Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Zhen Ci Yan Jiu ; 49(4): 391-397, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649207

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Baihui" (GV20) and "Shenting" (GV24) on the rats' behavior and the transforming precursor of brain-derived neurotrophic factor (proBDNF) into mature brain-derived neurotrophic factor (mBDNF) in the hippocampus of rats with learning and memory impairment induced by cerebral ischemia-reperfusion (IR), so as to explore its mechanisms underlying improvement of learning and memory ability. METHODS: SD rats were randomly divided into blank, sham operation, model, and EA groups, with 6 rats in each group. The model of IR was established by occlusion of the middle cerebral artery. EA (1 Hz/20 Hz) was applied to GV24 and GV20 for 30 min, once daily for 14 days. The neurological function was evaluated according to the Zea Longa's score criteria 24 h after modeling and after intervention. Morris water maze test was used to detect the learning and memory function of the rats. TTC staining was used to evaluate the cerebral infarction volume on the affected side. The protein expression levels of proBDNF, mBDNF, tissue plasminogen activator (tPA), tyrosine kinase receptor B (TrkB) and p75 neurotrophin receptor (p75NTR) in hippocampal tissue were detected by Western blot. RESULTS: Compared with the sham operation group, the neurological function score, the percentage of cerebral infarction volume and the expression levels of proBDNF and p75NTR protein in hippocampus were increased (P<0.01), while the times of crossing the original platform and the total distance in the target quadrant, the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were decreased (P<0.01, P<0.05) in the model group. Compared with the model group, the neurological function score, the percentage of cerebral infarction volume, and the expression levels of proBDNF and p75NTR protein in hippocampus were decreased (P<0.01, P<0.05), while the times of crossing the original platform, the total distance in the target quadrant, and the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were increased (P<0.05, P<0.01) in the EA group. CONCLUSIONS: EA can alleviate learning and memory impairment in IR rats, which may be related to its function in up-regulating the expression of tPA protein and promoting the transformation of proBDNF to mBDNF, thus improving the synaptic plasticity.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Electroacupuntura , Trastornos de la Memoria , Plasticidad Neuronal , Precursores de Proteínas , Daño por Reperfusión , Animales , Humanos , Masculino , Ratas , Puntos de Acupuntura , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Hipocampo/metabolismo , Aprendizaje , Memoria , Trastornos de la Memoria/terapia , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/etiología , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Receptor trkB/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/terapia , Daño por Reperfusión/genética
2.
Heliyon ; 10(7): e28581, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38586351

RESUMEN

Learning and memory disorder is a cluster of symptoms caused by neuronal aging and other diseases of the central nervous system (CNS). Panax notoginseng saponins (PNS) are a series of saponins derived from the natural active ingredients of traditional Chinese medicine (TCM) that have neuroprotective effects on the central nervous system. In this paper, we review the ameliorative effects and mechanisms of Panax notoginseng saponin-like components on learning and memory disorders to provide valuable references and insights for the development of new drugs for the treatment of learning and memory disorders. Our summary results suggest that Panax ginseng saponins have significant effects on improving learning and memory disorders, and these effects and potential mechanisms are mediated by their anti-inflammatory, anti-apoptotic, antioxidant, ß-amyloid lowering, mitochondrial homeostasis in vivo, neuronal structure and function improving, neurogenesis promoting, neurotransmitter release regulating, and probiotic homeostasis in vivo activities. These findings suggest the potential of Panax notoginseng saponin-like constituents as drug candidates for improving learning and memory disorders.

3.
Mol Neurobiol ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578356

RESUMEN

Maternal nutrition was recognized as a significant part of brain growth and maturation in most mammalian species. Timely intervention with suitable nutraceuticals would provide long-term health benefits. We aim to unravel the molecular mechanisms of perinatal undernutrition-induced impairments in cognition and synaptic plasticity, employing animal model based on dietary nutraceutical supplementation. We treated undernourished dams at their gestational, lactational, and at both the time point with Astaxanthin (AsX) and Docosahexaenoic acid (DHA), and their pups were used as experimental animals. We evaluated the cognitive function by subjecting the pups to behavioral tests in their adult life. In addition, we assessed the expression of genes in the hippocampus related to cognitive function and synaptic plasticity. Our results showed downregulation of Brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT-3), cAMP response-element-binding protein (CREB), and uncoupling protein-2 (UCP2) gene expression in pups born to undernourished dams in their adult life, which AsX and DHA modulated. Maternal AsX and DHA supplementation ameliorated the undernutrition-induced learning impairment in novel object recognition (NOR) tests and partially baited radial arm maze (RAM) tasks in offspring's. The expressions of Synapsin-1 and PSD-95 decreased in perinatally undernourished groups compared to control and AsX-DHA treated groups at CA1, CA2, CA3, and DG. AsX and DHA supplementation upregulated BDNF, NT-3, CREB, and UCP2 gene expressions in perinatally undernourished rats, which are involved in intracellular signaling cascades like Ras, PI3K, and PLC. The results of our study give new insights into neuronal differentiation, survival, and plasticity, indicating that the perinatal period is the critical time for reversing maternal undernutrition-induced cognitive impairment in offspring's.

4.
Prog Neurobiol ; 236: 102601, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570083

RESUMEN

Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Neurogénesis , Neurogénesis/fisiología , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/patología , Animales , Demencia/fisiopatología , Memoria/fisiología
5.
Behav Brain Res ; 466: 114974, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38554850

RESUMEN

Polygala tenuifolia Wild is an ancient traditional Chinese medicine. Its main component, tenuifolin (TEN), has been proven to improve cognitive impairment caused by neurodegenerative diseases and ovariectomy. However, there was hardly any pharmacological research about TEN and its potential gender differences. Considering the reduction of TEN on learning and memory dysfunction in ovariectomized animals, therefore, we focused on the impact of TEN in different mice genders in the current study. Spontaneous alternation behavior (SAB), light-dark discrimination, and Morris water maze (MWM) tests were used to evaluate the mice's learning and memory abilities. The field excitatory postsynaptic potential (fEPSP) of the hippocampal CA1 region was recorded using an electrophysiological method, and the morphology of the dendritic structure was examined using Golgi staining. In the behavioral experiments, TEN improved the correct rate in female mice in the SAB test, the correct rate in the light-dark discrimination test, and the number of crossing platforms in the MWM test. Additionally, TEN reduced the latency of female mice rather than male mice in light-dark discrimination and MWM tests. Moreover, TEN could significantly increase the slope of fEPSP in hippocampal Schaffer-CA1 and enhance the total length and the number of intersections of dendrites in the hippocampal CA1 area in female mice but not in male mice. Collectively, the results of the current study showed that TEN improved learning and memory by regulating long-term potentiation (LTP) and dendritic structure of hippocampal CA1 area in female mice but not in males. These findings would help to explore the improvement mechanism of TEN on cognition and expand the knowledge of the potential therapeutic value of TEN in the treatment of cognitive impairment.


Asunto(s)
Región CA1 Hipocampal , Dendritas , Diterpenos de Tipo Kaurano , Potenciación a Largo Plazo , Animales , Femenino , Masculino , Región CA1 Hipocampal/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Ratones , Dendritas/efectos de los fármacos , Memoria/efectos de los fármacos , Factores Sexuales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología
6.
Int J Dev Neurosci ; 84(2): 109-121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311365

RESUMEN

The mother's thyroid hormone status during gestation and the first few months after delivery can play a crucial role in maturation during the brain development of the child. Transient abnormalities in thyroid function at birth indicate developmental and cognitive disorders in adulthood. Choline supplementation during gestation and the perinatal period in rats causes long-lasting memory improvement in the offspring. However, it remains unclear whether choline is able to restore the deficits in rats with maternal hypothyroidism. The aim of this study was to evaluate the effects of choline supplementation on the alteration of cognitive-behavioral function, long-term potentiation (LTP), and morphological changes as well as apoptosis in pre-pubertal offspring rats. To induce hypothyroidism, 6-propyl-2-thiouracil was added to the drinking water from the 6th day of gestation to the 21st postnatal day (PND). Choline treatment was started twice a day on the first day of the gestation until PND 21 via gavage. LTP recording and Morris water maze (MWM) test were conducted at PND 28. Then, the rats were sacrificed to assess their brains. The results revealed that developmental thyroid hormone deficiency impaired spatial learning and memory and reduced LTP (both: P < 0.001). Choline treatment alleviated LTP (P < 0.001), as well as learning and memory deficits (P < 0.01) in both male and female hypothyroid rats. However, no significant changes were observed in the number of caspase-3 stained cells in choline-receiving hypothyroid groups. The results revealed that developmental thyroid hormone deficiency impaired spatial learning and memory and reduced LTP. Choline treatment alleviated LTP, as well as learning and memory deficits in both male and female hypothyroid rats.


Asunto(s)
Hipotiroidismo , Potenciación a Largo Plazo , Humanos , Embarazo , Niño , Ratas , Animales , Masculino , Femenino , Madres , Hipotiroidismo/complicaciones , Hipotiroidismo/tratamiento farmacológico , Hormonas Tiroideas/farmacología , Hipocampo , Trastornos de la Memoria/etiología , Cognición , Apoptosis , Colina/uso terapéutico , Colina/farmacología , Suplementos Dietéticos , Aprendizaje por Laberinto
7.
Sleep Med Rev ; 74: 101907, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422648

RESUMEN

Paradoxical or Rapid eye movement (REM) sleep (PS) is a state characterized by REMs, EEG activation and muscle atonia. In this review, we discuss the contribution of brainstem, hypothalamic, amygdalar and cortical structures in PS genesis. We propose that muscle atonia during PS is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus (SLD) projecting to glycinergic/GABAergic pre-motoneurons localized in the ventro-medial medulla (vmM). The SLD PS-on neurons are inactivated during wakefulness and slow-wave sleep by PS-off GABAergic neurons localized in the ventrolateral periaqueductal gray (vPAG) and the adjacent deep mesencephalic reticular nucleus. Melanin concentrating hormone (MCH) and GABAergic PS-on neurons localized in the posterior hypothalamus would inhibit these PS-off neurons to initiate the state. Finally, the activation of a few limbic cortical structures during PS by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would also contribute to PS expression. Accumulating evidence indicates that the activation of these limbic structures plays a role in memory consolidation and would communicate to the PS-generating structures the need for PS to process memory. In summary, PS generation is controlled by structures distributed from the cortex to the medullary level of the brain.


Asunto(s)
Tronco Encefálico , Sueño REM , Humanos , Sueño REM/fisiología , Tronco Encefálico/fisiología , Hipotálamo , Neuronas GABAérgicas/fisiología , Amígdala del Cerebelo
8.
Exp Ther Med ; 27(3): 123, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38410190

RESUMEN

As the proportion of the elderly population grows rapidly, the senescence-delaying effects of Traditional Chinese Medicine is being investigated. The aim of the present study was to investigate the senescence-delaying effects of saffron in naturally aging mice. The active ingredients in an aqueous saffron extract were determined using high-performance liquid chromatography (HPLC). Mice were divided into saffron (8- and 16-months-old) and control groups (3-, 8-, and 16-months-old), and saffron extract was administered to the former groups for 8 weeks. The open field test and Barnes maze test were used to evaluate the locomotor activity, learning and memory function of the mice. The levels of inflammatory factors in the brain were determined by ELISA. In addition, the activities of acetylcholinesterase (AChE) and superoxide dismutase, and the contents of malondialdehyde and nicotinamide adenine dinucleotide (NAD+) were detected by enzyme immunoassay, and the content of NAMPT was detected by ELISA, western blotting and reverse transcription-quantitative PCR. The cellular distribution of NAMPT and synaptic density were evaluated by immunofluorescence, and the pathological morphologies of the liver, skin, kidneys were observed by hematoxylin and eosin staining. HPLC revealed that the crocin and picrocrocin contents of the saffron extract were 19.56±0.14 and 12.00±0.13%, respectively. Saffron exhibited the potential to improve the learning and memory function in aging mice as it increased synaptic density and decreased AChE activity. Also, saffron ameliorated the pathological changes associated with organ aging, manifested by increasing the number of hepatocytes and the thickness of the skin, and preventing the aging-induced ballooning and bleeding in the kidneys. Furthermore, saffron increased the contents of NAMPT and NAD+ in the brain and decreased the content of NAMPT in the serum. In addition, it changed the cellular distribution of NAMPT in aging mice, manifested as reduced NAMPT expression in microglia and astrocytes, and increased NAMPT expression in neurons. Saffron also decreased the contents of proinflammatory cytokines and oxidative stress factors in aging mice. Altogether, these findings indicate that saffron exerts senescence-delaying effects in naturally aging mice, which may be associated with the NAMPT-NAD+ pathway.

9.
J Ethnopharmacol ; 326: 117972, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38403005

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Guhan Yangsheng Jing (GHYSJ) is a traditional Chinese patent medicine, that has the function of nourishing the kidney and replenishing the essence, invigorating the brain and calming the mind. It is often used to treat dizziness, memory loss, sleep disorders, fatigue, and weakness, etc. However, its mechanism for improving sleep has not yet been determined. AIM OF THE STUDY: This study aims to explore the effects of GHYSJ on Sleep Deprivation (SD)-induced hippocampal neuronal pyroptotic injury, learning and cognitive abilities, and sleep quality in mice. METHODS: In this study, a PCPA-induced SD mouse model was established. We assessed the influence of GHYSJ on sleep quality and mood by using the pentobarbital-induced sleep test (PIST) and sucrose preference test (SPT). The pharmacological effects of GHYSJ on learning and memory impairment were evaluated by the Morris Water Maze (MWM) and Open Field Test (OFT). Pathological changes in the hippocampal tissue of the SD rats were observed via HE staining and Nissl staining. The severity of neuronal damage was evaluated by detecting the expression of the neuronal marker Microtubule-associated protein 2 (MAP2), via immunohistochemistry and immunofluorescence. Furthermore, the levels of neurotransmitter 5-hydroxytryptophan (5-HTP), 5-hydroxy tryptamine (5-HT), γ-aminobutyric acid (GABA), and Glutamic acid (Glu) in hippocampal tissues, as well as the expression of inflammatory factors Interleukin-1ß (IL-1ß) and Interleukin-18 (IL-18) in serum, were determined by ELISA. The expressions of mRNA and protein NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Gasdermin D (GSDMD), Cysteinyl aspartate specific proteinase1 (Caspase1), High mobility group box-1 protein (HMGB1) and Apoptosis-associated speck-like protein containing CARD (ASC) related to the cellular ferroptosis pathway were tested and analyzed by RT-PCR and WB respectively. RESULTS: PCPA significantly diminishes the sleep span of experimental animals by expediting the expenditure of 5-HT, consequently establishing an essentially direct SD model. The intervention of GHYSJ displays remarkable efficacy in mitigating insomnia symptoms, encompassing difficulties in initiating sleep and insufficient sleep duration. Likewise, it ameliorates memory function impairments induced by sleep deprivation, along with symptoms such as fatigue and depletion of vitality. GHYSJ exerts a protective influence on hippocampal neurons facilitated by inhibiting the down regulation of MAP2 and maintaining the equilibrium of neurotransmitters (5-HTP, 5-HT, GABA, and Glu). It diminishes the expression of intracellular pyroptosis-associated inflammatory factors (IL-1ß and IL-18) and curbs the activation of the NLRP3/Caspase1/GSDMD pyroptosis-related signaling pathways, thereby alleviating the damage caused by hippocampal neuronal pyroptosis.


Asunto(s)
Ácido Aspártico , Interleucina-18 , Ratones , Animales , Ratas , Privación de Sueño , Proteína con Dominio Pirina 3 de la Familia NLR , 5-Hidroxitriptófano , Serotonina , Sueño , Transducción de Señal , Neuronas , Trastornos de la Memoria/tratamiento farmacológico , Ácido gamma-Aminobutírico , Caspasa 1
10.
J Ethnopharmacol ; 324: 117416, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37981114

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium nobile Lindl (DNL), a valued time-honored herb, possesses immune-boosting and age-delaying properties, has been widely used to treat hyperglycemia and neurological diseases, and is probably a potential drug for improving learning and memory. Scopolamine (Scop), an antagonist for muscarinic receptors, potentially impairing intelligence and memory. AIM OF THE STUDY: This investigation aimed to assess the efficacy of DNL in alleviating scopolamine-induced cognitive deficits in mice and its mechanisms. MATERIALS AND METHODS: We utilized the open-field test, novel object recognition test (NOR), and Morris water maze test (MWM) to assess the potential of DNL in ameliorating learning and memory dysfunction caused by scopolamine in mice. Enzyme-linked immunosorbent assay (ELISA) was employed to measure Choline acetyltransferase (ChAT) content and Acetylcholinesterase (AChE) activities in the brain, and oxidative stress-related factors in the serum, including Malondialdehyde (MDA), Superoxide dismutase (SOD), and glutathione (GSH) content. RESULTS: Scopolamine injection significantly reduced the discrimination index of mice in the NOR test and impaired their performance in the MWM test, as demonstrated by longer escape latency, fewer target crossings, and less time spent in the target quadrant in the MWM. After 25 days of administration, DNL increased the discrimination index of the scopolamine-treated mice in the NOR test. DNL reduced the escape latency in the MWM test in the model mice. DNL increased the target crossing number and the percentage of time spent in the target quadrant in the MWM test. ELISA experiments indicated that DNL decreased the AChE activities, increased the ChAT activities, and modulated oxidative stress makers (GSH, SOD, and MDA) in scopolamine-induced mice. CONCLUSIONS: DNL may improve the learning and memory in mice treated with scopolamine, possibly by modulating oxidative stress and impaired cholinergic function.


Asunto(s)
Dendrobium , Escopolamina , Ratones , Animales , Acetilcolinesterasa/metabolismo , Aprendizaje por Laberinto , Hipocampo/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Estrés Oxidativo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo
11.
Zhen Ci Yan Jiu ; 48(11): 1069-1078, 2023 Nov 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37984903

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) on microglia (MG), Janus kinase-2 (JAK2) and signal transducer and activator of transcription-3 (STAT3) in hippocampal CA1 region of Alzheimer's di-sease (AD) rats, so as to explore its mechanisms in the treatment of AD. METHODS: Thirty-six male SD rats were randomly divided into sham operation, model and EA groups, with 12 rats in each group. The AD rat model was established by intraperitoneal injection of D-galactose combined with intrahippocampal injection of aggregated Aß25-35. The rats in the EA group were given EA (2 Hz/20 Hz, 2 mA) at "Baihui"(GV20) and"Shenting"(GV24) for 30 min, once daily, 6 days a week for 4 weeks. Morris water maze test was used to detect the learning and memory ability and spatial exploration ability of rats. HE staining was used to observe the pathological changes of hippocampus. The ultrastructure of hippocampal neurons was observed by transmission electron microscopy. The positive expression of MG marker io-nized calcium adaptor protein (Iba-1) in hippocampus was observed by immunofluorescence staining. The expression levels of serum inflammatory factor interferon-γ (IFN-γ) and transforming growth factor beta 1 (TGF-ß1) were detected by ELISA. The mRNA expression levels of JAK2, STAT3, inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1) in hippocampal CA1 region were detected by real-time quantitative PCR. The protein and phosphorylation levels of JAK2 and STAT3 in hippocampal CA1 region were detected by Western blot. RESULTS: Compared with the sham operation group, the escape latency of the model group was significantly prolonged (P<0.01), and the number of crossing the original platform was significantly reduced (P<0.01), the positive expression of Iba-1 in CA1 region, the content of serum IFN-γ, the relative mRNA expressions of JAK2, STAT3 and iNOS, and the protein and phosphorylation levels of JAK2 and STAT3 were significantly increased (P<0.01), while the content of serum TGF-ß1 and the relative expression of Arg-1 mRNA were significantly decreased (P<0.01). Compared with the model group, the escape latency of rats in the EA group was significantly shortened (P<0.01), the number of crossing the original platform was significantly increased (P<0.01), the positive expression of Iba1, the content of serum IFN-γ, the mRNA expressions of JAK2, STAT3 and iNOS, and the protein and phosphorylation levels of JAK2 and STAT3 were significantly decreased (P<0.05, P<0.01), while the content of serum TGF-ß1 and the expression of Arg-1 mRNA were significantly increased (P<0.01). Moreover, pathological and ultrastructural observation showed a reduction in the number of hippocampal neurons, changement of nuclear morphology, dilation of intercellular space, and decreased number of mitochondria in the model group;these situations were relatively milder in the EA group. CONCLUSIONS: EA can improve the learning and memory function of AD rats, which may be associated with its functions in decreasing MG activities, and inhibiting the JAK2 / STAT3 signaling pathway in the hippocampus.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Electroacupuntura , Ratas , Masculino , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Microglía , Factor de Crecimiento Transformador beta1/genética , Ratas Sprague-Dawley , Hipocampo , Disfunción Cognitiva/genética , Disfunción Cognitiva/terapia , ARN Mensajero
12.
J Stroke Cerebrovasc Dis ; 32(12): 107395, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839303

RESUMEN

BACKGROUND: Our previous study found that hyperbaric oxygen (HBO) attenuated cognitive impairment in mice induced by cerebral ischemia-reperfusion injury (CIRI). However, its mechanism of action is not fully understood. In this study, we aimed to establish a rat model of cerebral ischemia-reperfusion, explore the possible role of ferroptosis in the pathogenesis of CIRI, and observe the effect of HBO on ferroptosis-mediated CIRI. METHODS: Sprague Dawley (SD) rats were randomly divided into control, model, Ferrostatin-1 (Fer-1), HBO and Fer-1+ HBO groups. Morris water maze, myelin basic protein (MBP) and ß-tubulin immunoreactivity were assessed to evaluate the neuroprotective effects of HBO on cerebral ischemia reperfusion injury. Ferroptosis were examined to investigate the mechanism underlying the effects of HBO. RESULTS: Our result showed that Fer-1 and HBO improved learning and memory ability in the navigation trail and probe trail of the Morris water maze and increased MBP and ß-tubulin immunoreactivity of the cortex in the model rats. The levels of ferritin, malondialdehyde (MDA) and glutathione (GSH) in the serum were also reversed by Fer-1 and HBO treatment. Mitochondrial cristae dissolution and vacuolization were observed in the model group by transmission electron microscopy and these conditions were improved in the Fer-1 and HBO groups. Furthermore, Fer-1 and HBO treatment reversed Prostaglandin-Endoperoxide Synthase 2 (PTGS2), Iron Responsive Element Binding Protein 2 (IREB2), acyl-CoA synthetase long chain family member 4 (ACSL4) and Solute Carrier Family 7 Member 11 (SLC7A11) mRNA levels and Transferrin Receptor 1 (TFR1), ferritin light chain (FTL), ferritin heavy chain 1 (FTH1), glutathione peroxidase 4 (GPX4), Nuclear factor E2-related factor 2 (Nrf2), lysophosphatidylcholine acyltransferase 3 (LPCAT3), c-Jun N-terminal kinase (JNK), phosphorylated c-Jun N-terminal kinase (P-JNK) phosphorylated Extracellular signal-regulated protein kinase (P-ERK) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) protein levels. The above changes were more pronounced in Fer-1+ HBOGroup. DISCUSSION: The results of the present study indicated that HBO improves cerebral ischemia-reperfusion injury in rats, which may be related to inhibition of ferroptosis. This also means that ferroptosis may become a new target of HBO against CIRI.


Asunto(s)
Isquemia Encefálica , Ferroptosis , Oxigenoterapia Hiperbárica , Daño por Reperfusión , Ratas , Ratones , Animales , Ratas Sprague-Dawley , Oxigenoterapia Hiperbárica/métodos , Tubulina (Proteína) , Oxígeno , Isquemia Encefálica/terapia , Quinasas MAP Reguladas por Señal Extracelular , Proteínas Quinasas JNK Activadas por Mitógenos , Daño por Reperfusión/patología , 1-Acilglicerofosfocolina O-Aciltransferasa
13.
Neurosci Lett ; 815: 137489, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37741611

RESUMEN

BACKGROUND: The present study aimed to assess whether folic acid (FA) have potential to prevent memory impairment caused by nicotine (Nico) withdrawal in adolescent male rats. METHODS AND MATERIALS: The experiments were divided into 7 groups: 1) vehicle, 2) Nico (Nico 2 mg/kg injection from 21 to 42 days of ages), 3-5) Nico FA5/10/15 mg/kg (received Nico from 21 to 42 days of ages and received FA at three doses 5, 10 and 15 mg/kg 43-63 days of ages), and 6) received normal saline from 21 to 42 days of age after that received FA 15 mg/kg by oral gavage from 43 to 63 days of age. At 64-69 days of ages, behavioral tests related to memory including Morris Water Maze (MWM) and Object Recognition Test (ORT) were performed and related biochemical analysis including the hippocampal levels of oxidative stress markers, inflammatory indices, brain-derived neurotrophic factor (BDNF), nitrite, amyloid-B and acetylcholinesterase [1] were measured. RESULTS: Results showed that nicotine exposure in adolescence followed by withdrawal dramatically impaired learning and memory performance along with affecting a variety of biochemical markers in the hippocampal tissues. In addition, it was observed that administration of FA significantly ameliorated Nico withdrawal-induced adverse effects through restoration of the mentioned biochemical disturbances. CONCLUSION: The present study and other relevant researches demonstrated that FA as a well-known, inexpensive, and safe supplement has strong potential to either prevent or ameliorate the detrimental effect of Nico withdrawal. However, further investigation is required to be more elucidated the precise mechanisms underlying memory impairment-induced by Nico withdrawal.

14.
Zhen Ci Yan Jiu ; 48(9): 843-51, 2023 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-37730254

RESUMEN

OBJECTIVE: To observe the effect of electroacupuncture on brain-derived neurotrophin factor (BDNF) / tyrosine kinase receptor B (TRKB) / cyclic adenosine monophosphate response element binding protein (CREB) pathway, synaptic plasticity marker protein and synaptic ultrastructure in the hippocampus of rats with learning and memory impairment induced by cerebral ischemia reperfusion (IR), so as to explore its mechanisms underlying improvement of cognitive impairment after stroke. METHODS: SD rats were randomly divided into blank, sham operation, model, and EA groups, with 12 rats in each group. The model of IR was established by occlusion of the middle cerebral artery. EA (2 Hz/10 Hz, 1-3 mA) was applied to "Shenting" (GV24) and "Baihui" (GV20) for 30 min, once daily for 14 days. The neurological function was evaluated according to the Zea Longa's score criteria. Morris water maze test was used to detect the learning and memory function of the rats. Nissl staining was used to observe the pathological morphology of the hippocampus. Transmission electron microscopy was used to observe the ultrastructure of the syna-pse in the hippocampus, the synaptic gap width and postsynaptic dense substance (PSD) thickness were measured. Immunofluorescence staining was used to observe the positive expression levels of BDNF, PSD-95 and synaptophysin (SYN) in hippocampal CA1 region. The protein expression levels of BDNF, TRKB, CREB, PSD-95, and SYN in hippocampal tissue were detected by Western blot. RESULTS: Compared with the sham operation group, the neurological function score and escape latency (EL) were significantly increased (P<0.01), the times of crossing the original platform were decreased (P<0.01), the number of neurons in the CA1 area of the hippocampus was reduced, with incomplete morphology, widened synaptic gaps and significantly decreased PSD thickness (P<0.01), the positive expressions of BDNF, PSD-95, SYN and the protein expression levels of BDNF, TRKB, CREB, PSD-95, SYN were significantly decreased (P<0.01) in the model group. Compared with the model group, the neurological function scores and EL on the 12th and 13th day were decreased (P<0.01, P<0.05), the times of crossing the original platform were increased (P<0.01), the morphology of hippocampal CA1 neurons improved, the synaptic gaps was decreased (P<0.01), the PSD thickness was significantly increased (P<0.01), the positive expressions of BDNF, PSD-95, SYN, and the protein expression levels of BDNF, TRKB, CREB, PSD-95, SYN were increased (P<0.05, P<0.01) in the EA group. CONCLUSION: EA can alleviate cognitive impairment in IR rats, which may be related to its function in up-regulating the proteins of BDNF/TRKB/CREB pathway, promoting the expressions of synaptic plasticity marker proteins PSD-95 and SYN, thus improving the synaptic plasticity.


Asunto(s)
Electroacupuntura , Daño por Reperfusión , Animales , Ratas , Ratas Sprague-Dawley , Factor Neurotrófico Derivado del Encéfalo/genética , Infarto Cerebral , Hipocampo , Daño por Reperfusión/genética , Daño por Reperfusión/terapia , Plasticidad Neuronal/genética , Región CA1 Hipocampal , Transducción de Señal
15.
Front Neurol ; 14: 1183764, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441611

RESUMEN

Introduction: Cognitive impairment is the main symptom of Alzheimer's disease (AD). Accumulating evidence implicate that immunity plays an important role in AD. Here, we investigated the effect of Qi-fu-yin (QFY) on cognitive impairment and cytokine secretion of 5xFAD mice. Methods: We used 2.5-month-old 5xFAD transgenic mice for behavioral tests to observe the changes in cognitive function after QFY treatment. After the behavioral experiment, the whole brain, cortex and plasma of each mouse were collected for soluble Aß analysis, immunohistochemical experiment and cytokine analysis. Results: Here we found that the treatment of QFY ameliorated the ability of object recognition, passive avoidance responses and the ability of spatial learning and memory in 5xFAD mice. The deposits of ß1 - 42 and Aß1 - 40 were alleviated and the ration of Aß1 - 42/Aß1 - 40 was decrease in the plasma and brain of 5xFAD mice administrated with QFY. The administration of QFY promoted the secretion of anti-inflammatory cytokines, IL-5, IL-10 and G-CSF, and reduced the content of proinflammatory cytokines IFN-γ in plasma of 5xFAD mice. Notably, we found that the treatment of QFY decreased the concentration of CCL11 in the brain and plasma of 5xFAD mice. Conclusion: This suggested that QFY improved cognition and reduced Aß deposits in 5xFAD mice by regulating abnormal immunity in 5xFAD mice. QFY may be as a potential therapeutic agent for AD.

16.
Zhongguo Zhen Jiu ; 43(7): 793-9, 2023 Jul 12.
Artículo en Chino | MEDLINE | ID: mdl-37429659

RESUMEN

OBJECTIVE: To observe the effects of Yizhi Tiaoshen (benefiting mental health and regulating the spirit) acupuncture on learning and memory function, and the expression of phosphorylated tubulin-associated unit (tau) protein in the hippocampus of Alzheimer's disease (AD) model rats, and explore the effect mechanism of this therapy on AD. METHODS: A blank group and a sham-operation group were randomly selected from 60 male SD rats, 10 rats in each one. AD models were established in the rest 40 rats by the intraperitoneal injection of D-galactose and okadaic acid in the CA1 region of the bilateral hippocampus. Thirty successfully-replicated model rats were randomly divided into a model group, a western medication group and an acupuncture group, 10 rats in each one. In the acupuncture group, acupuncture was applied to "Baihui" (GV 20), "Sishencong" (EX-HN 1), "Neiguan" (PC 6), "Shenmen" (HT 7), "Xuanzhong" (GB 39) and "Sanyinjiao" (SP 6); and the needles were retained for 10 min. Acupuncture was given once daily. One course of treatment was composed of 6 days, with the interval of 1 day; the completion of treatment included 4 courses. In the western medication group, donepezil hydrochloride solution (0.45 mg/kg) was administrated intragastrically, once daily; it took 7 days to accomplish one course of treatment and a completion of intervention was composed of 4 courses. Morris water maze (MWM) and novel object recognition test (NORT) were used to assess the learning and memory function of the rats. Using HE staining and Nissl staining, the morphological structure of the hippocampus was observed. With Western blot adopted, the protein expression of the tau, phosphorylated tau protein at Ser198 (p-tau Ser198), protein phosphatase 2A (PP2A) and glycogen synthase kinase-3ß (GSK-3ß) in the hippocampus was detected. RESULTS: There were no statistical differences in all of the indexes between the sham-operation group and the blank group. Compared with the sham-operation group, in the model group, the MWM escape latency was prolonged (P<0.05), the crossing frequency and the quadrant stay time in original platform were shortened (P<0.05), and the NORT discrimination index (DI) was reduced (P<0.05); the hippocampal cell numbers were declined and the cells arranged irregularly, the hippocampal neuronal structure was abnormal and the numbers of Nissl bodies decreased; the protein expression of p-tau Ser198 and GSK-3ßwas increased (P<0.05) and that of PP2A decreased (P<0.05). When compared with the model group, in the western medication group and the acupuncture group, the MWM escape latency was shortened (P<0.05), the crossing frequency and the quadrant stay time in original platform were increased (P<0.05), and DI got higher (P<0.05); the hippocampal cell numbers were elevated and the cells arranged regularly, the damage of hippocampal neuronal structure was attenuated and the numbers of Nissl bodies were increased; the protein expression of p-tau Ser198 and GSK-3ß was reduced (P<0.05) and that of PP2A was increased (P<0.05). There were no statistically significant differences in the above indexes between the acupuncture group and the western medication group (P>0.05). CONCLUSION: Acupuncture therapy of "benefiting mental health and regulating the spirit" could improve the learning and memory function and alleviate neuronal injure of AD model rats. The effect mechanism of this therapy may be related to the down-regulation of GSK-3ß and the up-regulation of PP2A in the hippocampus, and then to inducing the inhibition of tau protein phosphorylation.


Asunto(s)
Terapia por Acupuntura , Enfermedad de Alzheimer , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Glucógeno Sintasa Quinasa 3 beta , Tubulina (Proteína) , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Proteínas tau/genética , Hipocampo
17.
Zhongguo Zhen Jiu ; 43(7): 800-6, 2023 Jul 12.
Artículo en Chino | MEDLINE | ID: mdl-37429660

RESUMEN

OBJECTIVE: To observe the effects of moxa smoke through olfactory pathway on learning and memory ability in rapid aging (SAMP8) mice, and to explore the action pathway of moxa smoke. METHODS: Forty-eight six-month-old male SAMP8 mice were randomly divided into a model group, an olfactory dysfunction group, a moxa smoke group and an olfactory dysfunction + moxa smoke group, with 12 mice in each group. Twelve age-matched male SAMR1 mice were used as the blank group. The olfactory dysfunction model was induced in the olfactory dysfunction group and the olfactory dysfunction + moxa smoke group by intraperitoneal injection of 3-methylindole (3-MI) with 300 mg/kg, and the moxa smoke group and the olfactory dysfunction + moxa smoke group were intervened with moxa smoke at a concentration of 10-15 mg/m3 for 30 min per day, with a total of 6 interventions per week. After 6 weeks, the emotion and cognitive function of mice was tested by open field test and Morris water maze test, and the neuronal morphology in the CAI area of the hippocampus was observed by HE staining. The contents of neurotransmitters (glutamic acid [Glu], gamma-aminobutyric acid [GABA], dopamine [DA], and 5-hydroxytryptamine [5-HT]) in hippocampal tissue of mice were detected by ELISA. RESULTS: The mice in the blank group, the model group and the moxa smoke group could find the buried food pellets within 300 s, while the mice in the olfactory dysfunction group and the olfactory dysfunction + moxa smoke group took more than 300 s to find them. Compared with the blank group, the model group had increased vertical and horizontal movements (P<0.05) and reduced central area residence time (P<0.05) in the open field test, prolonged mean escape latency on days 1-4 (P<0.05), and decreased search time, swimming distance and swimming distance ratio in the target quadrant of the Morris water maze test, and decreased GABA, DA and 5-HT contents (P<0.05, P<0.01) and increased Glu content (P<0.05) in hippocampal tissue. Compared with the model group, the olfactory dysfunction group had increased vertical movements (P<0.05), reduced central area residence time (P<0.05), and increased DA content in hippocampal tissue (P<0.05); the olfactory dysfunction + moxa smoke group had shortened mean escape latency on days 3 and 4 of the Morris water maze test (P<0.05) and increased DA content in hippocampal tissue (P<0.05); the moxa smoke group had prolonged search time in the target quadrant (P<0.05) and increased swimming distance ratio, and increased DA and 5-HT contents in hippocampal tissue (P<0.05, P<0.01) and decreased Glu content in hippocampal tissue (P<0.05). Compared with the olfactory dysfunction group, the olfactory dysfunction + moxa smoke group showed a shortened mean escape latency on day 4 of the Morris water maze test (P<0.05). Compared with the moxa smoke group, the olfactory dysfunction + moxa smoke group had a decreased 5-HT content in the hippocampus (P<0.05). Compared with the blank group, the model group showed a reduced number of neurons in the CA1 area of the hippocampus with a disordered arrangement; the olfactory dysfunction group had similar neuronal morphology in the CA1 area of the hippocampus to the model group. Compared with the model group, the moxa smoke group had an increased number of neurons in the CA1 area of the hippocampus that were more densely packed. Compared with the moxa smoke group, the olfactory dysfunction + moxa smoke group had a reduced number of neurons in the CA1 area of the hippocampus, with the extent between that of the moxa smoke group and the olfactory dysfunction group. CONCLUSION: The moxa smoke could regulate the contents of neurotransmitters Glu, DA and 5-HT in hippocampal tissue through olfactory pathway to improve the learning and memory ability of SAMP8 mice, and the olfactory is not the only effective pathway.


Asunto(s)
Trastornos del Olfato , Vías Olfatorias , Masculino , Animales , Ratones , Humo/efectos adversos , Serotonina , Envejecimiento , Dopamina , Trastornos del Olfato/etiología
18.
Front Endocrinol (Lausanne) ; 14: 1139874, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305050

RESUMEN

Androgens are closely associated with functions of hippocampal learning, memory, and synaptic plasticity. The zinc transporter ZIP9 (SLC39A9) regulates androgen effects as a binding site distinct from the androgen receptor (AR). However, it is still unclear whether androgens regulate their functions in hippocampus of mice through ZIP9. Compared with wild-type (WT) male mice, we found that AR-deficient male testicular feminization mutation (Tfm) mice with low androgen levels had learning and memory impairment, decreased expression of hippocampal synaptic proteins PSD95, drebrin, SYP, and dendritic spine density. Dihydrotestosterone (DHT) supplementation significantly improved these conditions in Tfm male mice, although the beneficial effects disappeared after hippocampal ZIP9 knockdown. To explore the underlying mechanism, we first detected the phosphorylation of ERK1/2 and eIF4E in the hippocampus and found that it was lower in Tfm male mice than in WT male mice, it upregulated with DHT supplementation, and it downregulated after hippocampal ZIP9 knockdown. Next, we found that the expression of PSD95, p-ERK1/2, and p-eIF4E increased in DHT-treated mouse hippocampal neuron HT22 cells, and ZIP9 knockdown or overexpression inhibited or further enhanced these effects. Using the ERK1/2 specific inhibitor SCH772984 and eIF4E specific inhibitor eFT508, we found that DHT activated ERK1/2 through ZIP9, resulting in eIF4E phosphorylation, thus promoting PSD95 protein expression in HT22 cells. Finally, we found that ZIP9 mediated the effects of DHT on the expression of synaptic proteins PSD95, drebrin, SYP, and dendritic spine density in the hippocampus of APP/PS1 mice through the ERK1/2-eIF4E pathway and affected learning and memory. This study demonstrated that androgen affected learning and memory in mice through ZIP9, providing new experimental evidence for improvement in learning and memory in Alzheimer's disease with androgen supplementation.


Asunto(s)
Síndrome de Resistencia Androgénica , Dihidrotestosterona , Animales , Humanos , Masculino , Ratones , Andrógenos , Factor 4E Eucariótico de Iniciación , Hipocampo , Factores de Transcripción
19.
CNS Neurosci Ther ; 29(12): 3786-3801, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37349952

RESUMEN

MAIN PROBLEM: N-acetylaspartylglutamate (NAAG) has neuroprotective effects in traumatic brain injury (TBI) by activating metabotropic glutamate receptor 3 (mGluR3) and reducing glutamate release. Glutamate carboxypeptidase II (GCPII) is the primary enzyme responsible for the hydrolysis of NAAG. It remains unclear whether glutamate carboxypeptidase III (GCPIII), a homolog of GCPII, can partially compensate for GCPII's function. METHODS: GCPII-/- , GCPIII-/- , and GCPII/III-/- mice were generated using CRISPR/Cas9 technology. Mice brain injury model was established through moderate controlled cortical impact (CCI). The relationship between GCPII and GCPIII was explored by analyzing injury response signals in the hippocampus and cortex of mice with different genotypes at the acute (1 day) and subacute (7 day) phase after TBI. RESULTS: In this study, we found that deletion of GCPII reduced glutamate production, excitotoxicity, and neuronal damage and improved cognitive function, but GCPIII deletion had no significant neuroprotective effect. Additionally, there was no significant difference in the neuroprotective effect between the combination of GCPII and GCPIII deletion and GCPII deletion alone. CONCLUSION: These results suggest that GCPII inhibition may be a therapeutic option for TBI, and that GCPIII may not act as a complementary enzyme to GCPII in this context.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Fármacos Neuroprotectores , Animales , Ratones , Lesiones Traumáticas del Encéfalo/genética , Glutamato Carboxipeptidasa II/genética , Ácido Glutámico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
20.
Zhen Ci Yan Jiu ; 48(4): 317-24, 2023 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-37186194

RESUMEN

OBJECTIVE: To observe the effect of transcutaneous electrical acupoint stimulation (TEAS) on the histomorphological manifestations of hippocampal CA1 region and the expression of extracellular regulatory protein kinase (ERK), cyclic adenosine response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in chronic fatigue syndrome (CFS) rats, so as to explore the mechanisms of TEAS in improving the learning and memory abilities of CFS rats. METHODS: Forty male Wistar rats were randomly divided into normal group (10 rats) and modeling group (30 rats); then after modeling, they were selected and randomly divided into model group (10 rats) and TEAS group (10 rats). CFS rats model was prepared by sleep deprivation combined with weight-bearing swimming. Rats in the TEAS group were stimulated with Han's acupoint nerve stimulator at bilateral "Zusanli" (ST36) and "Shenshu" (BL23) (2 Hz/15 Hz, 1-2 mA), 20 min each time, once a day for 4 weeks with 1 d rest every 6 d. The score of general conditions of rats was evaluated. The learning and memory ability was tested with Morris water maze. The morphology and ultrastructure of hippocampal CA1 region were observed by HE staining and transmission electron microscopy. The expression levels of ERK, CREB and BDNF mRNAs and proteins in hippocampus were detected by real time quantitative PCR and Western blot, respectively. RESULTS: Compared with the normal group, the score of general condition was increased (P<0.01); the escape latency was prolonged (P<0.05, P<0.01) and the times of crossing the original platform was decreased (P<0.05); the expression levels of ERK, CREB and BDNF mRNAs and proteins in hippocampus were decreased (P<0.05, P<0.01) in the model group. Compared with the model group, the scores of general condition on the 42nd and 49th day were decreased (P<0.05, P<0.01); the escape latency was shortened (P<0.01, P<0.05)and the times of crossing the original platform were increased (P<0.05); the expression levels of ERK, CREB and BDNF mRNAs and proteins in hippocampus were increased (P<0.01, P<0.05) in the TEAS group. The morphology of neurons in hippocampal CA1 region was normal in the normal group. In the model group, the number of neurons in hippocampal CA1 region decreased, the arrangement of nerve cells was scattered, the number of apoptotic cells increased, some nuclear structures disappeared, nuclear heterochromatin increased, the cell membrane wrinkled, the chromatin appeared empty bright area, and the crista was incomplete. Compared with the model group, the nerve cells morphology in hippocampal CA1 region was more regular, the number of apoptotic cells decreased, the chromatin and the cytoplasm were uniformly distributed, and the crista was relatively intact in the TEAS group. CONCLUSION: TEAS can improve the learning and memory ability of CFS rats, the mechanisms may be related to improving the neural structure of hippocampal CA1 region and up-regulating the expression levels of ERK/CREB/BDNF.


Asunto(s)
Electroacupuntura , Síndrome de Fatiga Crónica , Ratas , Masculino , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Síndrome de Fatiga Crónica/genética , Síndrome de Fatiga Crónica/terapia , Ratas Sprague-Dawley , Puntos de Acupuntura , Ratas Wistar , Hipocampo , Cromatina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA