen/microbiología , Plantas
13.
Environ Monit Assess ; 195(12): 1418, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930480

RESUMEN

The aim of this study was to quantify the effect of land use change (LUC) implemented to meet nutrient load targets for a freshwater lake in New Zealand. We used the Soil and Water Assessment Tool (SWAT) model in combination with a non-parametric statistical test to determine whether afforestation of 15% of a subcatchment area was adequate to meet assigned nutrient load targets. A regional management authority set nutrient load targets of reduction in total nitrogen (TN) by 0.9 t yr-1 and reduction in total phosphorus (TP) by 0.05 t yr-1 to avoid eutrophication in the receiving waters of a freshwater lake. The load reduction was designed to be achieved through 200 ha of LUC from pasture to trees. Analysis of nutrient loads before, during, and following LUC shows that a 15% increase in forest cover decreased the annual flow (7.2%), TP load (33.3%), and TN load (13.1%). As flow and water quality observations were discrete and at irregular intervals, we used a parametric test and the SWAT model as different lines of evidence to demonstrate the effect of afforestation on flow and water quality. Policymakers concerned with decisions about LUC to improve the quality of receiving waters can benefit from applying our findings and using a statistical and numerical modelling framework to evaluate the adequacy of land use change to support improvements in water quality.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Bosques , Lagos , Nitrógeno , Nutrientes , Fósforo , Suelo
14.
Water Res ; 245: 120658, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37776591

RESUMEN

A holistic understanding of the quality and quantity of stormwater in the context of catchment land use plays a crucial role in stormwater management. This study investigated the quality and quantity of stormwater from forested, residential, industrial, and mixed land use areas. Water samples were collected from seven sites over two years at different stages of the runoff hydrograph using fixed sampling stations. Analysis of physicochemical and hydrological variables showed different patterns across the four land use types at various flow conditions highlighting the complex nature of stormwater quality influenced by catchment and rainfall characteristics. Mean concentrations of dissolved organic and oxidised nitrogen (DON and NOx-N) and dissolved organic and filterable reactive phosphorus (DOP and FRP) in stormwater from industrial, mixed-use and residential catchment types were statistically different from stormwater originating from a forested catchment. On average, residential, mixed-use and industrial catchments transported over 50 times more NOx-N to the receiving waters compared to forested catchments. Under high flow conditions, total phosphorus, FRP and total suspended solids (TSS) were mobilised, indicating that phosphorous export is directly related to sediment export regardless of the land use. The study outcomes contribute to the formulation of more effective stormwater management strategies to deal with the drivers of nutrients and TSS inputs resulting from modified land use types to minimise the urbanisation impacts on aquatic biota. In particular, the elevated dissolved nitrogen fractions from all the catchment types other than the forested catchment is a concern for receiving waters, as these can potentially impair water quality and impact the ecosystem health of downstream water bodies such as Intermittently Closed and Open Lakes or Lagoons (ICOLL). The stochastic nature of hydrology and corresponding nutrient loads should be prioritised in stormwater management action plans. However, as space limitations hinder the expansion of vegetation cover and retrofitting stormwater management devices, a paradigm shift in stormwater management is required to achieve the desired outcomes. The study outcomes further indicate that a one-size-fits-all approach to stormwater management may not deliver the desired outcomes, and a suite of tailor-made approaches targeting various flow conditions and catchment surface types is needed.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Ecosistema , Contaminantes Químicos del Agua/análisis , Movimientos del Agua , Fósforo/análisis , Materia Orgánica Disuelta , Nitrógeno/análisis , Lluvia
15.
Environ Monit Assess ; 195(9): 1091, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37620581

RESUMEN

Soil characterization is crucial in creating sustainable platforms for land users to identify areas vulnerable to anthropogenic activities. This study was conducted to investigate the impacts of lithology, slope, and land use on soil properties of a semi-arid highland in northern Ethiopia. Disturbed and undisturbed soil samples collected from 0 to 30 cm depth were analyzed. Most of the assessed physical and biochemical soil properties varied significantly (p < 0.05) with lithology, slope class, and land use type. Shale-originated soils were richer in nutrients than soils of other lithologies. A decrease in slope gradient accounted for an increase in most soil properties, while a reverse trend was observed for sand content, bulk density (BD), water stable aggregates (WSA), mean weight diameter (MWD), structural stability index (SSI), soil organic carbon (SOC), total nitrogen (TN), and available phosphorus (AP). Silt and clay fractions, total porosity, moisture content at field capacity and wilting point, visual evaluation of soil structure, pH, electrical conductivity, calcium carbonate, exchangeable bases, cation exchange capacity, and percent base saturation were found to be higher for cultivated land soils compared to grass land and shrub land soils. Shrub land soils, in contrast, had higher WSA, MWD, SSI, SOC, TN, and AP relative to grass land and cultivated land soils. In summary, slope class and land use type stood out as the major drivers influencing the dynamics and distribution of soil properties other than lithology and their interactions in semi-arid highlands of northern Ethiopia. Thus, from sustainability point of view and in the light of their nutrient retention capability and limitation, more attention should be paid toward ensuring periodic assessment and sustainable management of soils in steep cultivated lands.


Asunto(s)
Carbono , Suelo , Etiopía , Monitoreo del Ambiente , Arcilla , Nitrógeno , Fósforo
16.
Sci Total Environ ; 896: 166323, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37595919

RESUMEN

Land use and cover change (LUCC) in Brazil encompass a complex interplay of diverse factors across different biomes. Understanding these dynamics is crucial for informed decision-making and sustainable land management. In this study, we comprehensively analyzed LUCC patterns and drivers using 30 m resolution MapBiomas Collection 6.0 data (1985-2020). By mapping deforestation of primary and secondary natural vegetation, natural vegetation regeneration, and transitions between pasture, soybean, agriculture, and irrigation, we shed light on the intricate nature of LUCC in Brazil. Our findings highlight significant and increasing trends of deforestation in primary vegetation in the country. Simultaneously, the Atlantic Forest, Caatinga, Pampa, and other regions of the Cerrado have experienced intensification processes. Notably, the pasture area in Brazil reached its peak in 2006 and has since witnessed a gradual replacement by soybean and other crops. While pasture-driven deforestation persists in most biomes, the net pasture area has only increased in the Amazon and Pantanal, decreasing in other biomes due to the conversion of pasturelands to intensive cropping in other regions. Our analysis further reveals that primary and secondary vegetation deforestation accounts for a substantial portion of overall forest loss, with 72 % and 17 %, respectively. Of the cleared areas, 48 % were in pasture, 9 % in soybean cultivation, and 16 % in other agricultural uses in 2020. Additionally, we observed a lower rate of deforestation in the Atlantic Forest, a biome that has been significantly influenced by anthropogenic activities since 1986. This holistic quantification of LUCC dynamics provides a solid foundation for understanding the impacts of these changes on local to continental-scale land-atmosphere interactions. By unraveling the complex nature of LUCC in Brazil, this study aims to contribute to the development of effective strategies for sustainable land management and decision-making processes.


Asunto(s)
Ecosistema , Bosques , Brasil , Agricultura , Efectos Antropogénicos , Glycine max
17.
Environ Sci Pollut Res Int ; 30(37): 87925-87937, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37432572

RESUMEN

Nowadays, the contemporary ecological environment has a significant impact on human survival and development. Consequently, an in-depth examination of the link between humans and nature has significant practical significance and aspirational appeal. This research analyzes provincial panel data from 2011 to 2019 using an empirical model to determine the relationship between urban land use, the ecological environment, and national physical health inputs in China. The results indicate that (1) urbanization and air pollution do not have an "inverted U-shaped" traditional environmental Kuznets curve relationship, but rather a significant "positive U" relationship; (2) urbanization and environmental management do have an inverted U-shaped classical environmental Kuznets curve relationship; (3) GDP per capita and infrastructure have a negative impact on air quality and environmental quality, and strict environmental rules can improve air quality and green amenities; (4) national physical health investment has a substantial moderating effect on the relationship between urban land use and the ecological environment.


Asunto(s)
Contaminación del Aire , Humanos , Contaminación del Aire/análisis , Ambiente , China , Urbanización , Desarrollo Económico , Dióxido de Carbono/análisis
18.
Environ Sci Technol ; 57(33): 12442-12452, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37506289

RESUMEN

Soil stores a large amount of mercury (Hg) that has adverse effects on human health and ecosystem safety. Significant uncertainties still exist in revealing environmental drivers of soil Hg accumulation and predicting global Hg distribution owing to the lack of field data from global standardized analyses. Here, we conducted a global standardized field survey and explored a holistic understanding of the multidimensional environmental drivers of Hg accumulation in global surface soils. Hg content in surface soils from our survey ranges from 3.8 to 618.2 µg kg-1 with an average of 74.0 µg kg-1 across the globe. Atmospheric Hg deposition, particularly vegetation-induced elemental Hg0 deposition, is the major source of surface soil Hg. Soil organic carbon serves as the major substrate for sequestering Hg in surface soils and is significantly influenced by agricultural management, litterfall, and elevation. For human activities, changing land-use could be a more important contributor than direct anthropogenic emissions. Our prediction of a new global Hg distribution highlights the hot spots (high Hg content) in East Asia, the Northern Hemispheric temperate/boreal regions, and tropical areas, while the cold spots (low Hg content) are in arid regions. The holistic understanding of multidimensional environmental drivers helps to predict the Hg distribution in global surface soils under a changing global environment.


Asunto(s)
Mercurio , Contaminantes del Suelo , Humanos , Mercurio/análisis , Suelo/química , Ecosistema , Carbono , Monitoreo del Ambiente
19.
Environ Geochem Health ; 45(7): 5323-5341, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37131113

RESUMEN

Dashan Village area is one of the representative areas in China with high selenium concentration in the natural environment. A total of 133 topsoil samples have been collected in the Dashan Village area to explore the potential toxic elements (PTEs) background concentrations in soils under different land-use types for a comprehensive PTEs risk assessment (arsenic, cadmium, chromium, copper, mercury, nickel, lead, selenium and zinc). The results show that the geometric mean concentrations of As, Cr, Cu, Hg, Ni, Pb, Se and Zn found in the soil of the Dashan Village area were lower than the control standard for soil contamination risk in agricultural land. However, the geometric mean concentrations of Cd exceeded their corresponding standard values. For different land-use types, geometric mean concentrations of As, Cd, Cu, Hg, Ni and Pb in the arable soils were higher than in woodland soils and tea garden soils. Based on the potential ecological risk assessment, the woodland, arable and tea garden were at low-risk levels. Cadmium posed the highest ecological risk, while the other PTEs were of low risk in soils. Multiple statistical analyses and geostatistical analysis indicated that the concentrations of Cr, Ni, Pb, Cu, Zn and Se originated mainly from natural sources, while the concentrations of Cd, As and Hg could be influenced by anthropogenic activities. These results provide scientific support for the safe utilization and ecological sustainability of selenium-rich land resources.


Asunto(s)
Mercurio , Metales Pesados , Selenio , Contaminantes del Suelo , Suelo , Metales Pesados/toxicidad , Metales Pesados/análisis , Cadmio/análisis , Selenio/análisis , Cobre/análisis , Plomo/análisis , Mercurio/análisis , Medición de Riesgo , China , , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos
20.
J Environ Manage ; 342: 118152, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201393

RESUMEN

Eutrophication of lacustrine environments with frequent cyanobacterial blooms has become a serious problem. Overpopulation and runoff into groundwater and lakes from fertilizers with too much nitrogen and phosphorous have caused most of the problems. Here, we first devised a land use and cover classification system based on the local characteristics of the first-level protected area of Lake Chaohu (FPALC). Lake Chaohu is the fifth largest freshwater lake in China. The land use and cover change (LUCC) products were produced using sub-meter resolution satellite data from 2019 to 2021 in the FPALC. This study presents an evaluation of the effectiveness of the established protected areas. The results show the most impactful type was the reduction in cropland with an area that declined from 7446.4 hm2 to 6433.3 hm2 from 2019 to 2021. Most of the reduced cropland was converted into wetlands, with 460.2 hm2 and 152.0 hm2 of cropland restored to wetlands from 2019 to 2020 and 2020-2021, respectively. The area of cyanobacterial blooms in Lake Chaohu showed a downward trend, and the lacustrine environment was greatly improved after the establishment of the FPALC. These quantified data can inform decision-making related to Lake Chaohu conservation and provide a reference for managing the aquatic environment in other watersheds.


Asunto(s)
Cianobacterias , Lagos , Eutrofización , Humedales , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA