Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 360: 129994, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33989877

RESUMEN

The combinations of curcumin with green tea flavan-3-ols produce various synergistic biological effects. This study aimed to verify the antioxidant effects in mixtures of curcumin with (-)-epicatechin (EC) or with EC fraction from green tea in a non-polar lipid system (triacylglycerol autoxidation) and in a polar conditions (ABTS assay). Curcumin was 2.5-2.6 and 2.9-3.6 times weaker antioxidant than EC and EC fraction, respectively. The synergism was found in mixtures using the isobologram analysis of ABTS•+ scavenging activity results. The strongest effect with a combination index of 0.751 was in the equimolar mixture of pure compounds. In the lipid system, antagonism occurred for curcumin and EC fraction combination. However, an additive effect was found between curcumin and EC. In conclusion, the antioxidant effects in the curcumin and EC mixtures depended on the polarity of the assay media, the ratio of antioxidants, and presence other phenolics in the system.


Asunto(s)
Antioxidantes/química , Catequina/química , Curcumina/química , Té/química , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Sinergismo Farmacológico , Cinética , Extractos Vegetales/química , Estereoisomerismo , Té/metabolismo
2.
J Food Biochem ; 45(1): e13584, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33340138

RESUMEN

The multi-target activity of curcumin makes it a promising pharmacological lead for structural modifications focused on the preparation of new better therapeutics with improved bioavailability. A possible modification is to "decompose" the parent curcumin structure into constituent units and to build up curcumin analogues with biphenyl structural moiety. The antioxidant properties of the so-called "monomers" (m1-m3) and "dimers" (d1-d3) are studied experimentally and computationally. Their protective effects as chain-breaking antioxidants are investigated for the individual compounds and in binary/ternary compositions with α-tocopherol (TOH) and ascorbyl palmitate (AscPH). All monomers manifest significant synergism up to 70% in mixtures with TOH. Synergistic effects are found for the ternary compositions of monomeric analogues upon addition to the binary mixture of standard antioxidants (TOH + AscPH). Dimers with biphenyl skeleton manifest a lower potential in compositions under lipid oxidation conditions. DFT computations provide a detailed insight into the structure and antiradical properties of the curcumin analogues and standard antioxidants. PRACTICAL APPLICATIONS: Bioactive compounds in the diet play a crucial role in the prevention of numerous diseases in whose pathogenesis oxidative stress is well known to be involved. Therefore, enhancement of the antioxidant status of the biological target is often helpful. Two of the monomers studied are considered leading agents in the treatment or prophylaxis of smooth muscle disorders and are useful in the maintenance of the normal gut function- as a calmative for the gut and to ease upset stomach. We hypothesized that the presence of a biphenyl scaffold in the parent molecular structure can enhance the biological activity. Equimolar mixtures of TOH with studied compounds have potential application in food chemistry and medicine. A composition comprising the active agent and additional components (strong conventional antioxidants) may be administered in foodstuffs, as a food supplement, beverage supplement, or as a pharmaceutical composition.


Asunto(s)
Antioxidantes , Curcumina , Antioxidantes/farmacología , Curcumina/farmacología , Estructura Molecular , Oxidación-Reducción , alfa-Tocoferol/farmacología
3.
J Food Sci Technol ; 52(2): 773-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25694685

RESUMEN

The deleterious effects of lipid autoxidation are of major concern to the food industry and can be prevented by food antioxidants. In this vein, the phenolic contents and antioxidant potential of traditional plants of Mauritius such as P. betle L. (Piperaceae), M. koenigii L. Sprengel. (Rutaceae), O. gratissimum L. (Lamiaceae), O. tenuiflorum L. (Lamiaceae), and commercially available Mauritian green and black teas were evaluated. Their ferric reducing antioxidant power (FRAP) were compared to that of butylated hydroxytoluene (BHT) with the following order of potency: BHT > "Natural" commercial green tea > "Black Label" commercial black tea > O. gratissimum > P. betle > O. tenuiflorum > M. koenigii. The trolox equivalent antioxidant capacity (TEAC) assay reflected a similar antioxidative order for BHT and "Natural" commercial green tea, with however P. betle, O. tenuiflorum and O. gratissimum exhibiting higher activities than "Black Label" commercial black tea and M. koenigii. Based on their potent antioxidant capacity, P. betle (0.2 % m/m) and O. tenuiflorum (0.2 % m/m) extracts, and green tea (0.1 % m/m) infusate were compared with BHT (0.02 % m/m) on their ability to retard lipid oxidation in unstripped sunflower oil and mayonnaise during storage at 40 °C. P. betle and green tea were more effective than BHT in both food systems. Moreover, odour evaluation by a sensory panel showed that the plant extracts and green tea infusate effectively delayed the development of rancid odours in unstripped sunflower oil and mayonnaise (p < 0.05).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA