Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 445: 138754, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364496

RESUMEN

The antioxidant activity of curcumin and curcumin esters was investigated in oleogel and emulgel produced by linseed oil. In the initiation phase, curcumin acetate at 1.086 mM concentration showed the highest antioxidant activity in linseed oil, while curcumin at 2.172 mM concentration showed the highest antioxidant activity in oleogel. In the propagation phase, curcumin and curcumin esters exhibited higher efficiency in linseed oil samples than those of oleogel samples. In the initiation phase, curcumin hexanoate showed higher antioxidant activity than curcumin acetate and curcumin butyrate, while curcumin hexanoate showed lower efficiency than curcumin acetate and curcumin butyrate in the propagation phase. Investigating the mechanism of action of curcumin and curcumin esters in oleogel and emulgel showed that in addition to inhibiting peroxyl radicals, curcumin and curcumin esters were likely to pro-oxidatively attack hydroperoxides. Also, curcumin and curcumin esters radicals were likely to attack lipid substrates in these systems.


Asunto(s)
Antioxidantes , Curcumina , Antioxidantes/farmacología , Aceite de Linaza/farmacología , Curcumina/farmacología , Caproatos , Ésteres , Butiratos , Acetatos , Compuestos Orgánicos
2.
Trop Anim Health Prod ; 56(1): 28, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151553

RESUMEN

The objective was to assess the in vitro rumen fermentation characteristics, methane production, and biohydrogenation of unsaturated fatty acids of diets with two protected fat (PF) sources from soybean or linseed oil, two levels of PF (0 and 6%) and two forage sources (canola silage (CS) or alfalfa hay (AH)) in a factorial 2x2x2 completely randomised design. Only fatty acids content at final incubation was affected (P<0.05) by triple interaction, where C18:2 was highest with AH plus 6% soybean PF (4.41mg/g DM), while C18:3 was with CS plus 6% linseed oil protected (1.98mg/g DM). C18:2 cis-9 trans-11 had high concentration (308 mg/g DM; P<0.05) with AH plus 6% PF regardless PF type, and C18:1 trans-11 was higher with 6% PF than without PF (13.41 vs 7.89 mg/g DM). Cumulative methane production was not affected by treatments (0.9973 ± 0.1549 mmol/g DM; P>0.05). Gas production and in vitro NDF digestibility were lower with 6% PF of linseed than soybean (160.88 vs 150.97 ml; and 69.28vs 62.89 %, respectively P<0.05). With linseed PF the NH3-N concentration was highest in CS than AH (41.27 vs 27.95 mg/dL; P<0.05) but IVDMD had the opposite result (78.54 vs 85.04). In conclusion, although methane production was not affected and in vitro digestibility and gas production were reduced with linseed PF, the concentration of C18:3 and C18:1 trans-11 was increased, which could improve the lipid profile of milk. The negative effects on digestibility were less with AH than of CS regardless of PF type and level.


Asunto(s)
Lino , Aceite de Linaza , Femenino , Animales , Aceite de Linaza/metabolismo , Lactancia , Rumen/metabolismo , Dieta/veterinaria , Ácidos Grasos Insaturados , Ácidos Grasos/metabolismo , Leche , Ensilaje/análisis , Metano/metabolismo , Fermentación , Zea mays
3.
J Anim Sci Technol ; 65(5): 922-938, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37969340

RESUMEN

The current study was designed to evaluate the effect of sequential low and high dietary linseed oil (LO; as omega-3 enriched fatty acid; FA) before and post insemination, respectively, on different plasma variables of ewes. Fat-tailed Qezel ewes were assigned randomly to be fed a diet enriched with 3% LO (n = 30) or the saturated FA (SFA; n = 30) three weeks before insemination (Day 0). The lipogenic diet supplemented with 6% LO or SFA was fed after insemination until Day +21. The control ewes were fed an isocaloric and isonitrogenous diet with no additional FA during the study. Estrus was synchronized by inserting a vaginal sponge (Spongavet®) for 12 days + 500 IU equine chorionic gonadotropin (eCG; Gonaser®), and ewes were inseminated via laparoscopic approach 56-59 h after eCG injection. The size of ovarian structures was assessed by transvaginal ultrasonography at -21, -14, -2, 0, and +10 days. Blood samples were collected weekly to measure the plasma's different biochemical variables and FA profile. Treatment did not affect the amounts of glucose, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, interleukin-10, interleukin-2, and non-esterified FA (p > 0.05). Conversely, concentrations of triglyceride, cholesterol, tumor necrosis factor-alpha, and insulin-like growth factor-1 were higher in SFA-fed ewes relative to control animals (p < 0.05). LO feeding resulted in greater amounts of n-3 FA isomers in plasma, while higher amounts of stearic acid were detected in SFA fed group 0 and +21 (p < 0.05). The number of ovarian follicles and corpora lutea also were not affected by treatment. Other reproductive variables were not affected by treatment except for the reproductive rate. It seems that LO or SFA feeding of fat-tailed ewes peri-insemination period was not superior to the isocaloric non-additional fat diet provided for the control group during the non-breeding season.

4.
Nutrients ; 15(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37892536

RESUMEN

This study aimed to investigate the impact of influencing factors (sex, eicosapentaenoic acid (EPA) status at baseline, linoleic acid (LA) intake, milk fat intake) on the conversion of α-linolenic acid (ALA) obtained from linseed oil into its long-chain metabolites. In addition, the effect of ALA on cardiovascular risk markers was investigated. This study used a parallel design approach by randomly assigning the 134 subjects to one of four diets (high in LA (HLA); low in LA (LLA); high in milk fat (MF); control (Western diet)) each enriched with linseed oil (10 en%, 22-27 mL ≙ 13-16 g ALA). Blood samples were taken at baseline and after 4, 8, and 12 weeks of dietary intervention. The study was fully completed by 105 subjects (57.4 ± 12.1 years; 65.7% female). Results showed that ALA (296-465%), C-20:4n3 (54-140%), and EPA (37-73%) concentrations in erythrocytes increased in all groups (p < 0.01). In contrast, docosahexaenoic acid (19-35%, p < 0.01) and n-3 index (10-21%, p < 0.05) dropped in the HLA, LLA, and control groups. An increase in C-22:5n3 was only observed in the MF (36%) and control groups (11%) (p < 0.05). In addition, an increase in LA (7-27%) was found in the HLA, LLA, and control groups, whereas C-20:3n6 (16-22%), arachidonic acid (10-16%), C-22:4n6 (12-30%), and C-22:5n6 (32-47%) decreased (p < 0.01). The conversion into EPA was higher in men than in women (69 vs. 39%, p = 0.043) and in subjects with low EPA status compared to participants with high EPA status (79 vs. 29%, p < 0.001). A high LA status attenuates the conversion rate. In line with the literature, no clear effects on blood lipids and parameters of glucose metabolism were found in relation to ALA supplementation.


Asunto(s)
Phascolarctidae , Femenino , Humanos , Masculino , Ácido alfa-Linolénico , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Aceite de Linaza , Phascolarctidae/metabolismo
5.
Curr Res Food Sci ; 7: 100553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575130

RESUMEN

In this study, whey protein isolate (WPI) cold-set microgels containing marjoram (Origanum majorana) aqueous extract (MAE) were prepared at different pHs (4.0, 5.0, and 6.0). After characterization, the microgel dispersion was used to stabilize linseed oil-in-water Mickering emulsions (MEs). The resultant MEs were then characterized in terms of physicochemical and rheological properties under the effect of pH and MAE addition. The morphology, particle size, zeta potential, and interfacial tension of microgels were affected by pH and MAE. XRD patterns showed the amorphous structure. Microgel-stabilized MEs did not reveal any significant sign of instability under gravity during 6 months of storage. All MEs had dominant elastic character. Despite the lowest zeta potential values, MEs prepared at pH 4 showed the highest physical stability against gravity but the lowest centrifugal stability against oiling off, which indicated that both viscous and elastic components are required for MEs stability. This sample had the highest apparent viscosity and the strongest viscoelastic properties. Rheological data were best fitted with Herschel-Bulkley and Power Law models. An increase in pH and presence of MAE improved the oxidative stability of MEs. The results of this study showed that WPI microgels are appropriate candidate for long-term stabilization of linseed oil-in-water MEs. The presence of MAE is useful in designing special emulsions in which the aqueous phase is partially replaced by the aqueous extract of medicinal plants.

6.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569649

RESUMEN

Green leaf volatiles (GLVs), including short chain volatile aldehydes, are widely used in the flavor and food industries because of their fresh aroma. To meet the growing demand for natural GLVs with high added value, the use of biocatalytic processes appears as a relevant application. In such processes, vegetable oils are bioconverted into GLVs. First, the triacylglycerols of the oils are hydrolyzed by a lipase. Then, the free polyunsaturated fatty acids are converted by a lipoxygenase. Finally, volatile C6 or C9 aldehydes and 9- or 12-oxoacids are produced with a hydroperoxide lyase. Optimization of each biocatalytic step must be achieved to consider a scale-up. In this study, three oils (sunflower, hempseed, and linseed oils) and three lipases (Candida rugosa, Pseudomonas fluorescens, and Rhizomucor miehei lipases) have been tested to optimize the first step of the process. The experimental design and response surface methodology (RSM) were used to determine the optimal hydrolysis conditions for each oil. Five factors were considered, i.e., pH, temperature, reaction duration, enzyme load, and oil/aqueous ratio of the reaction mixture. Candida rugosa lipase was selected as the most efficient enzyme to achieve conversion of 96 ± 1.7%, 97.2 ± 3.8%, and 91.8 ± 3.2%, respectively, for sunflower, hempseed, and linseed oils under the defined optimized reaction conditions.


Asunto(s)
Lipasa , Aceites de Plantas , Lipasa/metabolismo , Hidrólisis , Biocatálisis , Aceite de Linaza , Ácidos Grasos no Esterificados , Aldehídos
7.
Poult Sci ; 102(10): 102896, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37473521

RESUMEN

Meat rich in polyunsaturated fatty acids is considered beneficial to health. Supplementing the diet with linseed oil promotes the deposition of polyunsaturated fatty acids (PUFAs) in poultry, a conclusion that has been confirmed multiple times in chicken meat. However, fewer studies have focused on the effects of dietary fatty acids on duck meat. Therefore, this study aims to evaluate the effects of the feeding time of a linseed oil diet on duck meat performance and gene expression, including meat quality performance, plasma biochemical indicators, fatty acid profile, and gene expression. For this study, we selected 168 Chinese crested ducks at 28 days old and divided them into three groups, with 56 birds in each group. The linseed oil content in the different treatment groups was as follows: the control group (0% flaxseed oil), the 14d group (2% linseed oil), and the 28d group (2% linseed oil). Ducks in the two experimental groups were fed a linseed oil diet for 28 and 14 days at 28 and 42 days of age, respectively. The results showed that linseed oil had no negative effect on duck performance (slaughter rate, breast muscle weight, and leg muscle weight) or meat quality performance (pH, meat color, drip loss, and shear force) (P > 0.05). The addition of linseed oil in the diet increased plasma total cholesterol and high-density lipoprotein cholesterol levels (P < 0.05), while decreasing triglyceride content (P < 0.05). Furthermore, the supplementation of linseed oil for four weeks affected the composition of muscle fatty acids. Specifically, levels of α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid were increased (P < 0.05), while eicosatetraenoic acid content was negatively correlated with flaxseed oil intake (P < 0.05). qRT-PCR analysis further revealed that the expression of FATP1, FABP5, and ELOVL5 genes in the breast muscle, as well as FABP3 and FADS2 genes in the thigh muscle, increased after four weeks of linseed oil supplementation (P < 0.05). However, after two weeks of feeding, CPT1A gene expression inhibited fatty acid deposition, suggesting an increase in fatty acid oxidation (P < 0.05). Overall, the four-week feeding time may be a key factor in promoting the deposition of n-3 PUFAs in duck meat. However, the limitation of this study is that it remains unknown whether longer supplementation time will continue to affect the deposition of n-3 PUFAs. Further experiments are needed to explain how prolonged feeding of linseed oil will affect the meat quality traits and fatty acid profile of duck meat.


Asunto(s)
Alimentación Animal , Suplementos Dietéticos , Patos , Ácidos Grasos Omega-3 , Ácidos Grasos , Animales , Alimentación Animal/análisis , Colesterol/análisis , Suplementos Dietéticos/análisis , Patos/metabolismo , Proteínas de Unión a Ácidos Grasos , Ácidos Grasos/análisis , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados , Aceite de Linaza , Carne/análisis , Músculo Esquelético/química
8.
J Dairy Res ; 90(2): 118-123, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138530

RESUMEN

Triacylglycerols (TAG) are the primary sources of preformed fatty acids (FA) for lipid synthesis in the mammary gland. However, polyunsaturated FA escaping ruminal biohydrogenation are selectively incorporated into cholesterol esters (CE) and phospholipids (PL). The aim of the current experiment was to study the effects of abomasal infusion of increasing amount of linseed oil (L-oil) on plasma distribution of α-linolenic acid (α-LA) and its transfer efficiency into milk fat. Five rumen-fistulated Holstein cows were randomly distributed in a 5 × 5 Latin square design. Abomasal infusion of L-oil (55.9% α-LA) was performed at the rate of 0, 75, 150, 300, and 600 ml/d. Concentrations of α-LA increased quadratically in TAG, PL, and CE; a less steep slope was observed with an inflexion at an infusion rate of 300 ml L-oil per day. The increase in plasma concentration of α-LA was of a lower magnitude in CE as compared with the other two fractions, resulting in a quadratic decrease in relative proportion of this FA circulating as CE. The transfer efficiency into milk fat increased from 0 to 150 ml L-oil infused, and a plateau was maintained thereafter with greater levels of infusion (quadratic response). This pattern resembles the quadratic response of the relative proportion of α-LA circulating as TAG, and the relative concentration of this FA in TAG. Increasing the postruminal supply of α-LA partly overcame the segregation mechanism of absorbed polyunsaturated FA in different plasma lipid classes. Proportionately more α-LA was then esterified as TAG, at the expense of CE, increasing its efficiency of transfer into milk fat. This mechanism appears to be surpassed in its turn when L-oil infusion was increased over 150 ml/d. Nevertheless, the yield of α-LA in milk fat continued to increase, but at a slower rate at the highest levels of infusion.


Asunto(s)
Aceite de Linaza , Ácido alfa-Linolénico , Femenino , Bovinos , Animales , Leche , Lactancia/fisiología , Ácidos Grasos , Ácidos Grasos Insaturados/farmacología , Fosfolípidos , Dieta/veterinaria , Rumen
9.
J Texture Stud ; 54(5): 693-705, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37119016

RESUMEN

Pork fat (PF) is a necessary ingredient in making traditional fish cakes (TFCs), which contains saturated fatty acids with potential health concerns. While linseed oil (LO) containing α-linolenic acid is a potential nutrient-enhancing fat substitute. In this study, the effect of pork fat and linseed oil level on gel quality, sensory characteristics, microstructure, and protein conformation of TFCs were characterized. Results showed that the TFCs with 30% pork fat (wt/wt) had the highest gel strength. Additionally, sensory evaluation determined that TFCs with 30% pork fat scored the best by a sensory panel with high gel strength, water-holding capacity, and fresh and sweet taste. The gel strength, chewiness, and hardness of nutrient-enriched fish cakes with 20% linseed oil replaced for pork fat were higher than that only with pork fat (wt/wt) without changing in tenderness and elasticity. Visual results showed that the network was uniform at a moderate level of linseed oil addition (20% LO/PF replacement ratio). The results of this study provided technical guidelines for standardizing the TFC manufacture processes, and useful insight for the development of fish cakes with reduced animal fat content for additional health benefits for consumers.


Asunto(s)
Grasas de la Dieta , Ácidos Grasos , Productos Pesqueros , Aceite de Linaza , Carne de Cerdo , Animales , Ácidos Grasos/química , Ácidos Grasos/farmacología , Aceite de Linaza/química , Aceite de Linaza/farmacología , Carne Roja , Porcinos , Geles/química , Productos Pesqueros/análisis , Gusto , Grasas de la Dieta/farmacología
10.
PeerJ ; 11: e14965, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908814

RESUMEN

Background: This study investigates the effect of organic and inorganic supplements on the reduction of ammonia (NH3) volatilization, improvement in nitrogen use efficiency (NUE), and wheat yield. Methods: A field experiment was conducted following a randomized block design with 10 treatments i.e., T1-without nitrogen (control), T2-recommended dose of nitrogen (RDN), T3-(N-(n-butyl) thiophosphoric triamide) (NBPT @ 0.5% w/w of RDN), T4-hydroquinone (HQ @ 0.3% w/w of RDN), T5-calcium carbide (CaC2 @ 1% w/w of RDN), T6-vesicular arbuscular mycorrhiza (VAM @ 10 kg ha-1), T7-(azotobacter @ 50 g kg-1 seeds), T8-(garlic powder @ 0.8% w/w of RDN), T9-(linseed oil @ 0.06% w/w of RDN), T10-(pongamia oil @ 0.06% w/w of RDN). Results: The highest NH3 volatilization losses were observed in T2 at about 20.4 kg ha-1 per season. Significant reduction in NH3 volatilization losses were observed in T3 by 40%, T4 by 27%, and T8 by 17% when compared to the control treatment. Soil urease activity was found to be decreased in plots receiving amendments, T3, T4, and T5. The highest grain yield was observed in the T7 treated plot with 5.09 t ha-1, and straw yield of 9.44 t ha-1 in T4. Conclusion: The shifting towards organic amendments is a feasible option to reduce NH3 volatilization from wheat cultivation and improves NUE.


Asunto(s)
Fertilizantes , Triticum , Agricultura , Amoníaco , Fertilizantes/análisis , Nitrógeno , Triticum/crecimiento & desarrollo , Volatilización
11.
J Dairy Sci ; 106(5): 3662-3679, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37002139

RESUMEN

The ratio of n-6 to n-3 fatty acid (FA) is between 2 and 10 times higher in milk replacer (MR) than in whole milk, which may promote inflammation and compromise the integrity of the intestinal epithelium. To evaluate how decreasing the n-6:n-3 FA ratio of MR affects gastrointestinal (GIT) permeability and inflammatory status, 30 dairy calves (2.8 ± 1.06 d of age; mean ± standard deviation) were randomly assigned to be fed an MR with an n-6:n-3 FA ratio of 40:1 (CON; 29.3% crude fat of DM; n = 15) or 6.5:1 (n-3; 29.1% crude fat of DM; n = 15). Calves were fed 7.0 L/d in 2 meals. Calves were weighed and fecal consistency was analyzed weekly. On d 22, calves were administered Cr-EDTA, lactulose, and d-mannitol to assess GIT permeability. Blood and total urine were sequentially collected for 6 and 24 h, respectively, and analyzed for marker content. Whole blood collected 4 h after the meal was subjected to an ex vivo lipopolysaccharide (LPS) challenge to evaluate cytokine secretion from blood cells. Calves were euthanized on d 25 for collection of intestinal tissue samples. Tissue samples were processed to assess FA composition by gas chromatography, histomorphology by bright-field microscopy, and gene expression of tight junction proteins, lipid metabolism enzymes, and immune molecules by real-time quantitative PCR. Data were analyzed using PROC GLIMMIX in SAS (version 9.4, SAS Institute Inc.). Growth performance and fecal consistency were unaffected. Calves fed MR with a lower ratio of n-6 to n-3 FA had 2-fold higher n-3 FA contents and 2-fold lower ratios of n-6 to n-3 FA in proximal jejunum and ileum tissues. Total urinary recovery (0-24 h relative to marker administration) and plasma concentrations of the markers were unaffected. Expression of TJP1 tended to be higher in proximal jejunum tissue and lower in ileum tissue of n-3 calves. The expression of TLR4 and TNFA tended to be higher and CD14 was higher in ileum tissue of n-3 calves. Plasma concentrations of interleukin-4 were decreased in response to the ex vivo LPS challenge in n-3 calves. Histomorphology and GIT permeability were largely unaffected by treatment. Furthermore, the inclusion of linseed and algae oil may promote inflammation, as suggested by greater concentrations of the acute-phase proteins haptoglobin and serum amyloid A postprandially, demonstrating that fat sources should be evaluated for their suitability for MR formulations. Understanding how MR composition affects dairy calf health may improve nutritional strategies on farm.


Asunto(s)
Ácidos Grasos Omega-3 , Sustitutos de la Leche , Animales , Bovinos , Leche , Dieta/veterinaria , Lipopolisacáridos , Permeabilidad , Alimentación Animal/análisis , Destete , Peso Corporal
12.
J Fungi (Basel) ; 9(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36836332

RESUMEN

Triacylglycerol (TG) with high-value long-chain polyunsaturated fatty acids is beneficial to human health; consequently, there is an urgent need to broaden its sources due to the current growing demand. Mortierella alpina, one of the most representative oleaginous fungi, is the only certificated source of dietary arachidonic acid-rich oil supplied in infant formula. This study was conducted to improve TG production in M. alpina by homologous overexpression of diacylglycerol acyltransferase (DGAT) and linseed oil (LSO) supplementation. Our results showed that the homologous overexpression of MaDGAT1B and MaDGAT2A strengthened TG biosynthesis and significantly increased the TG content compared to the wild-type by 12.24% and 14.63%, respectively. The supplementation with an LSO concentration of 0.5 g/L elevated the TG content to 83.74% and total lipid yield to 4.26 ± 0.38 g/L in the M. alpina-MaDGAT2A overexpression strain. Our findings provide an effective strategy for enhancing TG production and highlight the role of DGAT in TG biosynthesis in M. alpina.

13.
Int J Biol Macromol ; 235: 123830, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36842743

RESUMEN

Protection coatings with self-healing ability can significantly enhance their anti-corrosion properties and service life. In this study, self-healing waterborne polyurethane (WPU) coatings with high transparence and haze were facile fabricated via cellulose nanocrystal (CNC) stabilized linseed oil (LO) Pickering emulsion. Sustainable CNCs displayed outstanding emulsifying ability and stability to stabilize LO Pickering emulsion. The size of LO Pickering emulsion droplets decreases with the CNC concentration, while the emulsion fraction and surface coverage by CNCs increase with CNC concentration, leading to a more stable Pickering emulsion. The self-healing rates of WPU coatings at varied time, temperature, CNC and catalyst concentration were investigated. Higher temperature, larger emulsion droplets, and with driers employed as catalysts generally lead to faster self-healing rate. The WPU self-healing coatings displayed much better abrasion resistance and mechanical properties than pristine WPU due to the incorporation of CNCs. Moreover, the WPU self-healing coatings show a high transparence and haze due to light scattering, and their applications as coatings of lamp covers and glass to achieve uniform light distribution and privacy protection with high light transmission were further demonstrated.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Aceite de Linaza , Poliuretanos , Emulsiones/química , Nanopartículas/química
14.
Reprod Domest Anim ; 58(1): 27-38, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36069223

RESUMEN

The reactive oxygen species (ROS) which are produced during storage of boar semen are causing oxidative stress and leads to poor fertility. Also, tropical and sub-tropical weather condition adversely impacts the physicomorphological quality and fertility of boar sperm. The aim of this study was to examine the effects of feeding linseed oil to boar on its seminal attributes, sperm kinetics, biomarkers of antioxidant, fatty acid profile of seminal plasma (SP) and sperm and in vivo fertility. Six Hampshire crossbreed boars were fed with 90 ml linseed oil (LIN) whereas six Hampshire crossbreed boars were fed 90 ml canola oil (CON) for 16 weeks. Sperm quality was evaluated (60 ejaculates for each group; a total of 120 ejaculates) for motility, livability, abnormal morphology, acrosomal membrane integrity, hypo-osmotic swelling test (HOST) and sperm kinetic parameters by computer assisted semen analysis (CASA) at 0 h and at 72 h of storage at 17°C. Biomarkers of antioxidant (glutathione peroxidase; GPx, catalase; CAT, total antioxidant capacity; TAC) and malondialdehyde (MDA) were measured in SP and serum. Gas chromatography-mass spectrometry (GC-MS) was used for the estimation of fatty acid composition of SP and sperm. Boars fed with linseed oil had higher semen volume (p < .01) and more total sperm numbers (p < .01). Feeding linseed oil to boar enhanced seminal attributes (p < .05) at 0 h as well as at 72 h of storage. Linseed oil feeding (p < .01) improved biomarkers of antioxidants and significantly (p < .01) lowered the lipid peroxidation in serum and SP. Linseed oil feeding (p < .05) increased the proportion of alpha linolenic (ALA), arachidonic and docosahexaenoic (DHA) fatty acids in SP. The ratio of n-6 to n-3 fatty acids in sperm increased significantly (p < .01) in treatment group. Farrowing rate was significantly (p < .05) higher in treatment group. In conclusion, feeding linseed oil to boar improved the in vivo fertility, enhanced antioxidant capacity and increased the DHA content of SP and sperm.


Asunto(s)
Antioxidantes , Semen , Masculino , Animales , Porcinos , Antioxidantes/farmacología , Aceite de Linaza/análisis , Aceite de Linaza/farmacología , Motilidad Espermática , Espermatozoides , Análisis de Semen/veterinaria , Dieta/veterinaria , Ácidos Grasos/análisis , Fertilidad
15.
Molecules ; 27(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36500618

RESUMEN

The purpose of this study was to explore the effects of roasting linseeds on the pigment, lipid profile, bioactive components, and oxidative stability of the extracted oils. The linseed varieties Giza 11, Giza 12, Sakha 3, and Sakha 6 were roasted at 180 °C for 10 min, and the oils were extracted by cold pressing. The results showed that, after roasting, there was an increase in oil percentage and peroxide value, as well as small increases in p-anisidine and acid values. Roasting also caused an increase in chlorophyll content, while lutein and ß-carotene tend to slightly decrease, except in the Giza 11 variety. The total phenolics content was markedly enhanced after roasting. Omega-3 fatty acids were not affected by the roasting process. The total amounts of tocochromanol were found to decrease in the Giza 12 and Sakha 6 varieties after roasting. Plastochromanol-8 increased in all varieties after roasting. The phytosterol composition was minimally affected by roasting. Roasting enhanced the stability of the extracted oils, increasing the induction period and decreasing EC50 values. These results may thus help to discriminate between the different linseed varieties and serve to recommend the use of roasting to enhance the oxidative stability of extracted oil.


Asunto(s)
Ácidos Grasos Omega-3 , Lino , Fitosteroles , Aceites de Plantas , Semillas , Aceite de Linaza , Ácidos Grasos
16.
Molecules ; 27(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432190

RESUMEN

Linseed oil-based composite films were prepared with cinnamaldehyde (Cin) using a modified clay (organoclay) through in situ polymerization, which is the result of the interaction between Cin and organoclay. The incorporation of organoclay reduces the polymer chain's mobility and, therefore, increases the thermal stability of the composite films. In some experimental conditions, the clay is located both inside and on the surface of the film, thus, affecting the mechanical and thermal properties as well as the surface properties of the composite films. The incorporation of organoclay decreases the water contact angle of the composite film by more than 15%, whatever the amount of cinnamaldehyde. However, the incorporation of cinnamaldehyde has the opposite effect on film surface properties. Indeed, for the water vapor permeability (WVP), the effect of cinnamaldehyde on the film barrier properties is much higher in the presence of organoclay. The incorporation of hydrophobic compounds into the polymer films reduces the water content, which acts as a plasticizer and, therefore, decreases the WVP by more than 17%. Linseed oil has a natural antioxidant activity (~97%) due to the higher content of unsaturated fatty acids, and this activity increased with the amount of organoclay and cinnamaldehyde.


Asunto(s)
Aceite de Linaza , Polímeros , Polimerizacion , Arcilla , Polímeros/química , Vapor
17.
Animals (Basel) ; 12(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009731

RESUMEN

Intrauterine Growth Restriction (IUGR) is a major problem in pig production and different strategies, mainly maternal supplementation with different agents, are currently being studied. The combination of hydroxytyrosol and n3-PUFA seems to be a promising treatment to counteract IUGR, since the combination may help improve n3-PUFA composition and lower the inflammatory status of IUGR piglets. The aim of the present study is to determine the effects of a maternal supplementation, from day 35 to day 100 of pregnancy, with linseed oil and hydroxytyrosol on the fetal FA composition. The results showed higher n3 levels, including eicosapentaenoic and docosahexaenoic FA in the offspring from treated gilts, which showed lower n6-PUFA/n3-PUFA (n6/n3) ratios. Saturated and monounsaturated fatty acids were also affected by treatment, especially in the muscle and brain. Thus, a maternal supplementation with linseed oil and hydroxytyrosol affected the fetal FA tissue composition, which could have implications in pig production due to the improvement of the piglets' health status.

18.
Animals (Basel) ; 12(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35804615

RESUMEN

Increasing the levels of n-3 fatty acids (FA) in dairy products is an important goal in terms of enhancing the nutritional value of these foods for the consumer. The purpose of this research was to evaluate the effects of linseed and algae oil supplements in ovine isoenergetic diets on healthy milk fatty acid composition, mainly n-3. Seventy-two Churra dairy ewes were divided and randomly assigned to four experimental treatments for 6 weeks. The treatments consisted of a TMR (40:60 forage:concentrate ratio) that varied according to the inclusion of different types of fat (23 g/100 g TMR): hydrogenated palm oil (control), linseed oil (LO), calcium soap of linseed oil (CaS-LO) and marine algae oil (AO). The most effective lipid supplement to increase n-3 FA in milk was AO. 22:6 n-3 and total n-3 PUFA content increased from 0.02 and 0.60% (control) to 2.63 and 3.53% (AO), respectively. All diets supplemented with n-3 FA diminished the content of saturated FA in milk and its atherogenic index, while the levels of trans-11 18:1 and cis-9 trans-11 18:2 significantly increased. Overall, the enhancement of n-3 FA in ewe's milk would be advantageous for the manufacture of nutritionally improved cheeses.

19.
Theriogenology ; 189: 127-136, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35753226

RESUMEN

Environmental heat stress in sub-tropical climates negatively impacts boar semen production and its quality. The present study aimed to examine the heat stress alleviating effects of dietary linseed oil on semen quality and antioxidant status of boar, in the summer and winter seasons in sub-tropical climate. Six Hampshire crossbreed boars were fed with 90 mL linseed oil (treatment) whereas six boars of the same breed were fed 90 mL vegetable oil (control) for sixteen weeks during both season. Sperm quality was assessed for motility, viability, abnormality, acrosomal integrity, and Hypo-osmotic swelling test (HOST). Sperm velocity attributes were assessed by computer-assisted semen analysis (CASA). Antioxidants (glutathione peroxidase; GPx, catalase; CAT, total antioxidant capacity; TAC and nitric oxide; NO) and lipid peroxidation (malondialdehyde; MDA) were measured in seminal plasma and serum. Gas chromatography-mass spectrometry (GC-MS) was used for the estimation of fatty acid composition of seminal plasma and spermatozoa. Feeding linseed oil to the boars significantly (p < 0.05) improved sperm quality at the fresh stage and after 72 h of liquid storage in both season. There was a significant (p < 0.01) effect of treatment and season on semen quality parameters. Significant boar (p < 0.05) effect was recorded on reaction time, semen volume, sperm abnormality, acrosomal integrity and HOST reactive sperm. There was a significant (p < 0.01) effect of treatment and season on the velocity attributes viz. VAP, VSL, VCL, ALH, BCF and STR%. Linseed oil supplementation significantly (p < 0.01) enhanced antioxidant and lowered MDA levels in serum as well as seminal plasma. The concentration of alpha-linolenic (ALA), arachidonic and docosahexaenoic (DHA) fatty acids were significantly (p < 0.01) increased in seminal plasma and sperm after linseed oil supplementation. In conclusion, linseed oil supplementation to boar during high THI months improved the semen quality parameters viz. semen volume, sperm concentration, and progressive motile sperm, along with enhanced antioxidant capacity.


Asunto(s)
Antioxidantes , Análisis de Semen , Animales , Antioxidantes/análisis , Antioxidantes/farmacología , Dieta/veterinaria , Ácidos Grasos/farmacología , Humedad , Aceite de Linaza/farmacología , Masculino , Fitomejoramiento , Semen/química , Análisis de Semen/veterinaria , Motilidad Espermática , Espermatozoides , Porcinos , Temperatura , Clima Tropical
20.
Animals (Basel) ; 12(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454218

RESUMEN

The aim of the study was to show the impact of environmental conditions and dietary supplementation with ethyl esters of linseed oil on the quality of the rabbit hair coat. The research was divided into 4 stages: laboratory (summer and winter) and outdoor (summer and winter). In each stage of the research, animals were divided into control and experimental groups. The animals were fed in accordance with the feeding standards of reproductive rabbits during the period of sexual dormancy. The rabbits from the experimental groups during the first two months were given an addition of ethyl linseed oil to the feed. In the experiment, linseed oil was cold-pressed directly in the laboratory. Three samples of hair were collected: before the study, after two months of treatment, and after two months from the end of supplementation. The hair coat biological properties, such as share of individual hair fractions (%), heat transfer index (HTI), hair diameter (µm), as well as physico-mechanical properties such as breaking force (N), breaking stress (kg/cm2) and elongation (%) were performed. Moreover, the histological structure of hair and histological hair evaluation were performed. The fatty acid profile was determined in the hair as well. The obtained results of the content of individual fatty acids were grouped into saturated fatty acids and unsaturated fatty acids. In addition, omega-3 and omega-6 were distinguished from the group of unsaturated acids. The environmental conditions have a major impact on the quality of the rabbit coat. The best results of hair thickness and their heat protection were obtained from animals kept outdoors. The studies did not show an influence of the administered preparation on the quality of the rabbit coat. The hair became thinner, but more flexible and tear-resistant. Administration of linseed oil ethyl esters had significant, beneficial changes in the fatty acid profile in hair and hair sebum were observed. There was a significant increase in omega-3 acids, and a significant decrease in the ratio of omega-6 to omega-3 acids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA