Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sci Total Environ ; 912: 169373, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104802

RESUMEN

Phytoplankton affect carbon cycling and emissions in eutrophic reservoirs dramatically, but our knowledge about carbon emissions response to phytoplankton bloom and phosphorus enrichment is rather limited. Here we performed a microcosm experiment with five treatments to investigate how phytoplankton blooms and phosphorus addition will impact the carbon emissions and the methane-functional bacterial community. During the 43-day incubation, the CH4 and CO2 flux at the water-air interface in the five water columns fluctuated between 7.536 and 16.689 µmol and between 2788.501 and 4142.726 µmol, respectively. The flux of CH4 and CO2 during phytoplankton decay was 1.542 to 10.397 times and 4.203 to 8.622 times higher, respectively, compared to that during phytoplankton growth. Furthermore, exogenous phosphorus increases bloom biomass of phytoplankton and subsequent CH4 production, even with low nitrogen concentrations. The addition of 1 mg KH2PO4 resulted in a conservative increase of 0.0715 µmol in CH4 emission and 11.911 µmol in CO2 emission in the water column, respectively, compared to the in-situ water column. High throughput sequencing determined that hydrogenotrophic Methanoregula dominated methanogens (MPB) and Methylocystaceae dominated methanotrophs (MOB) in the sediment. Phosphorus inhibited the relative abundance of Methanoregula after incubation, resulting in a significant decrease. Real-time quantitative polymerase chain reaction indicated that the absolute abundance of MPB and MOB (i.e., the mcrA gene and the pmoA gene) in the sediments ranged from 5.1354E+06 to 6.3176E+07 copies·g-1 and 1.1656E+06 to 9.5056E+06 copies·g-1, respectively. The mcrA gene showed a preference for sediments with high organic carbon content. The effect of eutrophication on CH4 emissions is closely related to nutrient load and distinct niche of methane-functional bacteria.


Asunto(s)
Metano , Fitoplancton , Metano/análisis , Fósforo , Dióxido de Carbono/análisis , Methanobacteriaceae , Bacterias , Carbono
2.
J Anim Sci Technol ; 65(1): 132-148, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37093952

RESUMEN

Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square design, and the animals were exposed to HS conditions (Temperature-Humidity Index [THI], 82.79 ± 1.10). For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations (TMR), National Research Council (NRC) recommended mineral supplementation group (NM; TMR + [Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm]/kg dry matter), and higher concentration of mineral supplementation group (HM; basal TMR + [Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm]/kg dry matter). Higher concentrations of trace mineral supplementation had no influence on methane emissions and rumen bacterial and methanogen communities regardless of breed (p > 0.05). Holstein steers had higher ruminal pH and lower total volatile fatty acid (VFA) concentrations than Jersey steers (p < 0.05). Methane production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (p < 0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly higher in Holstein steers than in Jersey steers (p < 0.05). Overall, dietary organic trace minerals have no influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it through selective alteration of the rumen methanogen community.

3.
Bioresour Technol ; 372: 128632, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36657586

RESUMEN

The effect of magnetite nanoparticles and nanocomposites (magnetite nanoparticles impregnated into graphene oxide) supplement on the recovery of overloaded laboratory batch anaerobic reactors was assessed using two types of starting inoculum: anaerobic granular sludge (GS) and flocculent sludge (FS). Both nanomaterials recovered methane production at a dose of 0.27 g/L within 40 days in GS. Four doses of magnetite nanoparticles from 0.075 to 1 g/L recovered the process in FS systems between 30 and 50 days relaying on the dose. The presence of nanomaterials helped to reverse the effect of volatile fatty acids inhibition and enabled microbial communities to recover but also favoured the development of certain microorganisms over others. In GS reactors, the methanogenic population changed from being mostly acetoclastic (Methanothrix soehngenii) to being dominated by hydrogenotrophic species (Methanobacterium beijingense). Nanomaterial amendment may serve as a preventative measure or provide an effective remedial solution for system recovery following overloading.


Asunto(s)
Nanopartículas de Magnetita , Nanocompuestos , Aguas del Alcantarillado/microbiología , Anaerobiosis , Óxido Ferrosoférrico , Metano , Reactores Biológicos/microbiología
4.
mBio ; 13(6): e0244322, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36409126

RESUMEN

Some marine thermophilic methanogens are able to perform energy-consuming nitrogen fixation despite deriving only little energy from hydrogenotrophic methanogenesis. We studied this process in Methanothermococcus thermolithotrophicus DSM 2095, a methanogenic archaeon of the order Methanococcales that contributes to the nitrogen pool in some marine environments. We successfully grew this archaeon under diazotrophic conditions in both batch and fermenter cultures, reaching the highest cell density reported so far. Diazotrophic growth depended strictly on molybdenum and, in contrast to other diazotrophs, was not inhibited by tungstate or vanadium. This suggests an elaborate control of metal uptake and a specific metal recognition system for the insertion into the nitrogenase cofactor. Differential transcriptomics of M. thermolithotrophicus grown under diazotrophic conditions with ammonium-fed cultures as controls revealed upregulation of the nitrogenase machinery, including chaperones, regulators, and molybdate importers, as well as simultaneous upregulation of an ammonium transporter and a putative pathway for nitrate and nitrite utilization. The organism thus employs multiple synergistic strategies for uptake of nitrogen nutrients during the early exponential growth phase without altering transcription levels for genes involved in methanogenesis. As a counterpart, genes coding for transcription and translation processes were downregulated, highlighting the maintenance of an intricate metabolic balance to deal with energy constraints and nutrient limitations imposed by diazotrophy. This switch in the metabolic balance included unexpected processes, such as upregulation of the CRISPR-Cas system, probably caused by drastic changes in transcription levels of putative mobile and virus-like elements. IMPORTANCE The thermophilic anaerobic archaeon M. thermolithotrophicus is a particularly suitable model organism to study the coupling of methanogenesis to diazotrophy. Likewise, its capability of simultaneously reducing N2 and CO2 into NH3 and CH4 with H2 makes it a viable target for biofuel production. We optimized M. thermolithotrophicus cultivation, resulting in considerably higher cell yields and enabling the successful establishment of N2-fixing bioreactors. Improved understanding of the N2 fixation process would provide novel insights into metabolic adaptations that allow this energy-limited extremophile to thrive under diazotrophy, for instance, by investigating its physiology and uncharacterized nitrogenase. We demonstrated that diazotrophic growth of M. thermolithotrophicus is exclusively dependent on molybdenum, and complementary transcriptomics corroborated the expression of the molybdenum nitrogenase system. Further analyses of differentially expressed genes during diazotrophy across three cultivation time points revealed insights into the response to nitrogen limitation and the coordination of core metabolic processes.


Asunto(s)
Compuestos de Amonio , Euryarchaeota , Fijación del Nitrógeno/genética , Molibdeno , Transcriptoma , Nitrogenasa/metabolismo , Euryarchaeota/genética , Nitrógeno/metabolismo , Methanococcaceae/genética , Methanococcaceae/metabolismo
5.
Sci Total Environ ; 847: 157584, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35882339

RESUMEN

Freshwater ecosystems are an important source of the greenhouse gas methane (CH4), and their emissions are expected to increase due to eutrophication. Two commonly applied management techniques to reduce eutrophication are the addition of phosphate-binding lanthanum modified bentonite (LMB, trademark Phoslock©) and dredging, but their effect on CH4 emissions is still poorly understood. Here, this study researched how LMB and dredging affected CH4 emissions using a full-factorial mesocosm design monitored for 18 months. The effect was tested by measuring diffusive and ebullitive CH4 fluxes, plant community composition, methanogen and methanotroph activity and community composition, and a range of physicochemical water and sediment variables. LMB addition decreased total CH4 emissions, while dredging showed a trend towards decreasing CH4 emissions. Total CH4 emissions in all mesocosms were much higher in the summer of the second year, likely because of higher algal decomposition and organic matter availability. First, LMB addition lowered CH4 emissions by decreasing P-availability, which reduced coverage of the floating fern Azolla filiculoides, and thereby prevented anoxia and decreased surface water NH4+ concentrations, lowering CH4 production rates. Second, dredging decreased CH4 emissions in the first summer, possibly it removed the methanogenic community, and in the second year by preventing autumn and winter die-off of the rooted macrophyte Potamogeton cripsus. Finally, methanogen community composition was related to surface water NH4+ and O2, and porewater total phosphorus, while methanotroph community composition was related to organic matter content. To conclude, LMB addition and dredging not only improve water quality, but also decrease CH4 emissions, mitigating climate change.


Asunto(s)
Gases de Efecto Invernadero , Lagos , Bentonita , Ecosistema , Lagos/química , Lantano , Metano/análisis , Fosfatos , Fósforo/análisis
6.
Bioresour Technol ; 360: 127535, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35779747

RESUMEN

Anaerobic digestion is a prevalent bioenergy production process relying on a complex network of symbiotic interactions, where the nutrient based cross-feeding is an essential microbial mechanism. Here, the cross-feeding function was assessed by analyzing extracellular polymeric substances-associated amino acids in microbial aggregates collected from 14 lab-scale anaerobic digesters, as well as deciphering their genetically biosynthetic potential by syntrophic bacteria and methanogens. The total concentration of essential amino acids ranged from 1.2 mg/g VSS to 174.0 mg/g VSS. The percentages of glutamic acid (8.5 âˆ¼ 37.6%), lysine (2.7 âˆ¼ 22.6%), alanine (5.6 âˆ¼ 13.2%), and valine (3.0 âˆ¼ 10.4%) to the total amount of detected amino acids were the highest in most samples. Through metagenomics analysis, several investigated syntrophs (i.e., Smithella, Syntrophobacter, Syntrophomonas, and Mesotoga) and methanogens (i.e., Methanothrix and Methanosarcina) were auxotrophies, but the genetic ability of syntrophs and methanogens to synthesize some essential amino acids could be complementary, implying potential cross-feeding partnership.


Asunto(s)
Reactores Biológicos , Euryarchaeota , Aminoácidos/metabolismo , Aminoácidos Esenciales , Anaerobiosis , Bacterias/genética , Bacterias/metabolismo , Reactores Biológicos/microbiología , Euryarchaeota/metabolismo , Metano/metabolismo
7.
Bioresour Technol ; 359: 127400, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35654324

RESUMEN

Accidental organic overloading (shock loading) is common during the anaerobic co-digestion of fats, oils and greases (FOG) and may lead to decreased performance or reactor failure due to the effects on the microbiome. Here, adapted and non-adapted lab-scale anaerobic digesters were exposed to FOG shocks of varying organic strengths. The microbiome was sequenced during the recovery periods employed between each shock event. Non-failure-inducing shocks resulted in enrichment of fermentative bacteria, and acetoclastic and methylotrophic methanogens. However, sub-dominant bacterial populations were largely responsible for increased biogas production observed after adaptation. Following failure events, early recovery communities were dominated by Pseudomonas and Methanosaeta while late recovery communities shifted toward sub-dominant bacterial taxa and Methanosarcina. Generally, the recovered microbiome structure diverged from that of both the initial and optimized microbiomes. Thus, while non-failure-inducing FOG shocks can be beneficial, the adaptations gained are lost after a failure event and adaptation must begin again.


Asunto(s)
Reactores Biológicos , Microbiota , Anaerobiosis , Bacterias , Reactores Biológicos/microbiología , Grasas , Hidrocarburos , Metano , Aceites de Plantas
8.
Anim Biotechnol ; 33(1): 128-140, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32573336

RESUMEN

In vitro and in vivo studies were conducted to examine the effect of silkworm pupae oil on methane (CH4) emission and methanogens diversity. Five graded levels (2, 4, 6, 8 and 10%) of silkworm pupae oil were tested in vitro. Eighteen Mandya adult sheep were divided into three groups. All the animals were fed on similar basal diet except the oil supplementation in test groups. Oil level for supplementation was decided on the basis of in vitro study. In vitro study indicated a reduction of 22% in CH4 production with 2% oil supplementation. Animals in test groups were supplemented with oil (2%) either daily (CON) or intermittently (INT) on every alternate week for all the seven days. A significant reduction of 17-20% in enteric CH4 emission (g/d) was achieved due to oil supplementation in sheep. However, No variation was established between test groups CON and INT. In present study, Methanobrevibacter was major genus contributed ∼90% of the total rumen methanogens; whilst Methanobrevibacter gottschalkii was the most abundant methanogens species. Abundance of Methanobrevibacter ruminantium was affected with the oil supplementation. It can be concluded that the silkworm pupae oil at 2% can decrease CH4 emission by 15-20%.


Asunto(s)
Bombyx , Metano , Animales , Dieta , Suplementos Dietéticos , Fermentación , Metano/metabolismo , Pupa , Rumen/metabolismo , Ovinos
9.
Waste Manag ; 126: 508-516, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33678560

RESUMEN

Anaerobic digestion of a mono-feedstock often causes low methane yields and process instability. An effective strategy to overcome these barriers is co-digestion with animal manure. The obtained process improvement is often attributed to buffer capacity, nutrients, vitamins and trace metals, and microorganisms present in manure, but it remains unknown which factor plays the key role in digester performance. Here, we investigated anaerobic digestion of cocoa waste in four different treatments: mono-digestion, addition of synthetic nutrients, co-digestion with sterile cow manure, and co-digestion with raw cow manure. Co-digestion with raw manure resulted in the highest methane yield of 181 ± 39 L kg-1 VS (volatile solids), similar to the co-digestion with sterile manure, i.e., 162 ± 52 L kg-1 VS. The supplementation of synthetic nutrients to the anaerobic digestion of cocoa waste only temporarily increased methane yield, indicating that this will tackle a lack of nutrients in the short term, but has a limited long-term contribution to the stabilization of the process. Hence, because of the inability of synthetic nutrients to stabilize the digestion process and the similarity between the digesters fed sterile and raw manure, both at the physico-chemical and microbial level, the key contribution of manure co-digestion with cocoa seems to be the provision of buffering capacity.


Asunto(s)
Biocombustibles , Estiércol , Anaerobiosis , Animales , Reactores Biológicos , Bovinos , Femenino , Alimentos , Metano
10.
J Anim Sci ; 97(11): 4668-4681, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31603200

RESUMEN

Two sets of in vitro rumen fermentation experiments were conducted to determine effects of diets that included wet distiller's grains plus solubles (WDGS) and tannin-rich peanut skin (PS) on the in vitro digestibility, greenhouse gas (GHG) and other gas emissions, fermentation rate, and microbial changes. The objectives were to assess associative effects of various levels of PS or WDGS on the in vitro digestibility, GHG and other gas emissions, fermentation rate, and microbial changes in the rumen. All gases were collected using an ANKOM Gas Production system for methane (CH4), carbon dioxide (CO2), nitrous oxide (N2O), and hydrogen sulfide (H2S) analyses. Cumulative ruminal gas production was determined using 250 mL ANKOM sampling bottles containing 50 mL of ruminal fluid (pH 5.8), 40 mL of artificial saliva (pH 6.8), and 6 g of mixed diets after a maximum of 24 h of incubation. Fermenters were flushed with CO2 gas and held at 39 °C in a shaking incubator for 24 h. Triplicate quantitative real-time polymerase chain reaction (qPCR) analyses were conducted to determine microbial diversity. When WDGS was supplied in the diet, in the absence of PS, cumulative CH4 production increased (P < 0.05) with 40% WDGS. In the presence of PS, production of CH4 was reduced but the reduction was less at 40% WDGS. In the presence of PS, ruminal lactate, succinate, and acetate/propionate (A/P) ratio tended to be less with a WDGS interaction (P < 0.01). In the presence of PS and with 40% WDGS, average populations of Bacteroidetes, total methanogens, Methanobrevibacter sp. AbM4, and total protozoa were less. The population of total methanogens (R2 = 0.57; P < 0.01), Firmicutes (R2 = 0.46: P < 0.05), and Firmicutes/Bacteroidetes (F/B) ratio (R2 = 0.46; P < 0.03) were strongly correlated with ruminal CH4 production. Therefore, there was an associative effect of tannin-rich PS and WDGS, which suppressed methanogenesis both directly and indirectly by modifying populations of ruminal methanogens.


Asunto(s)
Arachis/química , Bovinos/fisiología , Suplementos Dietéticos/análisis , Metano/metabolismo , Methanobrevibacter/aislamiento & purificación , Taninos/metabolismo , Acetatos/metabolismo , Alimentación Animal/análisis , Animales , Dióxido de Carbono/metabolismo , Bovinos/microbiología , Dieta/veterinaria , Digestión/efectos de los fármacos , Fermentación , Gases/metabolismo , Gases de Efecto Invernadero/metabolismo , Masculino , Propionatos/metabolismo , Rumen/metabolismo , Rumen/microbiología
11.
Bioresour Technol Rep ; 5: 91-98, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31193294

RESUMEN

The feasibility of using pre-acclimated activated carbon to start up microbial electrolysis cell assisted anaerobic digester (MEC-AD) has been testified in this study. Two identical lab-scale digesters were separately packed with granular activated carbon (GAC) and powered activated carbon (PAC), which were initially acclimated as anaerobic digester and then transferred to MEC-AD. When a voltage of 0.5 V was applied, increased methane generation and substrate removal rates were observed. Hydrogenotrophic methanogens predominated in both digesters before and after transition, indicating that the pre-cultured microbial community on carbon materials could provide necessary microbiome favorable for starting up MECs. Although a low abundance of Geobacter was detected in inoculum, a rapid propagation could be realized when reactors were subjected to the electro-stimulation. The abundance of Methanosarcina closely attached to PAC was four times than that of GAC, which might be partially contributed to the improved resilience of anaerobic digester subjected to electro-stimulation.

12.
Appl Microbiol Biotechnol ; 102(21): 9351-9361, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30112672

RESUMEN

Multi-walled carbon nanotubes (MWCNTs) released into the sewage may cause negative and/or positive effects on the treatment system. The objective of this study was to explore over 110 days' effect of MWCNTs on the performance of anaerobic granular sludge and microbial community structures in an upflow anaerobic sludge blanket (UASB) reactor. The results showed that MWCNTs had no significant effect on the removal of chemical oxidation demand (COD) and ammonia in UASB reactor, but the total phosphorus (TP) removal efficiency increased by 29.34%. The biogas production of the reactor did not change. The anaerobic granular sludge tended to excrete more EPS to resist the effects of MWCNTs during the long-term impact. Illumina MiSeq sequencing of 16S rRNA gene revealed that MWCNTs did not affect the microbial diversity, but altered the composition and structure of microbial community in the reactor. In this process, Saccharibacteria replaced Proteobacteria as the highest abundant bacterial phylum. MWCNTs promoted the differentiation of methanogen structure, resulting in increase of Methanomassiliicoccus, Methanoculleus, and the uncultured WCHA1-57. These results indicated that MWCNTs impacted the performance of UASB reactor and the structures of the microbial community in anaerobic granular sludge.


Asunto(s)
Anaerobiosis/genética , Nanotubos de Carbono/microbiología , Aguas del Alcantarillado/microbiología , Amoníaco/metabolismo , Bacterias/genética , Bacterias/metabolismo , Reactores Biológicos/microbiología , Fósforo/metabolismo , Proteobacteria/genética , Proteobacteria/metabolismo , ARN Ribosómico 16S/genética , Eliminación de Residuos Líquidos/métodos
13.
Bioresour Technol ; 267: 209-217, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30025316

RESUMEN

Bicarbonate (HCO3-) has been extensively researched as a buffer in anaerobic digestion. The effect of HCO3- concentration on syntrophic butyrate oxidation process was evaluated by batch culturing of anaerobic activated sludge, and the mechanism was further revealed by the changes of Gibbs free energy (ΔG) and the interspecies transfers of electron and proton. The results showed that butyrate degradation rate was enhanced by 32.07% when the supplement of HCO3- increased from 0 to 0.20 mol/L. However, methane production and acetate degradation were strongly inhibited by HCO3- more than 0.10 mol/L. More function of HCO3- was found as 1) decreasing the ΔG of syntrophic methanogenesis of butyrate while increasing the ΔG of methanogenesis of acetate, 2) enriching M. harundinacea and M. concilii, 3) increasing the diffusion rate of protons between the syntrophic consortia. This work would increase the anaerobic digestion efficiency by enhancing the interaction of the syntrophic consortia.


Asunto(s)
Bicarbonatos/química , Ácido Butírico/química , Metano , Oxidación-Reducción , Aguas del Alcantarillado
14.
Trop Anim Health Prod ; 50(5): 1011-1023, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29654500

RESUMEN

The objective of this study was to determine the effects of dietary supplementation of Nigella sativa L. seeds, Rosmarinus officinalis L. leaves and their combination on rumen metabolism, nutrient intake and digestibility, growth performance, immune response and blood metabolites in Dorper lambs. Twenty-four entire male Dorper lambs (18.68 ± 0.6 kg, 4-5 months old) were randomly assigned to a concentrate mixture containing on a dry matter basis either, no supplement (control, T1), 1% R. officinalis leaves (T2), 1% N. sativa seeds (T3) or 1% R. officinalis leaves +1% N. sativa seeds (T4). The lambs had ad libitum access to urea-treated rice straw (UTRS) and were raised for 90 days. Supplemented lambs had greater (P < 0.05) intake of DM and UTRS than the control lambs. The T4 lambs had lower (P < 0.05) nutrient digestibility than those fed other treatments. Total and daily weight gain was greater (P < 0.05) in T2 lambs than those fed other diets. The T3 and T4 lambs had greater (P < 0.05) ruminal pH than the T1 and T2 lambs. Supplemented lambs had lower (P < 0.05) ruminal total volatile fatty acids, acetate, propionate, NH3-N and C18:0 than the control lambs. The T4 lambs had lower (P < 0.05) population of Fibrobacter succinogenes, Ruminococcus albus, methanogens and total protozoa compared with those fed other diets. Supplemented lambs had lower (P < 0.05) neutrophils, basophils and serum urea and greater (P < 0.05) serum IgA and IgG compared with the control lambs. The current results emphasised the variation in the efficacy of medicinal plants in ruminant nutrition.


Asunto(s)
Nigella sativa/química , Hojas de la Planta/química , Rosmarinus/química , Rumen/metabolismo , Rumen/microbiología , Semillas/química , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Basófilos/efectos de los fármacos , Nitrógeno de la Urea Sanguínea , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos Volátiles/metabolismo , Sistema Inmunológico/efectos de los fármacos , Inmunoglobulina A/química , Inmunoglobulina G/química , Masculino , Neutrófilos/efectos de los fármacos , Oryza , Ruminococcus , Oveja Doméstica/crecimiento & desarrollo , Oveja Doméstica/inmunología , Oveja Doméstica/metabolismo , Urea
15.
Anaerobe ; 50: 44-54, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29408017

RESUMEN

This study examined whether the methane-decreasing effect of monensin (∼21%) and different hydrolysable tannins (24%-65%) during in vitro fermentation of grass silage was accompanied by changes in abundances of cellulolytics and methanogens. Samples of liquid (LAM) and solid (SAM) associated microbes were obtained from two rumen simulation technique experiments in which grass silage was either tested in combination with monensin (0, 2 or 4 mg d-1) or with different tannin extracts from chestnut, valonea, sumac and grape seed (0 or 1.5 g d-1). Total prokaryotes were quantified by 4',6-diamidino-2-phenylindol (DAPI) staining of paraformaldehyde-ethanol-fixed cells and relative abundances of ruminal cellulolytic and methanogenic species were assessed by real time quantitative PCR. Results revealed no change in absolute numbers of prokaryotic cells with monensin treatment, neither in LAM nor in SAM. By contrast, supplementation of chestnut and grape seed tannins decreased total prokaryotic counts compared to control. However, relative abundances of total methanogens did not differ between tannin treatments. Thus, the decreased methane production by 65% and 24% observed for chestnut and grape seed tannins, respectively, may have been caused by a lower total number of methanogens, but methane production seemed to be also dependent on changes in the microbial community composition. While the relative abundance of F. succinogenes decreased with monensin addition, chestnut and valonea tannins inhibited R. albus. Moreover, a decline in relative abundances of Methanobrevibacter sp., especially M. ruminantium, and Methanosphaera stadtmanae was shown with supplementation of monensin or chestnut tannins. Proportions of Methanomicrobium mobile were decreased by monensin in LAM while chestnut and valonea had an increasing effect on this methanogenic species. Our results demonstrate a different impact of monensin and tannins on ruminal cellulolytics and gave indication that methane decrease by monensin and chestnut tannins was associated with decreased abundances of M. ruminantium and M. stadtmanae.


Asunto(s)
Alimentación Animal , Celulosa/metabolismo , Suplementos Dietéticos , Metano/metabolismo , Monensina/metabolismo , Poaceae/química , Rumen/microbiología , Ensilaje/análisis , Taninos/metabolismo , Animales , Bacterias/metabolismo , Biodiversidad , Digestión , Fermentación , Ionóforos , Metano/química , Microbiota
16.
J Microbiol ; 55(11): 862-870, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29076069

RESUMEN

Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNA-based terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The results also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.


Asunto(s)
Óxido Ferrosoférrico/metabolismo , Sedimentos Geológicos/microbiología , Metano/metabolismo , Methanomicrobiales/metabolismo , Consorcios Microbianos/fisiología , Ríos/microbiología , Anaerobiosis , Compuestos Férricos/metabolismo , Compuestos Férricos/farmacología , Geobacter/efectos de los fármacos , Geobacter/metabolismo , Hierro/metabolismo , Methanomicrobiales/efectos de los fármacos , Methanosarcina/efectos de los fármacos , Methanosarcina/metabolismo , ARN Ribosómico 16S/genética
17.
Water Res ; 125: 341-349, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28881210

RESUMEN

Molecular microbiology tools (i.e., 16S rDNA gene sequencing) were employed to elucidate changes in the microbial community structure according to the total electron acceptor loading (controlled by influent flow rate and/or medium composition) in a H2-based membrane biofilm reactor evaluated for removal of hexavalent uranium. Once nitrate, sulfate, and dissolved oxygen were replaced by U(VI) and bicarbonate and the total acceptor loading was lowered, slow-growing bacteria capable of reducing U(VI) to U(IV) dominated in the biofilm community: Replacing denitrifying bacteria Rhodocyclales and Burkholderiales were spore-producing Clostridiales and Natranaerobiales. Though potentially competing for electrons with U(VI) reducers, homo-acetogens helped attain steady U(VI) reduction, while methanogenesis inhibited U(VI) reduction. U(VI) reduction was reinstated through suppression of methanogenesis by addition of bromoethanesulfonate or by competition from SRB when sulfate was re-introduced. Predictive metagenome analysis further points out community changes in response to alterations in the electron-acceptor loading: Sporulation and homo-acetogenesis were critical factors for strengthening stable microbial U(VI) reduction. This study documents that sporulation was important to long-term U(VI) reduction, whether or not microorganisms that carry out U(VI) reduction mediated by cytochrome c3, such as SRB and ferric-iron-reducers, were inhibited.


Asunto(s)
Reactores Biológicos/microbiología , Uranio/química , Bacterias/genética , Biopelículas , Grupo Citocromo c , Electrones , Nitratos/química , Nitratos/metabolismo , Oxidantes/química , Oxidantes/metabolismo , Oxidación-Reducción , Sulfatos/química , Sulfatos/metabolismo , Uranio/análisis , Purificación del Agua/métodos
18.
Bioresour Technol ; 245(Pt A): 1258-1265, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28844839

RESUMEN

Petroleum is produced by thermal decay of buried organic material over millions of years. Petroleum oilfield ecosystems represent resource of reduced carbon which favours microbial growth. Therefore, it is obvious that many microorganisms have adapted to harsh environmental conditions of these ecosystems specifically temperature, oxygen availability and pressure. Knowledge of microorganisms present in ecosystems of petroleum oil reservoirs; their physiological and biological properties help in successful exploration of petroleum. Understanding microbiology of petroleum oilfield(s) can be used to enhance oil recovery, as microorganisms in oil reservoirs produce various metabolites viz. gases, acids, solvents, biopolymers and biosurfactants. The aim of this review is to discuss characteristics of petroleum oil reservoirs. This review also provides an updated literature on microbial ecology of these extreme ecosystems including microbial origin as well as various types of microorganisms such as methanogens; iron, nitrate and sulphate reducing bacteria, and fermentative microbes present in petroleum oilfield ecosystems.


Asunto(s)
Euryarchaeota , Petróleo , Ecosistema , Nitratos , Yacimiento de Petróleo y Gas
19.
Anaerobe ; 39: 173-82, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27060275

RESUMEN

Methanogenic archaea (methanogens) are common inhabitants of the mammalian intestinal tract. In ruminants, they are responsible for producing abundant amounts of methane during digestion of food, but selected bioactive plants and compounds may inhibit this activity. Recently, we have identified that, Biserrula pelecinus L. (biserrula) is one such plant and the current study investigated the specific anti-methanogenic activity of the plant. Bioassay-guided extraction and fractionation, coupled with in vitro fermentation batch culture were used to select the most bioactive fractions of biserrula. The four fractions were then tested against five species of methanogens grown in pure culture. Fraction bioactivity was assessed by measuring methane production and amplification of the methanogen mcrA gene. Treatments that showed bioactivity were subcultured in fresh broth without the bioactive fraction to distinguish between static and cidal effects. All four fractions were active against pure cultures, but the F2 fraction was the most consistent inhibitor of both methane production and cell growth, affecting four species of methanogens and also producing equivocal-cidal effects on the methanogens. Other fractions had selective activity affecting only some methanogens, or reducing either methane production or methanogenic cell growth. In conclusion, the anti-methanogenic activity of biserrula can be linked to compounds contained in selected bioactive fractions, with the F2 fraction strongly affecting key rumen methanogens. Further study is required to identify the specific plant compounds in biserrula that are responsible for the anti-methanogenic activity. These findings will help devise novel strategies to control methanogen populations and activity in the rumen, and consequently contribute in reducing greenhouse gas emissions from ruminants.


Asunto(s)
Euryarchaeota/efectos de los fármacos , Fabaceae/química , Metano/antagonistas & inhibidores , Extractos Vegetales/farmacología , Animales , Técnicas de Cultivo Celular por Lotes , Bovinos , Fraccionamiento Químico/métodos , Medios de Cultivo/química , Euryarchaeota/crecimiento & desarrollo , Euryarchaeota/aislamiento & purificación , Euryarchaeota/metabolismo , Fermentación/efectos de los fármacos , Metano/biosíntesis , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Rumen/microbiología
20.
Biotechnol Biofuels ; 8: 154, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26396592

RESUMEN

BACKGROUND: High levels of ammonia and the presence of sulphide have major impacts on microbial communities and are known to cause operating problems in anaerobic degradation of protein-rich material. Operating strategies that can improve process performance in such conditions have been reported. The microbiological impacts of these are not fully understood, but their determination could help identify important factors for balanced, efficient operation. This study investigated the correlations between microbial community structure, operating parameters and digester performance in high-ammonia conditions. METHOD: Continuous anaerobic co-digestion of household waste and albumin was carried out in laboratory-scale digesters at high ammonia concentrations (0.5-0.9 g NH3/L). The digesters operated for 320 days at 37 or 42 °C, with or without addition of a trace element mixture including iron (TE). Abundance and composition of syntrophic acetate-oxidising bacteria (SAOB) and of methanogenic and acetogenic communities were investigated throughout the study using 16S rRNA and functional gene-based molecular methods. RESULTS: Syntrophic acetate oxidation dominated methane formation in all digesters, where a substantial enhancement in digester performance and influence on microbial community by addition of TE was shown dependent on temperature. At 37 °C, TE addition supported dominance and strain richness of Methanoculleus bourgensis and altered the acetogenic community, whereas the same supplementation at 42 °C had a low impact on microbial community structure. Both with and without TE addition operation at 42 °C instead of 37 °C had low impact on digester performance, but considerably restricted acetogenic and methanogenic community structure, evenness and richness. The abundance of known SAOB was higher in digesters without TE addition and in digesters operating at 42 °C. No synergistic effect on digester performance or microbial community structure was observed on combining increased temperature with TE addition. CONCLUSIONS: Our identification of prominent populations related to enhanced performance within methanogenic (high dominance and richness of M. bourgensis) and acetogenic communities are valuable for continued research and engineering to improve methane production in high-ammonia conditions. We also show that a temperature increase of only 5 °C within the mesophilic range results in an extreme dominance of one or a few species within these communities, independent of TE addition. Furthermore, functional stable operation was possible despite low microbial temporal dynamics, evenness and richness at the higher temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA