Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Pharm ; 656: 124096, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583821

RESUMEN

Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease that seriously threatens human life and health. Our previous study demonstrated the unique superiority of traditional Chinese medicine cryptotanshinone (CTS) combined with sustained pulmonary drug delivery for treating PF. In this study, we aimed to enhance the selectivity, targeting efficiency and sustained-release capability based on this delivery system. To this end, we developed and evaluated CTS-loaded modified liposomes-chitosan (CS) microspheres SM(CT-lipo) and liposome-exosome hybrid bionic vesicles-CS microspheres SM(LE). The prepared nano-in-micro particles system integrates the advantages of the carriers and complements each other. SM(CT-lipo) and SM(LE) achieved lung myofibroblast-specific targeting through CREKA peptide binding specifically to fibronectin (FN) and the homing effect of exosomes on parent cells, respectively, facilitating efficient delivery of anti-fibrosis drugs to lung lesions. Furthermore, compared with daily administration of conventional microspheres SM(NC) and positive control drug pirfenidone (PFD), inhaled administration of SM(CT-lipo) and SM(LE) every two days still attained similar efficacy, exhibiting excellent sustained drug release ability. In summary, our findings suggest that the developed SM(CT-lipo) and SM(LE) delivery strategies could achieve more accurate, efficient and safe therapy, providing novel insights into the treatment of chronic PF.


Asunto(s)
Quitosano , Exosomas , Fibronectinas , Liposomas , Fibrosis Pulmonar , Animales , Humanos , Masculino , Administración por Inhalación , Antifibróticos/administración & dosificación , Antifibróticos/química , Quitosano/química , Quitosano/administración & dosificación , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Exosomas/química , Fibronectinas/administración & dosificación , Liposomas/química , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Microesferas , Fenantrenos/administración & dosificación , Fenantrenos/química , Fenantrenos/farmacocinética , Fibrosis Pulmonar/tratamiento farmacológico , Piridonas , Ratas Sprague-Dawley , Ratas
2.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542073

RESUMEN

Modulated electro-hyperthermia (mEHT) is an adjuvant cancer therapy that enables tumor-selective heating (+2.5 °C). In this study, we investigated whether mEHT accelerates the tumor-specific delivery of doxorubicin (DOX) from lyso-thermosensitive liposomal doxorubicin (LTLD) and improves its anticancer efficacy in mice bearing a triple-negative breast cancer cell line (4T1). The 4T1 cells were orthotopically injected into Balb/C mice, and mEHT was performed on days 9, 12, and 15 after the implantation. DOX, LTLD, or PEGylated liposomal DOX (PLD) were administered for comparison. The tumor size and DOX accumulation in the tumor were measured. The cleaved caspase-3 (cC3) and cell proliferation were evaluated by cC3 or Ki67 immunohistochemistry and Western blot. The LTLD+mEHT combination was more effective at inhibiting tumor growth than the free DOX and PLD, demonstrated by reductions in both the tumor volume and tumor weight. LTLD+mEHT resulted in the highest DOX accumulation in the tumor one hour after treatment. Tumor cell damage was associated with cC3 in the damaged area, and with a reduction in Ki67 in the living area. These changes were significantly the strongest in the LTLD+mEHT-treated tumors. The body weight loss was similar in all mice treated with any DOX formulation, suggesting no difference in toxicity. In conclusion, LTLD combined with mEHT represents a novel approach for DOX delivery into cancer tissue.


Asunto(s)
Doxorrubicina/análogos & derivados , Hipertermia Inducida , Neoplasias , Ratones , Animales , Liposomas , Antígeno Ki-67 , Hipertermia Inducida/métodos , Doxorrubicina/farmacología , Hipertermia , Línea Celular Tumoral , Polietilenglicoles
3.
ACS Nano ; 18(11): 8051-8061, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38445976

RESUMEN

The intracellular clustering of anisotropic nanoparticles is crucial to the improvement of the localized surface plasmon resonance (LSPR) for phototherapy applications. Herein, we programmed the intracellular clustering process of spiky nanoparticles (SNPs) by encapsulating them into an anionic liposome via a frame-guided self-assembly approach. The liposome-encapsulated SNPs (lipo-SNPs) exhibited distinct and enhanced lysosome-triggered aggregation behavior while maintaining excellent monodispersity, even in acidic or protein-rich environments. We explored the enhancement of the photothermal therapy performance for SNPs as a proof of concept. The photothermal conversion efficiency of lipo-SNPs clusters significantly increased 15 times compared to that of single lipo-SNPs. Upon accumulation in lysosomes with a 2.4-fold increase in clustering, lipo-SNPs resulted in an increase in cell-killing efficiency to 45% from 12% at 24 µg/mL. These findings indicated that liposome encapsulation provides a promising approach to programing nanoparticle clustering at the target site, which facilitates advances in the development of smart nanomedicine with programmable enhancement in LSPR.


Asunto(s)
Liposomas , Nanopartículas , Fototerapia/métodos , Resonancia por Plasmón de Superficie , Nanomedicina
4.
Colloids Surf B Biointerfaces ; 237: 113835, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479260

RESUMEN

The limited application of garlic essential oil (GEO) is attributed to its pungent taste, poor water solubility and low bioavailability. Liposomes are nontoxic, biodegradable and biocompatible, and ß-cyclodextrin can inhibit undesirable odors and improve the stability and bioavailability. Thus a promising dual-layer GEO ß-cyclodextrin inclusion compound liposome (GEO-DCL) delivery system with both advantages was designed and prepared in this study. Experimental results indicated that the encapsulation efficiency of GEO-DCLs was 5% higher than that of GEO liposomes (GEO-CLs), reaching more than 88%. In vitro release experiment showed that the release rate of GEO in GEO-DCLs was 40% lower than that of GEO-CLs after incubation in gastric juice for 6-h, indicating that the stability of GEO-DCLs was better than GEO-CLs. Evaluation of the effects of GEO-DCLs on lowering blood lipid levels in hypercholesterolemia mice. GEO-DCLs could reduce the weight and fat deposition in hypercholesterolemia mice. Inhibiting the increase of TC, LDL-C, and decrease of HDL-C in mice. The degree of liver injury was decreased, the number of round lipid droplets in liver cytoplasm was reduced, and the growth of fat cells was inhibited. The lipid-lowering effects of GEO-DCLs were dose-dependent. GEO-DCL can improve the bioavailability of GEO and improve dyslipidemia. Based on GEO's efficacy in lowering blood lipids, this study developed a kind of GEO-DCL compound pomegranate juice beverage with good taste, miscibility and double effect of reducing blood lipids. This study lays a foundation for the application of GEO in the field of functional food.


Asunto(s)
Ajo , Hipercolesterolemia , Hiperlipidemias , Aceites Volátiles , beta-Ciclodextrinas , Ratones , Animales , Liposomas , Aceites Volátiles/farmacología , Antioxidantes
5.
Phytomedicine ; 128: 155415, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503151

RESUMEN

BACKGROUND: Chichoric acid (CA) is a major active ingredient found in chicory and Echinacea. As a derivative of caffeic acid, it has various pharmacological effects. PURPOSE: Due to the unclear etiology and disease mechanisms, effective treatment methods for ulcerative colitis (UC) are currently lacking. The study investigated the therapeutic effects of the folate-chicory acid liposome on both LPS-induced macrophage inflammation models and dextran sulfate sodium (DSS)-induced mouse UC models. METHODS: Folate-chicory acid liposome was prepared using the double emulsion ultrasonic method with the aim of targeting folate receptors specifically expressed on macrophages. The study investigated the therapeutic effects of the folate-chicory acid liposome on both LPS-induced macrophage inflammation models and DSS -induced mouse UC models. Furthermore, the effects of the liposomes on macrophage polarization and their underlying mechanisms in UC were explored. RESULTS: The average particle size of folate-chicory acid liposome was 120.4 ± 0.46 nm, with an encapsulation efficiency of 77.32 ± 3.19 %. The folate-chicory acid liposome could alleviate macrophage apoptosis induced by LPS, decrease the expression of inflammatory factors in macrophages, enhance the expression of anti-inflammatory factors, inhibit macrophage polarization towards the M1 phenotype, and mitigate cellular inflammation in vetro. In vivo test, folate-chicory acid liposome could attenuate clinical symptoms, increased colon length, reduced DAI scores, CMDI scores, and alleviated the severity of colonic histopathological damage in UC mice. Furthermore, it inhibited the polarization of macrophages towards the M1 phenotype in the colon and downregulated the TLR4/NF-κB signaling pathway, thereby ameliorating UC in mice. CONCLUSION: Folate-chicory acid liposome exhibited a uniform particle size distribution and high encapsulation efficiency. It effectively treated UC mice by inhibiting the polarization of macrophages towards the M1 phenotype in the colon and downregulating the TLR4/NF-κB signaling pathway.


Asunto(s)
Ácidos Cafeicos , Colitis Ulcerosa , Ácido Fólico , Lipopolisacáridos , Liposomas , Macrófagos , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Ácido Fólico/farmacología , Ácido Fólico/química , Ácido Fólico/análogos & derivados , Receptor Toll-Like 4/metabolismo , Ratones , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Masculino , Células RAW 264.7 , Modelos Animales de Enfermedad , Sulfato de Dextran , Succinatos/farmacología , Succinatos/química , Ratones Endogámicos C57BL , Apoptosis/efectos de los fármacos , Antiinflamatorios/farmacología
6.
BMC Complement Med Ther ; 24(1): 100, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402151

RESUMEN

Topical ROCEN (Roc), liposomal arthrocen hydrogel, is a robust anti-inflammatory formulation which has been developed for skin diseases such as eczema. Therefore, we aimed to evaluate the efficacy of Roc 2% on the healing of imiquimod (Imiq)-induced psoriasis in a mouse model. Psoriasis was induced by applying Imiq topically to the mice's back skin once daily for five consecutive days. Moreover, a group of animal experiments was treated with Cyclosporine A (CsA), as a standard drug, for comparison with Roc treated group. The efficacy of Roc on skin lesions was evaluated by employing Psoriasis Area and Severity Index (PASI) scores. Subsequently, the skin samples were assessed using Baker's scoring system and Masson's trichrome staining, immunohistochemistry, and real-time PCR analysis. The observational and histopathological results indicated that topical application of Roc significantly reduced the PASI and Baker's scores in the plaque-type psoriasis model. Moreover, biochemical assessments showed that Roc suppressed significantly the increase of IL-17, IL-23, and TNF-α cytokines gene expression in the lesion site of psoriatic animals. In conclusion topical Roc 2% could significantly alleviate major pathological aspects of Imiq-induced psoriasis through inflammation inhibition which was comparable to the CsA drug. The beneficial outcomes of Roc application in the psoriasis model suggest its potential usage in complementary medicine.


Asunto(s)
Ciclosporina , Psoriasis , Animales , Ratones , Ciclosporina/farmacología , Modelos Animales de Enfermedad , Piel/patología , Psoriasis/tratamiento farmacológico , Citocinas/metabolismo , Imiquimod/efectos adversos
7.
J Biol Chem ; 300(2): 105649, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237683

RESUMEN

Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the ß1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.


Asunto(s)
Fosfolípidos , Receptores Acoplados a Proteínas G , Animales , Transporte Biológico , Colesterol , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Bovinos , Pavos
8.
Nano Lett ; 24(1): 130-139, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150297

RESUMEN

Photothermal immunotherapy has become a promising strategy for tumor treatment. However, the intrinsic drawbacks like light instability, poor immunoadjuvant effect, and poor accumulation of conventional inorganic or organic photothermal agents limit their further applications. Based on the superior carrying capacity and active tumor targeting property of living bacteria, an immunoadjuvant-intensified and engineered tumor-targeting bacterium was constructed to achieve effective photothermal immunotherapy. Specifically, immunoadjuvant imiquimod (R837)-loaded thermosensitive liposomes (R837@TSL) were covalently decorated onto Rhodobacter sphaeroides (R.S) to obtain nanoimmunoadjuvant-armed bacteria (R.S-R837@TSL). The intrinsic photothermal property of R.S combined R837@TSL to achieve in situ near-infrared (NIR) laser-controlled release of R837. Meanwhile, tumor immunogenic cell death (ICD) caused by photothermal effect of R.S-R837@TSL, synergizes with released immunoadjuvants to promote maturation of dendritic cells (DCs), which enhance cytotoxic T lymphocytes (CTLs) infiltration for further tumor eradication. The photosynthetic bacteria armed with immunoadjuvant-loaded liposomes provide a strategy for immunoadjuvant-enhanced cancer photothermal immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Rhodobacter sphaeroides , Humanos , Adyuvantes Inmunológicos , Liposomas , Imiquimod , Neoplasias/patología , Inmunoterapia , Línea Celular Tumoral , Fototerapia
9.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5195-5204, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114109

RESUMEN

The 3-succinate-30-stearyl glycyrrhetinic acid(18-GA-Suc) was inserted into glycyrrhetinic acid(GA)-tanshinone Ⅱ_A(TSN)-salvianolic acid B(Sal B) liposome(GTS-lip) to prepare liver targeting compound liposome(Suc-GTS-lip) mediated by GA receptors. Next, pharmacokinetics and tissue distribution of Suc-GTS-lip and GTS-lip were compared by UPLC, and in vivo imaging tracking of Suc-GTS-lip was conducted. The authors investigated the effect of Suc-GTS-lip on the proliferation inhibition of hepatic stellate cells(HSC) and explored their molecular mechanism of improving liver fibrosis. Pharmacokinetic results showed that the AUC_(Sal B) decreased from(636.06±27.73) µg·h·mL~(-1) to(550.39±12.34) µg·h·mL~(-1), and the AUC_(TSN) decreased from(1.08±0.72) µg·h·mL~(-1) to(0.65±0.04) µg·h·mL~(-1), but the AUC_(GA) increased from(43.64±3.10) µg·h·mL~(-1) to(96.21±3.75) µg·h·mL~(-1). The results of tissue distribution showed that the AUC_(Sal B) and C_(max) of Sal B in the liver of the Suc-GTS-lip group were 10.21 and 4.44 times those of the GTS-lip group, respectively. The liver targeting efficiency of Sal B, TSN, and GA in the Suc-GTS-lip group was 40.66%, 3.06%, and 22.08%, respectively. In vivo imaging studies showed that the modified liposomes tended to accumulate in the liver. MTT results showed that Suc-GTS-lip could significantly inhibit the proliferation of HSC, and RT-PCR results showed that the expression of MMP-1 was significantly increased in all groups, but that of TIMP-1 and TIMP-2 was significantly decreased. The mRNA expressions of collagen-I and collagen-Ⅲ were significantly decreased in all groups. The experimental results showed that Suc-GTS-lip had liver targeting, and it could inhibit the proliferation of HSC and induce their apoptosis, which provided the experimental basis for the targeted treatment of liver fibrosis by Suc-GTS-lip.


Asunto(s)
Ácido Glicirretínico , Liposomas , Humanos , Células Estrelladas Hepáticas , Ácido Glicirretínico/farmacología , Hígado , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Colágeno/farmacología
10.
Iran J Pharm Res ; 22(1): e131758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116552

RESUMEN

Background: Chemotherapy drugs can cause drug resistance and other problems when treating lung cancer, which leads to treatment failure. Ursolic acid (UA) is used in formulations based on traditional Chinese medicine. UA has excellent anti-tumor effects, but they are limited by solubility and non-specificity to tumor cells. Objectives: To overcome these issues, we created a novel hyaluronic acid (HA)-targeted liposome system for delivering UA (HA-Lipo/UA) to explore the targeting and anti-tumor effects of UA. Methods: We constructed the HA-Lipo/UA delivery system by the thin film hydration method. The uptake and localization of UA were detected by flow cytometry and microscope. Cell proliferation of A549 cells was detected by MTT assays. Apoptosis and reactive oxygen species (ROS) expression of A549 cells were also evaluated after being treated with HA-Lipo/UA. Western blot analysis evaluated the anti-tumor mechanism of HA-Lipo/UA. Results: HA-Lipo/UA exhibited favorable targeting of the cluster of differentiation (CD)44-overexpressing A549 cells. HA-Lipo/UA exhibited significant inhibition of the proliferation of A549 cells and induced their apoptosis compared with the corresponding monotherapies. HA-Lipo/UA induced overexpression of reactive oxygen species and upregulated expression of p53 and apoptosis-related protein in the transforming growth factor-ß signaling (ARTS) pathway, which induced cytochrome-c release, activation of caspase-3, and promoted mitochondrial apoptosis in A549 cells. Conclusions: Taken together, these data suggested that HA-Lipo/UA could be used to target tumor cells.

11.
Cell Mol Life Sci ; 80(12): 371, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38001384

RESUMEN

Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases.


Asunto(s)
Liposomas , Retina , Ratones , Humanos , Animales , Distribución Tisular , Retina/metabolismo , Fototransducción , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/genética , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Calcio/metabolismo
12.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958750

RESUMEN

Nano-range bioactive colloidal carrier systems are envisaged to overcome the challenges associated with treatments of numerous diseases. Lipid nanoparticles (LNPs), one of the extensively investigated drug delivery systems, not only improve pharmacokinetic parameters, transportation, and chemical stability of encapsulated compounds but also provide efficient targeting and reduce the risk of toxicity. Over the last decades, nature-derived polyphenols, vitamins, antioxidants, dietary supplements, and herbs have received more attention due to their remarkable biological and pharmacological health and medical benefits. However, their poor aqueous solubility, compromised stability, insufficient absorption, and accelerated elimination impede research in the nutraceutical sector. Owing to the possibilities offered by various LNPs, their ability to accommodate both hydrophilic and hydrophobic molecules and the availability of various preparation methods suitable for sensitive molecules, loading natural fragile molecules into LNPs offers a promising solution. The primary objective of this work is to explore the synergy between nature and nanotechnology, encompassing a wide range of research aimed at encapsulating natural therapeutic molecules within LNPs.


Asunto(s)
Suplementos Dietéticos , Nanopartículas , Disponibilidad Biológica , Liposomas , Sistemas de Liberación de Medicamentos , Nanopartículas/química
13.
Photodiagnosis Photodyn Ther ; 44: 103872, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926327

RESUMEN

Photo-responsive therapy is an emerging treatment modality due to its bioimaging and therapeutic properties. Phototherapy induces localized hyperthermia and selectively eradicates cancer cells. The current study showed that multifunctional biodegradable liposome nanosystem (HIL NPs) containing Hyptis suaveolens bioactive molecules and IR-775, a NIR dye showed efficient bioavailability to cancer ells and allowed tumor ablation upon NIR laser irradiation. The resulting entities present in the nanosystem, i.e., bioactive molecules of Hyptis, serve as an anticancer agent, and IR-775 helps in the photothermal ablation of highly metastatic breast cancer cells. Hyptis suaveolens is a weed that grows rampantly, impeding the growth of neighboring plants; nonetheless, its bioactive compounds have demonstrated therapeutic benefits. The obtained HIL NPs, photothermally active liposome nanosystem showed a high fluorescence absorption peak in the NIR range and delivered a photothermal conversion efficiency of 55.20 % upon NIR laser irradiation. TEM and particle size analyzer revealed that HIL NPs have a size of 141 ± 30 nm with a spherical shape. The results of in-ovo (zebrafish) experiments have shown efficient bioimaging capabilities with minimal concentrations of HIL NPs compared to respective controls. Furthermore, in-vitro studies of HIL NPs against triple-negative breast cancer (4T1) indicated effective anticancer activity by a combined cytotoxic effect and hyperthermia. Tumor ablation was facilitated by reactive oxygen species production and hyperthermia, leading to DNA damage and apoptosis due to overexpression of É£-H2AX, Cathepsin B, and p53, which halted cancer cell proliferation. Therefore, HIL NPs demonstrated effective anticancer effects induced by combined phyto-photothermal therapy when evaluated against an in-vitro breast cancer model.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Hyptis , Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Terapia Fototérmica , Fotoquimioterapia/métodos , Liposomas , Pez Cebra , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Hipertermia Inducida/métodos , Fototerapia/métodos , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico
14.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762597

RESUMEN

The use of face masks during the COVID-19 pandemic resulted in significant societal changes, particularly for individuals with sensitive skin. To address this issue, the researchers explored traditional medicine and identified Potentilla anserina extract as a potential solution due to its anti-inflammatory and moisturizing effects. This research investigated how this extract influences skin hydration, barrier function, and itching. The findings revealed that the extract had a hydrating effect by elevating Aquaporin-3 (AQP3) expression. Additionally, the study demonstrated that the extract improved skin barrier function, with Filaggrin (FLG) expression being approximately three times higher (p < 0.001) in the Potentilla-anserina-extract-treated group compared to the control group and the genes associated with itching being reduced. In this process, we researched and developed HPßCD (hydroxypropyl-ß-cyclodextrin)-Liposome containing Potentilla anserina extract, gradually and sustainably releasing the active components of the Potentilla anserina extract. During four weeks of clinical trials involving individuals wearing masks for over 6 h a day, a moisturizer containing Potentilla anserina extract demonstrated a notable reduction in skin redness. Hemoglobin values (A.U.), which serve as indicators of skin redness, showed decreases of 5.06% and 6.74% in the test area inside the mask after 2 and 4 weeks, respectively, compared to the baseline measurements. Additionally, the moisturizer containing Potentilla anserina extract notably decreased Trans Epidermal Water Loss (TEWL), with reductions of 5.23% and 9.13% observed in the test area inside the mask after 2 and 4 weeks, respectively. The moisturizer, especially in the test area treated with the extract-containing moisturizer, significantly enhanced skin hydration compared to the control group. The Corneometer values (A.U) exhibited notable increases of 11.51% and 15.14% in the test area inside the mask after 2 and 4 weeks, respectively. These discoveries emphasize the potential of Potentilla anserina extract and its utility in tackling skin issues caused by mask wearing, including enhancing moisture, fortifying the skin's barrier, and alleviating itching. These results indicate that moisturizers incorporating specific ingredients provide greater benefits compared to conventional moisturizers.


Asunto(s)
COVID-19 , Potentilla , Humanos , Máscaras , Pandemias , Prurito , 2-Hidroxipropil-beta-Ciclodextrina
15.
Int J Nanomedicine ; 18: 4617-4632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600118

RESUMEN

Purpose: The aim of this study was to develop a liposome gel containing levo-tetrahydropalmatine (l-THP) and evaluate its transdermal properties. Methods: A L16 (43) orthogonal experiment was conducted to optimize the preparation of l-THP liposomes and assess their characterization and stability in a gel. The transdermal features were analyzed through in vivo and in vitro experiments on rats and Strat-M® membrane, respectively. The metabolism of l-THP in liver and skin S9 fractions was also studied. Results: The optimization of the orthogonal experiment revealed that the ideal mass ratio of phosphatidylcholine, cholesterol, and l-THP during preparation was 10:1:3. The resulting liposome exhibited a particle size of 68 nm, a PDI of 0.27, a drug loading of 4.33%, an encapsulation of 18.79%, and a zeta potential of -41.27 mV. Both the l-THP and its liposome-gel formulation were found to be stable for a duration of 45 days at 4 °C and 30 °C. During the in vivo transdermal study, the maximum concentration (Cmax) of l-THP from the liposome gel was 0.16 µg/mL, and the time to reach this maximum concentration (tmax) was 1.2 hours. The relative bioavailability of l-THP in the liposome gel was 233.8% compared to the emulsion. The concentration of l-THP (prepared in PBS) decreased at a rate of 0.0067 µg/mL/min in the liver S9 fraction and 0.0027 µg/mL/min in the skin S9 fraction, however, this difference was not observed when l-THP was encapsulated in liposomes. l-THP passed through the Strat-M® membrane at a rate of 0.0032 mg/cm2/h and 0.002 mg/cm2/h for the emulsion and liposome gel, respectively. Conclusion: The optimal process for the preparation of l-THP liposomes was obtained. Compared to the emulsion, the liposomes provided greater bioavailability when used transdermally. The liposomes also provided greater stability for l-THP during storage.


Asunto(s)
Liposomas , Piel , Animales , Ratas , Emulsiones , Lecitinas
16.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3472-3484, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37474984

RESUMEN

Ginsenoside Rg_3, an active component of traditional Chinese medicine(TCM), was used as the substitute for cholesterol as the membrane material to prepare the ginsenoside Rg_3-based liposomes loaded with dihydroartemisinin and paclitaxel. The effect of the prepared drug-loading liposomes on triple-negative breast cancer in vitro was evaluated. Liposomes were prepared with the thin film hydration method, and the preparation process was optimized by single factor experiments. The physicochemical properties(e.g., particle size, Zeta potential, and stability) of the liposomes were characterized. The release behaviors of drugs in different media(pH 5.0 and pH 7.4) were evaluated. The antitumor activities of the liposomes were determined by CCK-8 on MDA-MB-231 and 4T1 cells. The cell scratch test was carried out to evaluate the effect of the liposomes on the migration of MDA-MB-231 and 4T1 cells. Further, the targeting ability of liposomes and the mechanism of lysosome escape were investigated. Finally, H9c2 cells were used to evaluate the potential cardiotoxicity of the preparation. The liposomes prepared were spheroid, with uniform particle size distribution, the ave-rage particle size of(107.81±0.01) nm, and the Zeta potential of(2.78±0.66) mV. The encapsulation efficiency of dihydroartemisinin and paclitaxel was 57.76%±1.38% and 99.66%±0.07%, respectively, and the total drug loading was 4.46%±0.71%. The accumulated release of dihydroartemisinin and paclitaxel from the liposomes at pH 5.0 was better than that at pH 7.4, and the liposomes could be stored at low temperature for seven days with good stability. Twenty-four hours after administration, the inhibition rates of the ginsenoside Rg_3-based liposomes loaded with dihydroartemisinin(70 µmol·L~(-1)) and paclitaxel on MDA-MB-231 and 4T1 cells were higher than those of the positive control(adriamycin) and free drugs(P<0.01). Compared with free drugs, liposomes inhibited the migration of MDA-MB-231 and 4T1 cells(P<0.05). Liposomes demonstrated active targeting and lysosome escape. In particular, liposomes showed lower toxicity to H9c2 cells than free drugs(P<0.05), which indicated that the preparation had the potential to reduce cardiotoxicity. The findings prove that ginsenoside Rg_3 characterized by the combination of drug and excipient is an ideal substitute for lipids in liposomes and promoted the development of innovative TCM drugs for treating cancer.


Asunto(s)
Ginsenósidos , Neoplasias de la Mama Triple Negativas , Humanos , Paclitaxel/farmacología , Liposomas/química , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Cardiotoxicidad/tratamiento farmacológico , Línea Celular Tumoral
17.
J Microencapsul ; 40(6): 385-401, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37130079

RESUMEN

AIM: To determine the optimum condition for preparing chitooligosaccharide-catechin conjugate (COS-CAT) liposomes using different stabilising agents. METHODS: COS-CAT liposomes (0.1-1%, w/v) were prepared using soy phosphatidylcholine (SPC) (50-200 mM) and glycerol or cholesterol (25-100 mg). Encapsulation efficiency (EE), loading capacity (LC), physicochemical characteristics, FTIR spectra, thermal stability, and structure of COS-CAT liposomes were assessed. RESULTS: COS-CAT loaded liposome stabilised by cholesterol (COS-CAT-CHO) showed higher stability as shown by the highest EE (76.81%) and LC (4.57%) and the lowest zeta potential (ZP) (-76.51 mV), polydispersity index (PDI) (0.2674) and releasing efficiency (RE) (53.54%) (p < 0.05). COS-CAT-CHO showed the highest retention and relative remaining bioactivities of COS-CAT under various conditions (p < 0.05). FTIR spectra revealed the interaction between the choline group of SPC and -OH groups of COS-CAT. Phase transition temperature of COS-CAT-CHO was shifted to 184 °C, which was higher than others (p < 0.05). CONCLUSION: SPC and cholesterol-based liposome could be used as a promising vesicle for maintaining bioactivities of COS-CAT.


Asunto(s)
Catequina , Excipientes , Liposomas , Quitina , Lecitinas
18.
Biochem Biophys Rep ; 34: 101473, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37180756

RESUMEN

Purpose: The use of contrast media is essential to achieve high accuracy in diagnostic imaging. Iodine contrast media, one of these contrast media, has nephrotoxicity as a side effect. Therefore, the development of iodine contrast media that can reduce nephrotoxicity is expected. Since liposomes are generally adjustable in size (100-300 nm) and are not filtered by the renal glomerulus, we hypothesized that iodine contrast media could be encapsulated in liposomes and administered to avoid the nephrotoxicity of iodine contrast media. The aim of this study is to develop an iomeprol-containing liposome (IPL) agent with high iodine concentration and to investigate the effect of intravenous administration of IPL on renal function in a rat model with chronic kidney injury. Materials and methods: IPLs were prepared by encapsulating an iomeprol (400mgI/mL) solution in liposomes by a kneading method using a rotation-revolution mixer. Radiodensities of iomeprol and IPL were measured. IPL or iopamidol at normal dose (0.74 g I/kg) or high dose (3.7 g I/kg) was administered to healthy and 5/6-nephrectomized rats (n = 3-6). Serum creatinine (sCr) and histopathological change of tubular epithelial cells were evaluated after injection. Results: The iodine concentration of IPL was 220.7 mgI/mL, equivalent to 55.2% of the iodine concentration of iomeprol. The CT values of IPL was 4731.6 ± 53.2 HU, 59.04% that of iomeprol. The ratios of change in sCr in 5/6-nephrectomized rats that received high-dose iopamidol were 0.73, which were significantly higher than that in 5/6-nephrectomized rats that received high-dose IPL (-0.03) (p = 0.006). Change in foamy degeneration of tubular epithelial cells was confirmed in 5/6-nephrectomized rats that received high-dose iopamidol than that in the sham control group and healthy rats that received normal dose iopamiron (p = 0.016, p = 0.032, respectively). Foamy degeneration of tubular epitherial cells was rarely observed in the IPL injection group. Conclusions: We developed new liposomal contrast agents that have high iodine concentration and minimal effect on renal function.

19.
Fish Shellfish Immunol ; 138: 108776, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37182798

RESUMEN

Application of novel trend comprising antioxidant phytogenics is aiming to minimize the stress related factors and associated diseases in intensive fish culturing. Today, the concept of exploiting and protecting natural antioxidants represents a paradigm shift for the aqua feed industry. Therefore, our principal goal targeting liposome as a novel nanocarrier for curcumin is directed to attain superior performance, fillet antioxidant stability and bacterial resistance in Nile tilapia. A total of 500 Nile tilapia fingerlings (average body weight, 10.27 ± 0.10 g) assigned into five experimental groups in 25 glass aquaria of 120 L capacity at the density 20 fish/aquaria. The experimental groups were supplemented with varying doses of liposomal curcumin-NPs, LipoCur-NPs (0, 5, 15, 25 and 35 mg/kg diet) were reared for 12 weeks and later Streptococcus agalactiae (S. agalactiae) challenged model was performed. Inclusion of LipoCur-NPs (25 and 35 mg/kg diet) had the most prominent impact on Nile tilapia growth rate and feed conversion ratio. The immune boosting outcomes post supplementing 35 mg/kg diet of LipoCur-NPs were evidenced by higher myeloperoxidase, lysozyme and total immunoglobulin levels. Even after 4 weeks frozen storage, LipoCur-NPs at the dose of 35 mg/kg diet prominently increased (P < 0.05) the fillet scavenging capability for free radicals (1,1-diphenyl-2-picrylhydrazyl and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) with an inverse reduction in lipid peroxidation biomarker (malondialdehyde). Notably, upregulation of GSH-Px, CAT, and SOD genes in fillet of 35 mg/kg LipoCur-NPs fed fish coordinated with higher T-AOC and lower oxidative markers (ROS and H2O2). Post S. agalactiae challenge, higher supplementation levels of LipoCur-NPs (35 mg/kg diet) greatly attenuated the expression of its vital virulence genes (cfb, fbsA and cpsA) with higher expression of Igm, CXC-chemokine and MHC genes. Concordantly, downregulation of inflammatory markers (IL-1ß, TNF-α and IL-8) and upregulation of anti-inflammatory ones (IL-10 and TGF-ß) were remarkably documented. Based on these findings, the innovative curcumin loaded liposome was considered a novel multitargeting alternative not only playing an imperative role in Nile tilapia growth promotion and fillet stability upon storage, but also protecting efficiently against S. agalactiae.


Asunto(s)
Cíclidos , Curcumina , Enfermedades de los Peces , Animales , Antioxidantes/metabolismo , Streptococcus agalactiae/fisiología , Curcumina/farmacología , Liposomas , Peróxido de Hidrógeno , Suplementos Dietéticos/análisis , Dieta/veterinaria , Resistencia a la Enfermedad , Alimentación Animal/análisis
20.
ACS Nano ; 17(11): 10113-10128, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37229569

RESUMEN

The extracellular matrix (ECM) is a major driver of fibrotic diseases and forms a dense fibrous barrier that impedes nanodrug delivery. Because hyperthermia causes destruction of ECM components, we developed a nanoparticle preparation to induce fibrosis-specific biological hyperthermia (designated as GPQ-EL-DNP) to improve pro-apoptotic therapy against fibrotic diseases based on remodeling of the ECM microenvironment. GPQ-EL-DNP is a matrix metalloproteinase (MMP)-9-responsive peptide, (GPQ)-modified hybrid nanoparticle containing fibroblast-derived exosomes and liposomes (GPQ-EL) and is loaded with a mitochondrial uncoupling agent, 2,4-dinitrophenol (DNP). GPQ-EL-DNP can specifically accumulate and release DNP in the fibrotic focus, inducing collagen denaturation through biological hyperthermia. The preparation was able to remodel the ECM microenvironment, decrease stiffness, and suppress fibroblast activation, which further enhanced GPQ-EL-DNP delivery to fibroblasts and sensitized fibroblasts to simvastatin-induced apoptosis. Therefore, simvastatin-loaded GPQ-EL-DNP achieved an improved therapeutic effect on multiple types of murine fibrosis. Importantly, GPQ-EL-DNP did not induce systemic toxicity to the host. Therefore, the nanoparticle GPQ-EL-DNP for fibrosis-specific hyperthermia can be used as a potential strategy to enhance pro-apoptotic therapy in fibrotic diseases.


Asunto(s)
Matriz Extracelular , Hipertermia Inducida , Ratones , Animales , Fibrosis , Colágeno/farmacología , Fibroblastos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA