Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pharmaceutics ; 16(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38543205

RESUMEN

Breast cancer (BC) presents a growing global concern, mainly for the female population of working age. Their pathophysiology shows challenges when attempting to ensure conventional treatment efficacy without adverse effects. This study aimed to evaluate the efficacy of magneto-hyperthermia (MHT) therapy associated with supplementation with omega-3 polyunsaturated fatty acid (w-3 PUFA) and engagement in physical training (PT) for the triple-negative BC (TNBC) model. First, we assessed the physicochemical properties of iron oxide nanoparticles (ION) in biological conditions, as well as their heating potential for MHT therapy. Then, a bioluminescence (BLI) evaluation of the best tumor growth conditions in the TNBC model (the quantity of implanted cells and time), as well as the efficacy of MHT therapy (5 consecutive days) associated with the previous administration of 8 weeks of w-3 PUFA and PT, was carried out. The results showed the good stability and potential of ION for MHT using 300 Gauss and 420 kHz. In the TNBC model, adequate tumor growth was observed after 14 days of 2 × 106 cells implantation by BLI. There was a delay in tumor growth in animals that received w-3 and PT and a significant decrease associated with MHT. This pioneering combination therapy approach (MHT, omega-3, and exercise) showed a positive effect on TNBC tumor reduction and demonstrated promise for pre-clinical and clinical studies in the future.

2.
Biomaterials ; 307: 122514, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38428093

RESUMEN

Surgical intervention followed by chemotherapy is the principal treatment strategy for bladder cancer, which is hindered by significant surgical risks, toxicity from chemotherapy, and high rates of recurrence after surgery. In this context, a novel approach using mild magnetic hyperthermia therapy (MHT) for bladder cancer treatment through the intra-bladder delivery of magnetic nanoparticles is presented for the first time. This method overcomes the limitations of low magnetic thermal efficiency, inadequate tumor targeting, and reduced therapeutic effectiveness associated with the traditional intravenous administration of magnetic nanoparticles. Core-shell Zn-CoFe2O4@Zn-MnFe2O4 (MNP) nanoparticles were developed and further modified with hyaluronic acid (HA) to enhance their targeting ability toward tumor cells. The application of controlled mild MHT using MNP-HA at temperatures of 43-44 °C successfully suppressed the proliferation of bladder tumor cells and tumor growth, while also decreasing the expression levels of heat shock protein 70 (HSP70). Crucially, this therapeutic approach also activated the body's innate immune response involving macrophages, as well as the adaptive immune responses of dendritic cells (DCs) and T cells, thereby reversing the immunosuppressive environment of the bladder tumor and effectively reducing tumor recurrence. This study uncovers the potential immune-activating mechanism of mild MHT in the treatment of bladder cancer and confirms the effectiveness and safety of this strategy, indicating its promising potential for the clinical management of bladder cancer with a high tendency for relapse.


Asunto(s)
Hipertermia Inducida , Neoplasias de la Vejiga Urinaria , Humanos , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Hipertermia Inducida/métodos , Recurrencia Local de Neoplasia , Neoplasias de la Vejiga Urinaria/patología , Fenómenos Magnéticos , Línea Celular Tumoral
3.
ACS Nano ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315113

RESUMEN

The study of exogenous and endogenous nanoscale magnetic material in biology is important for developing biomedical nanotechnology as well as for understanding fundamental biological processes such as iron metabolism and biomineralization. Here, we exploit the magneto-optical Faraday effect to probe intracellular magnetic properties and perform magnetic imaging, revealing the location-specific magnetization dynamics of exogenous magnetic nanoparticles within cells. The opportunities enabled by this method are shown in the context of magnetic hyperthermia; an effect where local heating is generated in magnetic nanoparticles exposed to high-frequency AC magnetic fields. Magnetic hyperthermia has the potential to be used as a cellular-level thermotherapy for cancer, as well as for other biomedical applications that target heat-sensitive cellular function. However, previous experiments have suggested that the cellular environment modifies the magnetization dynamics of nanoparticles, thus dramatically altering their heating efficiency. By combining magneto-optical and fluorescence measurements, we demonstrate a form of biological microscopy that we used here to study the magnetization dynamics of nanoparticles in situ, in both histological samples and living cancer cells. Correlative magnetic and fluorescence imaging identified aggregated magnetic nanoparticles colocalized with cellular lysosomes. Nanoparticles aggregated within these lysosomes displayed reduced AC magnetic coercivity compared to the same particles measured in an aqueous suspension or aggregated in other areas of the cells. Such measurements reveal the power of this approach, enabling investigations of how cellular location, nanoparticle aggregation, and interparticle magnetic interactions affect the magnetization dynamics and consequently the heating response of nanoparticles in the biological milieu.

4.
Biomaterials ; 307: 122511, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38401482

RESUMEN

Combination of different therapies is an attractive approach for cancer therapy. However, it is a challenge to synchronize different therapies for maximization of therapeutic effects. In this work, a smart composite scaffold that could synchronize magnetic hyperthermia and chemotherapy was prepared by hybridization of magnetic Fe3O4 nanoparticles and doxorubicin (Dox)-loaded thermosensitive liposomes with biodegradable polymers. Irradiation of alternating magnetic field (AMF) could not only increase the scaffold temperature for magnetic hyperthermia but also trigger the release of Dox for chemotherapy. The two functions of magnetic hyperthermia and chemotherapy were synchronized by switching AMF on and off. The synergistic anticancer effects of the composite scaffold were confirmed by in vitro cell culture and in vivo animal experiments. The composite scaffold could efficiently eliminate breast cancer cells under AMF irradiation. Moreover, the scaffold could support proliferation and adipogenic differentiation of mesenchymal stem cells for adipose tissue reconstruction after anticancer treatment. In vivo regeneration experiments showed that the composite scaffolds could effectively maintain their structural integrity and facilitate the infiltration and proliferation of normal cells within the scaffolds. The composite scaffold possesses multi-functions and is attractive as a novel platform for efficient breast cancer therapy.


Asunto(s)
Doxorrubicina/análogos & derivados , Hipertermia Inducida , Neoplasias , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Hipertermia , Fenómenos Magnéticos , Polietilenglicoles
5.
Int J Nanomedicine ; 19: 1843-1865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414530

RESUMEN

Purpose: The lack of specificity of conventional chemotherapy is one of the main difficulties to be solved in cancer therapy. Biomimetic magnetoliposomes are successful chemotherapy controlled-release systems, hyperthermia, and active targeting agents by functionalization of their surface with monoclonal antibodies. The membrane receptor Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) stands out as colorectal cancer (CRC) biomarker and appears to be related to treatment resistance and the development of metastasis. The aim of this study was to assess the effectiveness and safety of LGR5-targeted biomimetic magnetoliposomes loaded with oxaliplatin (OXA) or 5-fluorouracil (5-FU) in the selective treatment of CRC and their possible application in hyperthermia. Methods: Synthesis, characterization and determination of heating capacity of magnetoliposomes transporting OXA or 5-FU (with and without LGR5 functionalization) were conducted. In vitro antitumoral activity was assayed in multiple colorectal cell lines at different times of exposition. In addition to this, cell internalization was studied by Prussian Blue staining, flow cytometry and fluorescence microscopy. In vivo acute toxicity of magnetoliposomes was performed to evaluate iron-related toxicity. Results: OXA and 5-FU loaded magnetoliposomes functionalized with LGR5 antibody showed higher cellular uptake than non-targeted nanoformulation with a reduction of the percentage of proliferation in colon cancer cell lines up to 3.2-fold of the IC50 value compared to that of free drug. The differences between non-targeted and targeted nanoformulations were more evident after short exposure times (4 and 8 hours). Interestingly, assays in the MC38 transduced cells with reduced LGR5 expression (MC38-L(-)), showed lower cell internalization of LGR5-targeted magnetoliposomes compared to non-transduced MC38 cell line. In addition, magnetoliposomes showed an in vitro favorable heating response under magnetic excitation and great iron-related biocompatibility data in vivo. Conclusion: Drug-loaded magnetoliposomes functionalized with anti-LGR5 antibodies could be a promising CRC treatment strategy for LGR5+ targeted chemotherapy, magnetic hyperthermia, and both in combination.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Hipertermia Inducida , Humanos , Biomimética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Fluorouracilo/uso terapéutico , Oxaliplatino/uso terapéutico , Hierro , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología
6.
Biomaterials ; 306: 122498, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38310828

RESUMEN

Magnetic hyperthermia therapy (MHT) has garnered immense interest due to its exceptional spatiotemporal specificity, minimal invasiveness and remarkable tissue penetration depth. Nevertheless, the limited magnetothermal heating capability and the potential toxicity of metal ions in magnetic materials based on metallic elements significantly impede the advancement of MHT. Herein, we introduce the concept of nonmetallic materials, with graphite (Gra) as a proof of concept, as a highly efficient and biocompatible option for MHT of tumors in vivo for the first time. The Gra exhibits outstanding magnetothermal heating efficacy owing to the robust eddy thermal effect driven by its excellent electrical conductivity. Furthermore, being composed of carbon, Gra offers superior biocompatibility as carbon is an essential element for all living organisms. Additionally, the Gra boasts customizable shapes and sizes, low cost, and large-scale production capability, facilitating reproducible and straightforward manufacturing of various Gra implants. In a mouse tumor model, Gra-based MHT successfully eliminates the tumors at an extremely low magnetic field intensity, which is less than one-third of the established biosafety threshold. This study paves the way for the development of high-performance magnetocaloric materials by utilizing nonmetallic materials in place of metallic ones burdened with inherent limitations.


Asunto(s)
Grafito , Hipertermia Inducida , Neoplasias , Animales , Ratones , Neoplasias/terapia , Campos Magnéticos
7.
Nano Lett ; 24(9): 2894-2903, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407042

RESUMEN

Harnessing the potential of tumor-associated macrophages (TAMs) to engulf tumor cells offers promising avenues for cancer therapy. Targeting phagocytosis checkpoints, particularly the CD47-signal regulatory protein α (SIRPα) axis, is crucial for modulating TAM activity. However, single checkpoint inhibition has shown a limited efficacy. In this study, we demonstrate that ferrimagnetic vortex-domain iron oxide (FVIO) nanoring-mediated magnetic hyperthermia effectively suppresses the expression of CD47 protein on Hepa1-6 tumor cells and SIRPα receptor on macrophages, which disrupts CD47-SIRPα interaction. FVIO-mediated magnetic hyperthermia also induces immunogenic cell death and polarizes TAMs toward M1 phenotype. These changes collectively bolster the phagocytic ability of macrophages to eliminate tumor cells. Furthermore, FVIO-mediated magnetic hyperthermia concurrently escalates cytotoxic T lymphocyte levels and diminishes regulatory T cell levels. Our findings reveal that magnetic hyperthermia offers a novel approach for dual down-regulation of CD47 and SIRPα, reshaping the tumor microenvironment to stimulate immune responses, culminating in significant antitumor activity.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Antígeno CD47 , Regulación hacia Abajo , Inmunoterapia , Fagocitosis , Fenómenos Magnéticos , Neoplasias/patología , Microambiente Tumoral
8.
ACS Appl Bio Mater ; 7(3): 1569-1578, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38349029

RESUMEN

The therapeutic efficacy of bone tumor treatment is primarily limited by inadequate tumor resection, resulting in recurrence and metastasis, as well as the deep location of tumors. Herein, an injectable doxorubicin (DOX)-loaded magnetic alginate hydrogel (DOX@MAH) was developed to evaluate the efficacy of an alternating magnetic field (AMF)-responsive, chemothermal synergistic therapy for multimodality treatment of bone tumors. The prepared hydrogel exhibits a superior drug-loading capacity and a continuous DOX release. This multifunctionality can be attributed to the combined use of DOX for chemotherapy and iron oxide nanoparticle-containing alginate hydrogels as magnetic hyperthermia agents to generate hyperthermia for tumor elimination without the limit on penetration depth. Moreover, the hydrogel can be formed when in contact with the calcium ions, which are abundant in bone tissues; therefore, this hydrogel could perfectly fit the bone defects caused by the surgical removal of the bone tumor tissue, and the hydrogel could tightly attach the surgical margin of the bone to realize a high efficacy residual tumor tissue elimination treated by chemothermal synergistic therapy. The hydrogel demonstrates excellent hyperthermia performance, as evidenced by in vitro cytotoxicity tests on tumor cells. These tests reveal that the combined therapy based on DOX@MAH under AMF significantly induces cell death compared to single magnetic hyperthermia or chemotherapy. In vivo antitumor effects in tumor-bearing mice demonstrate that DOX@MAH injection at the tumor site effectively inhibits tumor growth and leads to tumor necrosis. This work not only establishes an effective DOX@MAH system as a synergistic chemothermal therapy platform for treating bone tumors but also sheds light on the application of alginate to combine calcium ions of the bone to treat bone defect diseases.


Asunto(s)
Neoplasias Óseas , Hipertermia Inducida , Animales , Ratones , Hidrogeles/farmacología , Calcio , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Hipertermia , Hipertermia Inducida/métodos , Alginatos , Iones , Fenómenos Magnéticos
9.
ACS Appl Mater Interfaces ; 16(6): 6743-6755, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38295315

RESUMEN

In this work, we constructed a multifunctional composite nanostructure for combined magnetic hyperthermia therapy and magnetic resonance imaging based on T1 and T2 signals. First, iron oxide nanocubes with a benchmark heating efficiency for magnetic hyperthermia were assembled within an amphiphilic polymer to form magnetic nanobeads. Next, poly(acrylic acid)-coated inorganic sodium gadolinium fluoride nanoparticles were electrostatically loaded onto the magnetic nanobead surface via a layer-by-layer approach by employing a positively charged enzymatic-cleavable biopolymer. The positive-negative multilayering process was validated through the changes occurring in surface ζ-potential values and structural characterization by transmission electron microscopy (TEM) imaging. These nanostructures exhibit an efficient heating profile, in terms of the specific absorption rates under clinically accepted magnetic field conditions. The addition of protease enzyme mediates the degradation of the surface layers of the nanostructures with the detachment of gadolinium nanoparticles from the magnetic beads and exposure to the aqueous environment. Such a process is associated with changes in the T1 relaxation time and contrast and a parallel decrease in the T2 signal. These structures are also nontoxic when tested on glioblastoma tumor cells up to a maximum gadolinium dose of 125 µg mL-1, which also corresponds to a iron dose of 52 µg mL-1. Nontoxic nanostructures with such enzyme-triggered release mechanisms and T1 signal enhancement are desirable for tracking tumor microenvironment release with remote T1-guidance and magnetic hyperthermia therapy actuation to be done at the diseased site upon verification of magnetic resonance imaging (MRI)-guided release.


Asunto(s)
Hipertermia Inducida , Nanoestructuras , Medios de Contraste/química , Gadolinio/química , Nanoestructuras/química , Imagen por Resonancia Magnética/métodos , Péptido Hidrolasas
10.
Colloids Surf B Biointerfaces ; 234: 113754, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38241891

RESUMEN

Cancers are fatal diseases that lead to most death of human beings, which urgently require effective treatments methods. Hyperthermia therapy employs magnetic nanoparticles (MNPs) as heating medium under external alternating magnetic field. Among various MNPs, ferrite nanoparticles (FNPs) have gained significant attention for hyperthermia therapy due to their exceptional magnetic properties, high stability, favorable biological compatibility, and low toxicity. The utilization of FNPs holds immense potential for enhancing the effectiveness of hyperthermia therapy. The main hurdle for hyperthermia treatment includes optimizing the heat generation capacity of FNPs and controlling the local temperature of tumor region. This review aims to comprehensively evaluate the magnetic hyperthermia treatment (MHT) of FNPs, which is accomplished by elucidating the underlying mechanism of heat generation and identifying influential factors. Based upon fundamental understanding of hyperthermia of FNPs, valuable insights will be provided for developing efficient nanoplatforms with enhanced accuracy and magnetothermal properties. Additionally, we will also survey current research focuses on modulating FNPs' properties, external conditions for MHT, novel technical methods, and recent clinical findings. Finally, current challenges in MHT with FNPs will be discussed while prospecting future directions.


Asunto(s)
Compuestos Férricos , Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Hipertermia Inducida/métodos , Neoplasias/terapia , Campos Magnéticos , Nanopartículas de Magnetita/uso terapéutico
11.
Adv Sci (Weinh) ; 11(11): e2307823, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164827

RESUMEN

The magnetic hyperthermia-based combination therapy (MHCT) is a powerful tumor treatment approach due to its unlimited tissue penetration depth and synergistic therapeutic effect. However, strong magnetic hyperthermia and facile drug loading are incompatible with current MHCT platforms. Herein, an iron foam (IF)-drug implant is established in an ultra-facile and universal way for ultralow-power MHCT of tumors in vivo for the first time. The IF-drug implant is fabricated by simply immersing IF in a drug solution at an adjustable concentration for 1 min. Continuous metal structure of IF enables ultra-high efficient magnetic hyperthermia based on eddy current thermal effect, and its porous feature provides great space for loading various hydrophilic and hydrophobic drugs via "capillary action". In addition, the IF has the merits of low cost, customizable size and shape, and good biocompatibility and biodegradability, benefiting reproducible and large-scale preparation of IF-drug implants for biological application. As a proof of concept, IF-doxorubicin (IF-DOX) is used for combined tumor treatment in vivo and achieves excellent therapeutic efficacy at a magnetic field intensity an order of magnitude lower than the threshold for biosafety application. The proposed IF-drug implant provides a handy and universal method for the fabrication of MHCT platforms for ultralow-power combination therapy.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Implantes de Medicamentos , Hierro , Neoplasias/tratamiento farmacológico , Doxorrubicina , Hipertermia Inducida/métodos , Campos Magnéticos
12.
Small ; 20(3): e2300733, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37452437

RESUMEN

Relapse and unresectability have become the main obstacle for further improving hepatocellular carcinoma (HCC) treatment effect. Currently, single therapy for HCC in clinical practice is limited by postoperative recurrence, intraoperative blood loss and poor patient outcomes. Multidisciplinary therapy has been recognized as the key to improving the long-term survival rate for HCC. However, the clinical application of HCC synthetic therapy is restricted by single functional biomaterials. In this study, a magnetic nanocomposite hydrogel (CG-IM) with iron oxide nanoparticle-loaded mica nanosheets (Iron oxide nanoparticles@Mica, IM) is reported. This biocompatible magnetic hydrogel integrated high injectability, magnetocaloric property, mechanical robustness, wet adhesion, and hemostasis, leading to efficient HCC multidisciplinary therapies including postoperative tumor margin treatment and percutaneous locoregional ablation. After minimally invasive hepatectomy of HCC, the CG-IM hydrogel can facilely seal the bleeding hepatic margin, followed by magnetic hyperthermia ablation to effectively prevent recurrence. In addition, CG-IM hydrogel can inhibit unresectable HCC by magnetic hyperthermia through the percutaneous intervention under ultrasound guidance.


Asunto(s)
Silicatos de Aluminio , Carcinoma Hepatocelular , Hipertermia Inducida , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Hidrogeles/farmacología , Fenómenos Magnéticos
13.
Acta Biomater ; 173: 457-469, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984631

RESUMEN

Magnetic nanoparticles (MNPs) are promising in tumor treatments due to their capacity for magnetic hyperthermia therapy (MHT), chemodynamic therapy (CDT), and immuno-related therapies, but still suffer from unsatisfactory tumor inhibition in the clinic. Insufficient hydrogen peroxide supply, glutathione-induced resistance, and high-density extracellular matrix (ECM) are the barriers. Herein, we hierarchically decorated MNPs with disulfide bonds (S-S), dendritic L-arginine (R), and glucose oxidase (GOx) to form a nanosystem (MNPs-SS-R-GOx). Its outer GOx layer not only enhanced the H2O2 supply to produce .OH by Fenton reaction, but also generated stronger oxidants (ONOO-) together with the interfaced R layer. The inner S-S layer consumed glutathione to interdict its reaction with oxidants, thus enhancing CDT effects. Importantly, the generated ONOO- tripled the MMP-9 expression to induce ECM degradation, enabling much deeper penetration of MNPs and benefiting CDT, MHT, and immunotherapy. Finally, the MNPs-SS-R-GOx demonstrated a remarkable 91.7% tumor inhibition in vivo. STATEMENT OF SIGNIFICANCE: Magnetic nanoparticles (MNPs) are a promising tumor therapeutic agent but with limited effectiveness. Our hierarchical MNP design features disulfide bonds (S-S), dendritic L-arginine (R), and glucose oxidase (GOx), which boosts H2O2 supply for ·OH generation in Fenton reactions, produces potent ONOO-, and enhances chemodynamic therapy via glutathione consumption. Moreover, the ONOO- facilitates the upregulation of matrix metalloprotein expression beneficial for extracellular matrix degradation, which in turn enhances the penetration of MNPs and benefits the antitumor CDT/MHT/immuno-related therapy. In vivo experiments have demonstrated an impressive 91.7% inhibition of tumor growth. This hierarchical design offers groundbreaking insights for further advancements in MNP-based tumor therapy. Its implications extend to a broader audience, encompassing those interested in material science, biology, oncology, and beyond.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Glucosa Oxidasa , Peróxido de Hidrógeno , Nanopartículas de Magnetita/uso terapéutico , Estrés Oxidativo , Arginina , Glutatión , Nanopartículas/uso terapéutico , Neoplasias/terapia , Oxidantes , Disulfuros , Fenómenos Magnéticos , Línea Celular Tumoral , Microambiente Tumoral
14.
Biomed Pharmacother ; 170: 115954, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039753

RESUMEN

The potential of Ferrimagnetic vortex iron oxide nanoring-mediated mild magnetic hyperthermia (FVIO-MHT) in solid tumor therapy has been demonstrated. However, the impact of FVIO-MHT on the tumor microenvironment (TME) remains unclear. This study utilized single-cell transcriptome sequencing to examine the alterations in the TME in response to FVIO-MHT in breast cancer. The results revealed the cellular composition within the tumor microenvironment (TME) was primarily modified due to a decrease in tumor cells and an increased infiltration of myeloid cells. Subsequently, an enhancement in active oxygen (ROS) metabolism was observed, indicating oxidative damage to tumor cells. Interestingly, FVIO-MHT reprogrammed the macrophages' phenotypes, as evidenced by alterations in the transcriptome characteristics associated with both classic and alternative activated phenotypes. And an elevated level of ROS generation and oxidative phosphorylation suggested that activated phagocytosis and inflammation occurred in macrophages. Additionally, cell-cell communication analysis revealed that FVIO-MHT attenuated the suppression between tumor cells and macrophages by inhibiting phagocytic checkpoint and macrophage migration inhibitory factor signaling pathways. Inhibition of B2m, an anti-phagocytosis checkpoint, could promote macrophage-mediated phagocytosis and significantly inhibit tumor growth. These data emphasize FVIO-MHT may promote the antitumor capabilities of macrophages by alleviating the suppression between tumor cells and macrophages.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Especies Reactivas de Oxígeno/farmacología , Macrófagos , Fenómenos Magnéticos , Perfilación de la Expresión Génica , Microambiente Tumoral
15.
Nanotechnology ; 35(15)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38150725

RESUMEN

Obesity has become an ongoing global crisis, since it increases the risks of cardiovascular disease, type 2 diabetes, fatty liver, cognitive decline, and some cancers. Adipose tissue is closely associated with the disorder of lipid metabolism. Several efforts have been made toward the modulation of lipid accumulation, but have been hindered by poor efficiency of cellular uptake, low safety, and uncertain effective dosage. Herein, we design an Fe3O4microsphere-doped composite hydrogel (Fe3O4microspheres @chitosan/ß-glycerophosphate/collagen), termed as Fe3O4@Gel, as the magnetocaloric agent for magnetic hyperthermia therapy (MHT), aiming to promote lipolysis in white adipocytes. The experimental results show that the obtained Fe3O4@Gel displays a series of advantages, such as fast sol-gel transition, high biocompatibility, and excellent magneto-thermal performance. MHT, which is realized by Fe3O4@Gel subjected to an alternating magnetic field, leads to reduced lipid accumulation, lower triglyceride content, and increased mitochondrial activity in white adipocytes. This work shows that Fe3O4@Gel-mediated MHT can effectively promote lipolysis in white adipocytesin vitro, which provides a potential approach to treat obesity and associated metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertermia Inducida , Humanos , Lipólisis , Adipocitos Blancos , Microesferas , Hidrogeles , Obesidad , Lípidos , Hipertermia Inducida/métodos , Fenómenos Magnéticos
16.
Biomater Adv ; 157: 213724, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134729

RESUMEN

Traditional cancer treatments are ineffective and cause severe adverse effects. Thus, the development of chemodynamic therapy (CDT) has the potential for in situ catalysis of endogenous molecules into highly toxic species, which would then effectively destroy cancer cells. However, the shortage of high-performance nanomaterials hinders the broad clinical application of this approach. In present study, an effective therapeutic platform was developed using a simple hydrothermal method for the in-situ activation of the Fenton reaction within the tumor microenvironment (TME) to generate substantial quantities of •OH and ultimately destroy cancer cells, which could be further synergistically increased by photothermal therapy (PHT) and magnetic hyperthermia (MHT) aided by FeMoO4 nanorods (NRs). The produced FeMoO4 NRs were used as MHT/PHT and Fenton catalysts. The photothermal conversion efficiency of the FeMoO4 NRs was 31.75 %. In vitro and \ experiments demonstrated that the synergistic combination of MHT/PHT/CDT notably improved anticancer efficacy. This work reveals the significant efficacy of CDT aided by both photothermal and magnetic hyperthermia and offers a feasible strategy for the use of iron-based nanoparticles in the field of biomedical applications.


Asunto(s)
Hipertermia Inducida , Nanoestructuras , Fototerapia , Microambiente Tumoral , Fenómenos Magnéticos
17.
Adv Sci (Weinh) ; 11(11): e2306178, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38161219

RESUMEN

Mild magnetic hyperthermia therapy (MMHT) holds great potential in treating deep-seated tumors, but its efficacy is impaired by the upregulation of heat shock proteins (HSPs) during the treatment process. Herein, Lac-FcMOF, a lactose derivative (Lac-NH2 ) modified paramagnetic metal-organic framework (FcMOF) with magnetic hyperthermia property and thermal stability, has been developed to enhance MMHT therapeutic efficacy. In vitro studies showed that Lac-FcMOF aggravates two-way regulated redox dyshomeostasis (RDH) via magnetothermal-accelerated ferricenium ions-mediated consumption of glutathione and ferrocene-catalyzed generation of ∙OH to induce oxidative damage and inhibit heat shock protein 70 (HSP70) synthesis, thus significantly enhancing the anti-cancer efficacy of MMHT. Aggravated RDH promotes glutathione peroxidase 4 inactivation and lipid peroxidation to promote ferroptosis, which further synergizes with MMHT. H22-tumor-bearing mice treated with Lac-FcMOF under alternating magnetic field (AMF) demonstrated a 90.4% inhibition of tumor growth. This work therefore provides a new strategy for the simple construction of a magnetic hyperthermia agent that enables efficient MMHT by downregulating HSPs and promoting ferroptosis through the aggravation of two-way regulated RDH.


Asunto(s)
Ferroptosis , Hipertermia Inducida , Estructuras Metalorgánicas , Neoplasias , Animales , Ratones , Proteínas de Choque Térmico , Neoplasias/terapia , Campos Magnéticos , Oxidación-Reducción
18.
ACS Appl Mater Interfaces ; 15(50): 58151-58165, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38063494

RESUMEN

Cancer stem cells (CSCs) present a formidable challenge in cancer treatment due to their inherent resistance to chemotherapy, primarily driven by the overexpression of ABC transporters and multidrug resistance (MDR). Despite extensive research on pharmacological small-molecule inhibitors, effectively managing MDR and improving chemotherapeutic outcomes remain elusive. On the other hand, magnetic hyperthermia (MHT) holds great promise as a cancer therapeutic, but there is limited research on its potential to reverse MDR in breast CSCs and effectively eliminate CSCs through combined chemo-hyperthermia. To address these gaps, we developed tumor microenvironment-sensitive, drug-loaded poly(propylene sulfide) (PPS)-coated magnetic nanoparticles (PPS-MnFe). These nanoparticles were employed to investigate hyperthermia sensitivity and MDR reversion in breast CSCs, comparing their performance to that of small-molecule inhibitors. Additionally, we explored the efficacy of combined chemo-hyperthermia in killing CSCs. CSC-enriched breast cancer cells were subjected to low-dose MHT at 42 °C for 30 min and then treated with the chemical MDR inhibitor salinomycin (SAL). The effectiveness of each treatment in inhibiting MDR was assessed by measuring the efflux of the MDR substrate, rhodamine 123 (R123) dye. Notably, MHT induced a prolonged reversal of MDR activity compared with SAL treatment alone. After successfully inhibiting MDR, the breast CSCs were exposed to chemotherapy using paclitaxel to trigger synergistic cell death. The combination of MHT and chemotherapy demonstrated remarkable reductions in stemness properties, MDR reversal, and the effective eradication of breast CSCs in this innovative dual-modality approach.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Humanos , Femenino , Polipropilenos/farmacología , Resistencia a Antineoplásicos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Resistencia a Múltiples Medicamentos , Células Madre Neoplásicas/patología , Concentración de Iones de Hidrógeno , Fenómenos Magnéticos , Línea Celular Tumoral , Microambiente Tumoral
19.
ACS Appl Bio Mater ; 6(12): 5399-5413, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37975516

RESUMEN

The glioblastoma stem cell (GSC) population in glioblastoma multiforme (GBM) poses major complication in clinical oncology owing to increased resistance to chemotherapeutic drugs, thereby limiting treatment in patients with recurring glioblastoma. To completely eradicate glioblastoma, a single therapy module is not enough; therefore, there is a need to develop a multimodal approach to eliminate bulk tumors along with the CSC population. With an aim to target transporters associated with multidrug resistance (MDR), such as P-glycoprotein (P-gp), a small-molecule inhibitor, reversan (RV) was used along with multifunctional magnetic nanoparticles (MNPs) for hyperthermia (HT) therapy and targeted drug delivery. Higher efflux of free doxorubicin (Dox) from the cells was stabilized by encapsulation in PPS-MnFe nanoparticles, whose physicochemical properties were determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Treatment with RV also enhanced the cellular uptake of PPS-MnFe-Dox, whereas RV and magnetic hyperthermia (MHT) together showed prolonged retention of fluorescence dye, Rhodamine123 (R123), in glioblastoma cells compared with individual treatment. Overall, in this work, we demonstrated the synergistic action of RV and HT to combat MDR in GBM and GSCs, and chemo-hyperthermia therapy enhanced the cytotoxic effect of the chemotherapeutic drug Dox (with lower effective concentration) and induced a higher degree of apoptosis compared to single-drug dosage.


Asunto(s)
Glioblastoma , Hipertermia Inducida , Humanos , Glioblastoma/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Múltiples Medicamentos , Células Madre
20.
J Therm Biol ; 118: 103747, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38000145

RESUMEN

Magnetic hyperthermia regulates the therapeutic temperature within a specific range to damage malignant cells after exposing the magnetic nanoparticles inside tumor tissue to an alternating magnetic field. The therapeutic temperature of living tissues can be generally predicted using Pennes' bio-heat equation after ignoring both the inhomogeneity of biological structure and the microstructural responses. Although various of the bio-heat transfer models proposed in literature fix these shortages, there is still a lack of a comprehensive report on investigating the discrepancy for different models when applied in the magnetic hyperthermia context. This study compares four different bio-heat equations in terms of the therapeutic temperature distribution and the heat-induced damage situation for a proposed geometric model, which is established based on computed tomography images of a tumor bearing mouse. The therapeutic temperature is also used as an index to evaluate the effect of two key relaxation times for the phase lag behavior on bio-heat transfer. Moreover, this work evaluates the effects of two blood perfusion rates on both the treatment temperature and the cumulative equivalent heating minutes at 43 °C. Numerical analysis results reveal that relaxation times for phase-lag behavior as well as the porosity for living tissues directly affect the therapeutic temperature variation and ultimately the thermal damage for the malignant tissue during magnetic hyperthermia. The dual-phase-lag equation can be converted into Pennes' equation and simple-phase-lag equation when relaxation times meet specific conditions during the process of heat transfer. In addition, different blood perfusion rates can result in an amplitude discrepancy for treatment temperature, but this parameter does not change the characteristics of thermal propagation during therapy.


Asunto(s)
Hipertermia Inducida , Neoplasias , Animales , Ratones , Calor , Temperatura , Hipertermia Inducida/métodos , Modelos Biológicos , Simulación por Computador , Neoplasias/terapia , Hipertermia/terapia , Fenómenos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA