Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
BMC Biotechnol ; 24(1): 5, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263231

RESUMEN

Recently there have been a variety of methods to synthesize silver nanoparticles, among which the biosynthesis method is more noticeable due to features like being eco-friendly, simple, and cost-efficient. The present study aims for the green synthesis of silver nanoparticles from the extract of the three plants A. wilhelmsi, M. chamomilla, and C. longa; moreover, it pledges to measure the antibacterial activity against some variants causing a skin rash. The morphology and size of the synthesized silver nanoparticles were evaluated by UV.vis, XRD, SEM, and FTIR analyses. Then results showed a color alteration from light yellow to dark brown and the formation of silver nanoparticles. The absorption peak with the wavelength of approximately 450 nm resulting from the Spectrophotometry analysis confirmed the synthesis of silver nanoparticles. The presence of strong and wide peaks in FTIR indicated the presence of OH groups. The SEM results showed that most synthesized nanoparticles had a spherical angular structure and their size was about 10 to 20 nm. The highest inhibition power was demonstrated by silver nanoparticles synthesized from the extract combined from all three species against Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis (23 mm) which had a performance far more powerful than the extract. Thus, it can be understood that the nanoparticles synthesized from these three species can act as potential environment-friendly alternatives to inhibit some variations causing skin disorders; an issue that calls for further clinical studies.


Asunto(s)
Nanopartículas del Metal , Plantas Medicinales , Plata , Antibacterianos , Extractos Vegetales
2.
Huan Jing Ke Xue ; 44(11): 6387-6398, 2023 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-37973120

RESUMEN

Effects of continuous cropping on rhizosphere soil physical and chemical properties, soil microbial activity, and community characteristics of Codonopsis pilosula were investigated. The C. pilosula plot(CK) fallow for five years and C. pilosula fields with different years of continuous cropping were studied using Illumina high-throughput sequencing technology combined with soil physical and chemical properties analysis. The response of rhizosphere soil physical and chemical properties, microbial activities, and microbial community characteristics to continuous cropping years of C. pilosula were investigated. The results were as follows:the contents of organic carbon, total phosphorus, total nitrogen, and salt in rhizosphere soil of C. pilosula increased with the extension of continuous cropping years. However, soil pH value decreased with the extension of continuous cropping years. Compared with that in the CK treatment, rhizosphere soil organic carbon content of C. pilosula in continuous cropping for one, two, three, and four years increased by 11.1%, 80.5%, 74.9%, and 78.2%, respectively. Total phosphorus content increased by 11.8%, 52.9%, 66.7%, and 78.4%, and total nitrogen content increased by 31.3%, 68.8%, 52.1%, and 56.3%, respectively. Soil salt content increased significantly under continuous cropping of three and four years, and soil conductivity increased by 54.2% and 84.7% compared with that in the CK treatment, respectively. The C/N ratio of microbial biomass in rhizosphere soil exhibited an increasing trend with the extension of continuous cropping years. Soil respiration entropy and microbial entropy showed a decreasing trend. With the increase in continuous cropping years, the diversity and abundance of bacteria in soil decreased, whereas the diversity and abundance of fungi increased. In addition, with the increase in continuous cropping years, the antagonistic effect between bacterial communities was enhanced, whereas the synergistic effect between fungal communities was mainly observed. Correlation analysis showed that soil total phosphorus, available potassium, carbon to nitrogen ratio of microbial biomass, soil respiration entropy, microbial biomass carbon, and electrical conductivity were the main factors affecting the changes in soil bacterial community characteristics. Soil total nitrogen, available potassium, available phosphorus, and soil respiration entropy were the main factors affecting the changes in fungal community characteristics. In conclusion, continuous cropping significantly changed the physical and chemical properties of soil and microbial activity and affected the abundance and diversity of bacteria and fungi in soil. This changed the interaction between microorganisms, which disrupted the stability of microbial communities in the soil.


Asunto(s)
Codonopsis , Suelo , Suelo/química , Carbono , Rizosfera , Microbiología del Suelo , Hongos , Bacterias/genética , Nitrógeno , Fósforo , Potasio
3.
Chemosphere ; 340: 139911, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37611752

RESUMEN

With the rapid increase of sludge production from sewage treatment plants, the treatment of sludge drying condensate rich in a large amount of pollutants urgently needs to be addressed. Due to the unique characteristics of sludge drying condensate (high ammonia nitrogen and COD concentration), there are almost no reports on biological treatment methods specifically targeting sludge drying condensate. In this study, A/O-MBR process was proposed for sludge drying condensate treatment and the effects of ammonia nitrogen loads, alkalinity and aeration intensity were explored. Experimental results show that under the ammonia nitrogen load of 0.35 kg NH4+-N/(m3·d) and the aeration intensity of 0.5 m3/(m2·min), the removal rate of COD and NH4+-N could reach 94% and 99.86% with the addition of alkalinity (m(NaHCO3): m(NH4+-N) = 7:1), respectively. The distribution of living and dead microbial cells in the activated sludge of three reactors also proved that the supplement of alkalinity in the influent can ensure the feasible living conditions for microorganisms. In addition to traditional nitrifying bacteria, through the supplementation of alkalinity and the reduction of aeration intensity, the system had also domesticated high abundance heterogeneous nitrification aerobic denitrification (HN-AD) and aerobic denitrification bacteria (both more than 10% of the total bacterial count). The denitrification process of sludge drying condensate was simplified and the denitrification efficiency was greatly improved. The findings of this study could provide important theoretical guidance for the biological treatment process of sludge drying condensate.


Asunto(s)
Contaminantes Ambientales , Aguas del Alcantarillado , Amoníaco , Desecación , Suplementos Dietéticos
4.
Heliyon ; 9(5): e15743, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37305504

RESUMEN

In recent years, many strategies have been developed for the biological synthesis of different types of metal nanoparticles, which have been successfully synthesized from various plant extracts and analyzed. Recent studies have demonstrated that nanoparticles have highly promising antimicrobial, antiviral, and anti-cancer properties. In the present study, biological synthesis of Ricinuscommunis leaves was performed with iron and silver nanoparticles. The synthesized iron and silver nanoparticles were characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR), X-Ray Diffraction (XRD), Scanning electron microscopy (SEM) with Energy dispersive spectroscopy (EDS), and Transmission electron microscopy (TEM). GC-MS analysis of the Ricinus communis revealed the secondary metabolites of total phenolic and flavonoid contents of the extract, which are responsible for the bio-reduction reaction during nanoparticle synthesis. The UV-Vis spectrum shows Plasmon peaks at 340 nm and 440 nm for iron and silver nanoparticles, respectively. XRD results revealed crystalline structure, while TEM, SEM, and EDS identified iron and silver with mostly cuboidal and spherical shapes. Antimicrobial activity was also performed, and it was found that both nanoparticles were active against Salmonella typhi (6 ± 0.073) and (7 ± 0.040), Staphylococcus aureus, and Aspergillus flavus. MIC was also performed, and AgNPs gave a better bactericidal effect against Staphylococcus aureus.

5.
Ecol Appl ; 33(5): e2861, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092906

RESUMEN

Mowing, as a common grassland utilization strategy, affects nutrient status in soil by plant biomass removal. Phosphorus (P) cycle plays an important role in determining grassland productivity. However, few studies have addressed the impacts of mowing on P cycling in grassland ecosystems. Here, we investigated the effects of various mowing regimes on soil P fractions and P accumulation in plants and litters. We specifically explored the mechanisms by which mowing regulates ecosystem P cycling by linking aboveground community with soil properties. Our results showed that mowing increased soil dissolvable P concentrations, which probably met the demand for P absorption and utilization by plants, thus contributing to an increased P accumulation by plants. Mowing promoted grassland P cycling by a reciprocal relationship between plants and microbes. Short-term mowing enhanced P cycling mainly through increased root exudation-evoked the extracellular enzyme activity of microbes rather than the alternations in microbial biomass and community composition. Long-term mowing increased P cycling mainly by promoting carbon allocation to roots, thereby leading to greater microbial metabolic activity. Although mowing-stimulation of organic P mineralization lasted for 15 consecutive years, mowing did not result in soil P depletion. These results demonstrate that P removal by mowing will not necessarily lead to soil P limitation. Our findings would advance the knowledge on soil P dynamic under mowing and contribute to resource-efficient grassland management.


Asunto(s)
Jardines , Fósforo , Suelo , Biomasa , Carbono , Ecosistema , Pradera , Nitrógeno/metabolismo , Plantas , Poaceae
6.
Environ Pollut ; 324: 121326, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36813096

RESUMEN

Microplastics have emerged as an important threat to terrestrial ecosystems. To date, little research has been conducted on investigating the effects of microplastics on ecosystem functions and multifunctionality. In this study, we conducted the pot experiments containing five plant communities consisting of Phragmites australis, Cynanchum chinense, Setaria viridis, Glycine soja, Artemisia capillaris, Suaeda glauca, and Limonium sinense and added polyethylene (PE) and polystyrene (PS) microbeads to the soil (contained a mixture of 1.5 kg loam and 3 kg sand) at two concentrations of 0.15 g/kg (lower concentration, hereinafter referred to as PE-L and PS-L) and 0.5 g/kg (higher concentration, hereinafter referred to as PE-H and PS-H) to explore the effects of microplastics on total plant biomass, microbial activity, nutrient supply, and multifunctionality. The results showed that PS-L significantly decreased the total plant biomass (p = 0.034), primarily by inhibiting the growth of the roots. ß-glucosaminidase decreased with PS-L, PS-H, and PE-L (p < 0.001) while the phosphatase was noticeably augmented (p < 0.001). The observation suggests that the microplastics diminished the nitrogen requirements and increased the phosphorus requirements of the microbes. The decrease in ß-glucosaminidase diminished ammonium content (p < 0.001). Moreover, PS-L, PS-H, and PE-H reduced the soil total nitrogen content (p < 0.001), and only PS-H considerably reduced the soil total phosphorus content (p < 0.001), affecting the ratio of N/P markedly (p = 0.024). Of interest, the impacts of microplastics on total plant biomass, ß-glucosaminidase, phosphatase, and ammonium content did not become larger at the higher concentration, and it is observable that microplastics conspicuously depressed the ecosystem multifunctionality, as microplastics depreciated single functions such as total plant biomass, ß-glucosaminidase, and nutrient supply. In perspective, measures to counteract this new pollutant and eliminate its impact on ecosystem functions and multifunctionality are necessary.


Asunto(s)
Ecosistema , Suelo , Poaceae , Microplásticos , Plásticos , Microesferas , Poliestirenos , Polietileno , Nutrientes , Nitrógeno , Fósforo
7.
Molecules ; 28(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677921

RESUMEN

It has now been proven that many pathogens that cause infections and inflammation gradually mutate and become resistant to antibiotics. Chemically synthesized drugs treating inflammation most often only affect symptoms, but side effects could lead to the failure of human organs' functionality. On the other hand, plant-derived natural compounds have a long-term healing effect. It was shown that sea buckthorn (SBT) twigs are a rich source of biologically active compounds, including oligomeric proanthocyanidins (PACs). This study aimed to assess the anti-pathogenic and anti-inflammatory activity of water/ethanol extracts and PACs obtained from the lignocellulosic biomass of eight SBT cultivars. The anti-pathogenic activity of extracts and PACs was studied against pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus cereus and fungus Candida albicans in 96-well plates by the two-fold serial broth microdilution method. The anti-bacterial activity of purified PACs was 4 and 10 times higher than for water and water/ethanol extracts, respectively, but the extracts had higher anti-fungal activity. Purified PACs showed the ability to reduce IL-8 and IL-6 secretion from poly-I:C-stimulated peripheral blood mononuclear cells. For the extracts and PACs of SBT cultivar 'Maria Bruvele' in the concentration range 0.0313-4.0 mg/mL, no toxic effect was observed.


Asunto(s)
Proantocianidinas , Humanos , Proantocianidinas/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Leucocitos Mononucleares , Bacterias , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antioxidantes/farmacología , Etanol/farmacología , Agua/farmacología , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
8.
Environ Sci Pollut Res Int ; 30(28): 71970-71983, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36044149

RESUMEN

Bintaro is a tropical mangrove plant often used as a shade tree found in Asia, Australia, Madagascar, and the Islands of the Western Pacific Ocean. The word Bintaro is also often pinned to its closest relative species, the Cerbera odollam. Flower color is one of the distinguishing features between these two species. Human poisoning with the cardiotoxic plant Bintaro is common in Southeast Asia because it bears a fruit that yields a powerful poison that has been used for suicide and homicide, hence it is also called the "Indian suicide tree". The seeds of Bintaro contain Cerberin, a cardiac glycoside toxin of the heart that blocks the calcium ion channels in heart muscles, resulting in disruption of the heartbeat most often fatally. The bio-active compound in the kernels of Bintaro varies due to which plant possesses other properties as well. The plant may also be used for medicinal purposes as it shows many pharmaceutical properties. The seeds of the plant have auspicious anticancer properties through apoptotic activity and the leaf extract of the plant was screened for its antioxidant activities. In addition, it is also used as an insecticide, pesticide, or antifungal agent. This review highlights the Pharmaceutical, toxicological, and environmentally friendly approaches of Bintaro.


Asunto(s)
Apocynaceae , Suicidio , Humanos , Semillas , Frutas , Extractos Vegetales/farmacología
9.
Biomedicines ; 10(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36359308

RESUMEN

Silver nanoparticles (AgNPs) have attracted a lot of interest directed towards biomedical applications due in part to their outstanding anti-microbial activities. However, there have been many health-impacting concerns about their traditional synthesis methods, i.e., the chemical and physical methods. Chemical methods are commonly used and contribute to the overall toxicity of the AgNPs, while the main disadvantages of physical synthesis include high production costs and high energy consumption. The biological methods provide an economical and biocompatible option as they use microorganisms and natural products in the synthesis of AgNPs with exceptional biological properties. Plant extract-based synthesis has received a lot of attention and has been shown to resolve the limitations associated with chemical and physical methods. AgNPs synthesized using plant extracts provide a safe, cost-effective, and environment-friendly approach that produces biocompatible AgNPs with enhanced properties for use in a wide range of applications. The review focused on the use of plant-synthesized AgNPs in various biomedical applications as anti-microbial, anti-cancer, anti-inflammatory, and drug-delivery agents. The versatility and potential use of green AgNPs in the bio-medicinal sector provides an innovative alternative that can overcome the limitations of traditional systems. Thus proving green nanotechnology to be the future for medicine with continuous progress towards a healthier and safer environment by forming nanomaterials that are low- or non-toxic using a sustainable approach.

10.
Biochem Biophys Res Commun ; 623: 127-132, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914350

RESUMEN

Chronic, non-healable wounds have been a threat throughout history and have consumed centuries of traditional and modern research. In wound repair, a growing variety of novel treatments have been developed. At various stages of wound healing, nanostructure systems are employed. The drug may be synthesized at the nanoscale to act as a "provider," or nanomaterial could be employed as biomedical devices. Capparis zeylanica was used to synthesize Titanium dioxide nanoparticles (TiO2NPs) under ambient temperature. The UV-Vis spectrophotometer was used to confirm the illumination of fabricated TiO2NPs tuned to a size of 352 nm TiO2NPs have been revealed to be spherical and linked to one another using scanning electron microscopy. Biologically active functionality molecules involved in green synthesized TiO2NPs were indicated by Fourier transform infrared spectroscopy peaks. The TiO2NPs are amorphous, according to X-ray diffraction spectra. Skin diseases causing pathogens were studied for anti-microbial activity using the agar well diffusion method, and the results indicated significant anti-microbial properties. Furthermore, the wound healing ability of fabricated TiO2NPs was investigated in an excision wound model in Swiss albino mice. Finally, our findings revealed that TiO2NPs had provided a unique therapeutic approach for wound healing and in the planning of therapies.


Asunto(s)
Antiinfecciosos , Capparis , Nanopartículas del Metal , Nanopartículas , Animales , Antibacterianos/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Nanopartículas del Metal/química , Ratones , Nanopartículas/química , Extractos Vegetales/química , Espectroscopía Infrarroja por Transformada de Fourier , Titanio/química , Titanio/farmacología , Cicatrización de Heridas , Difracción de Rayos X
11.
Artículo en Inglés | MEDLINE | ID: mdl-35661821

RESUMEN

Removal of infected wounds using maggots has been known for centuries. Early research has shown that the maggot exosecretion, whole body, and fecal waste products of Calliphoridae and Sarcophagidae species contain a variety of alkaline peptides capable of inhibiting bacterial growth. Since the wide application of antibiotics such as penicillin, a number of bacterial infections have become insensitive to antibiotic treatment. In many of these instances, maggot therapy has been successfully applied for the treatment of chronic wounds. To identify and compare the expression patterns of anti-microbial peptides (AMPs) from some dipteran species, transcriptome analyses were conducted for the maggots of 11 Calliphoridae and Sarcophagidae species. Species of the subfamily Calliphorinae showed relatively higher expression levels of AMPs and anti-microbial proteins compared with those of Luciliinae and Sarcophagidae species. Furthermore, among all of the dipteran species examined, Lucilia illustris exhibited the highest transcription levels of AMPs. Cecropin A2 and defensin, whose expression levels were the highest among the anti-microbial peptides, were synthesized to test their biological activity. The synthesized peptides showed anti-microbial activities without hemolytic activities. In particular, cecropin A2 of L. illustris exhibited the highest anti-microbial activity against all of the bacteria and fungi examined, thereby possessing the potential to be developed as a new alternative to antibiotics. This comparative transcriptomic study may provide new insights into anti-microbial compositions of some dipteran species.


Asunto(s)
Cecropinas , Dípteros , Sarcofágidos , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Calliphoridae , Cecropinas/metabolismo , Larva , Péptidos/farmacología
12.
Microb Pathog ; 167: 105544, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35443211

RESUMEN

This study established a cost-effective and environmentally friendly approach to synthesizing the selenium nanoparticles using Artemisia annua (AaSeNPs) and encapsulating the starch (StAaSeNPs) for enhanced anti-bacterial activity. The UV-vis spectra displayed an absorption maxima at 278 nm corresponding to surface plasmon resonance of SeNPs. Particle size were found 70.81 nm for AaSeNPs and 109.2 nm for StAaSeNPs with zeta potential of -26.6 and -30.9 mV respectively. TEM images evidenced that both NPs were spherical in structure with an average particle size of <200 nm. FT-IR indicated the hydroxyl group associated encapsulation of starch in AaSeNPs. The XRD pattern revealed the crystalline nature of SeNPs. The agar well diffusion and micro-dilution assay results revealed that StAaSeNPs had marginally higher bacterial (Staphylococcus aureus, Bacillus cereus, Salmonella enterica, and Escherichia coli) inhibition activity compared to AaSeNPs. Further, these NPs on cellular ultrastructural changes of bacterial pathogens were observed by TEM analysis. These findings indicated that the surface modification of AaSeNPs with starch molecules enhanced the anti-bacterial activity that could be used to treat multidrug-resistant pathogens-related infections.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Selenio , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Escherichia coli , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Selenio/química , Espectroscopía Infrarroja por Transformada de Fourier , Almidón
13.
Environ Sci Pollut Res Int ; 29(35): 52483-52492, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35258728

RESUMEN

Cadmium (Cd) pollution has led to a serious deterioration in soil quality, plant growth, and human health. Therefore, restoration of soil quality is imperative. Phytoremediation is inexpensive and yields acceptable outcomes. Phytoremediation involves interaction between plant physiology and microbial activity and has been widely used in the remediation of Cd-contaminated soil. In the present study, Lolium perenne L. (perennial ryegrass) was planted in Cd-spiked soil and indole-3-acetic acid (IAA) was used to explore the physiological and biochemical characteristics of ryegrass as well as soil enzyme activity to remove Cd. The present study provides a theoretical basis for the phytoremediation of Cd-contaminated soil. The study investigated the effect of 30-mg/kg Cd-spiked soil on ryegrass (C) and 30-mg/kg Cd-spiked soil on ryegrass treated with 10-mg/kg IAA (CI) compared with uncontaminated soil and ryegrass as the control. At the end of the experiment, the ryegrass biomass, total chlorophyll, superoxide dismutase (SOD) activity, and soil invertase activity in C group were decreased by 33.7%, 23.0%, 29.7%, and 18.3%, respectively, whereas the peroxidase (POD) activity and soil basal respiration increased by 17.1% and 87.9%, respectively, compared with the control. In the CI group, the biomass of ryegrass, chlorophyll content, SOD activity, sucrase activity, fluorescein diacetate (FDA) hydrolase activity, and Cd removal rates increased by 14.5%, 19.9%, 24.3%, 12.1%, 20.4%, and 15.1%, respectively, whereas the POD activity, soil basal respiration, and Cd residues in the soil declined by 8.0%, 15.0%, and 17.0%, respectively, compared with the C group. Therefore, exposure to exogenous IAA alleviated the Cd stress on ryegrass and soil microorganisms and improved Cd absorption by ryegrass from the contaminated soil.


Asunto(s)
Cadmio , Ácidos Indolacéticos , Lolium , Microbiología del Suelo , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio/análisis , Clorofila/farmacología , Lolium/fisiología , Suelo/química , Contaminantes del Suelo/análisis , Superóxido Dismutasa
14.
Chemosphere ; 286(Pt 2): 131750, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34352537

RESUMEN

The remediation effects of hydrogen peroxide (H2O2) oxidation and surfactant-leaching alone or in combination on three typical oilfield sludges were studied. The removal efficiency of total petroleum hydrocarbons (TPHs) of Jidong, Liaohe and Jiangsu oil sludges by hydrogen peroxide oxidation alone was very poor (6.5, 6.8, and 3.4 %, respectively) but increased significantly (p < 0.05), especially of long-chain hydrocarbons, by combining the use of H2O2 with surfactants (80.0, 79.8 and 82.2 %, respectively). Oxidation combined with leaching may impair microbial activity and organic manure was therefore added to the treated sludges for biostimulation and the composition and function of the microbial community were studied. The addition of manure rapidly restored sludge microbial activity and significantly increased the relative abundance of some salt-tolerant and alkali-tolerant petroleum-degrading bacteria such as Corynebacterium, Pseudomonas, Dietzia and Jeotgalicoccus. Moreover, the relative abundance of two classic petroleum-degrading enzyme genes, alkane 1-monooxygenase and catechol 1, 2-dioxygenase, increased significantly.


Asunto(s)
Microbiota , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos , Peróxido de Hidrógeno , Petróleo/análisis , Aguas del Alcantarillado , Microbiología del Suelo , Contaminantes del Suelo/análisis , Tensoactivos
15.
Front Microbiol ; 12: 752947, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938277

RESUMEN

The widespread application of directional drilling and hydraulic fracturing technologies expanded oil and gas (OG) development to previously inaccessible resources. A single OG well can generate millions of liters of wastewater, which is a mixture of brine produced from the fractured formations and injected hydraulic fracturing fluids (HFFs). With thousands of wells completed each year, safe management of OG wastewaters has become a major challenge to the industry and regulators. OG wastewaters are commonly disposed of by underground injection, and previous research showed that surface activities at an Underground Injection Control (UIC) facility in West Virginia affected stream biogeochemistry and sediment microbial communities immediately downstream from the facility. Because microbially driven processes can control the fate and transport of organic and inorganic components of OG wastewater, we designed a series of aerobic microcosm experiments to assess the influence of high total dissolved solids (TDS) and two common HFF additives-the biocide 2,2-dibromo-3-nitrilopropionamide (DBNPA) and ethylene glycol (an anti-scaling additive)-on microbial community structure and function. Microcosms were constructed with sediment collected upstream (background) or downstream (impacted) from the UIC facility in West Virginia. Exposure to elevated TDS resulted in a significant decrease in aerobic respiration, and microbial community analysis following incubation indicated that elevated TDS could be linked to the majority of change in community structure. Over the course of the incubation, the sediment layer in the microcosms became anoxic, and addition of DBNPA was observed to inhibit iron reduction. In general, disruptions to microbial community structure and function were more pronounced in upstream and background sediment microcosms than in impacted sediment microcosms. These results suggest that the microbial community in impacted sediments had adapted following exposure to OG wastewater releases from the site. Our findings demonstrate the potential for releases from an OG wastewater disposal facility to alter microbial communities and biogeochemical processes. We anticipate that these studies will aid in the development of useful models for the potential impact of UIC disposal facilities on adjoining surface water and shallow groundwater.

16.
Life (Basel) ; 11(12)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34947842

RESUMEN

Oral diseases affect a very large number of people, and the applied pharmacological methods of treatment and/or prevention have serious side effects. Therefore, it is necessary to search for new, safer methods of treatment. Natural bee products, such as honey, royal jelly, and bee venom, can be a promising alternative in the treatment of oral cavity bacterial infections. Thus, we performed an extensive literature search to find and summarize all articles about the antibacterial activity of honey, royal jelly, and bee venom. Our analysis showed that these bee products have strong activity against the bacterial strains causing caries, periodontitis, gingivitis, pharyngitis, recurrent aphthous ulcers, supragingival, and subgingival plaque. An analysis of average MIC values showed that honey and royal jelly have the highest antimicrobial activity against Porphyromonas gingivalis and Fusobacterium nucleatum. In turn, bee venom has an antibacterial effect against Streptococcus mutans. Streptococcus sobrinus and Streptoccus pyogenes were the most resistant species to different types of honey, and royal jelly, respectively. Moreover, these products are safer in comparison to the chemical compounds used in the treatment of oral cavity bacterial infections. Since the antimicrobial activity of bee products depends on their chemical composition, more research is needed to standardize the composition of these compounds before they could be used in the treatment of oral cavity bacterial infections.

17.
Microorganisms ; 9(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34835351

RESUMEN

We examined greenhouse gas (GHG) production upon the addition of ammonium and phosphate to mature fine tailing (MFT) samples from Alberta's Pond 2/3 (at 5 and 15 m) and Pond 7 (12.5 m) in microcosm studies. The methane production rate in unamended Pond 2/3 MFT correlated with sample age; the production rate was higher in the less dense, more recently discharged MFT samples and lower in the denser, deeper sample. Adding small amounts of naphtha increased methane production, but there was no correlation with increasing naphtha, indicating that naphtha may partition into bitumen, reducing its bioavailability. Although non-detectable phosphate and low ammonium in the pore water indicate that these nutrients were potentially limiting microbial activity, their addition did not significantly affect methanogenesis but somewhat enhanced sulphate and nitrate reduction. Neither ammonium nor phosphate were detected in the pore water when added at low concentrations, but when added at high concentrations, 25-35% phosphate and 30-45% ammonium were lost. These ions likely sorbed to MFT minerals such as kaolinite, which have microbial activity governed by phosphate/ammonium desorption. Hence, multiple limitations affected microbial activity. Sulphate was less effective than nitrate was in inhibiting methanogenesis because H2S may be a less effective inhibitor than NOx- intermediates are, and/or H2S may be more easily abiotically removed. With nitrate reduction, N2O, a potent GHG was produced but eventually metabolized.

18.
Curr Drug Metab ; 22(11): 893-904, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34636294

RESUMEN

BACKGROUND: The plant Acacia leucophloea (Roxb.) Willd. of the family Fabaceae is of paramount importance in Indian medicine. OBJECTIVES: We sought to evaluate the in vitro anti-microbial activity of A. leucophloea stem bark extract together with its phytochemical characterization and exploration of drug-likeness attributes. METHODS: In vitro Kirby-Bauer disc-diffusion and tube-dilution assays were exploited for determining the anti-microbial activity of the methanolic bark extracts against several bacterial test strains. Spectral characterization of the isolated phytoconstituents was performed using spectroscopy techniques viz., UV, IR, 1H NMR, and mass spectroscopy followed by the in silico studies like docking and ADME-T studies. RESULTS: The crude methanolic extracts were active against all the bacterial test strains, albeit weakly or moderately, as indicated by the zone of inhibition and minimum inhibitory concentration in the anti-microbial assays. The isolated phytoconstituent was identified to be 3-(3,4-dihydro-5-methoxy-2H-chromen-6-yl)-2,5- dimethoxy-2H-chromen-7-ol (hereby coined as acacianol), a novel isoflavone analog. Acacianol demonstrated a strong binding affinity towards the bacterial DNA gyrase over clorobiocin, especially in the case of cavity 4 with no predicted toxicities in silico, except skin sensitization and chromosome damage.


Asunto(s)
Acacia/química , Antibacterianos/química , Isoflavonas/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Fitoquímicos/química , Corteza de la Planta/química , Extractos Vegetales/química
19.
Molecules ; 26(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34500731

RESUMEN

Cinnamon is widely used as a food spice, but due to its antibacterial and pharmacological properties, it can also be used in processing, medicine and agriculture. The word "Cinnamon" can refer to the plant, processed material, or an extract. It is sometimes used as a substance, and sometimes used as a mixture or as compounds or a group. This article reviews research into the effectiveness of various forms of cinnamon for the control of plant diseases and pests in crops and during storage of fruit and vegetables. Cinnamon acts on pests mainly as a repellent, although in higher doses it has a biocidal effect and prevents egg-laying. Cinnamon and its compounds effectively hinder bacterial and fungal growth, and the phytotoxic effects of cinnamon make it a possible herbicide. This article presents the wide practical use of cinnamon for various purposes, mainly in agriculture. Cinnamon is a candidate for approval as a basic substance with protective potential. In particular, it can be used in organic farming as a promising alternative to chemical pesticides for use in plant protection, especially in preventive treatments. The use of natural products is in line with the restriction of the use of chemical pesticides and the principles of the EU's Green Deal.


Asunto(s)
Cinnamomum zeylanicum/química , Humanos , Repelentes de Insectos/uso terapéutico , Enfermedades de las Plantas/prevención & control , Extractos Vegetales/uso terapéutico
20.
J Environ Manage ; 298: 113426, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34343746

RESUMEN

Carbon (C) additions to soil interact through chemical and microbiological processes to cause changes in soil phosphorus (P) availability. However, the response of soil P transformations and relevant microbial communities to C additions having different degrees of recalcitrance remains uncertain. We studied the effects of glucose, hemicellulose and lignin addition on soil P availability, P transformation processes and relevant microbial activity and communities in a P-deficient flooded soil. Lignin significantly increased soil available P concentrations, which was attributed to chemical release of inorganic P and increased alkaline phosphatase activity. Glucose and hemicellulose additions stimulated microbial metabolism of C thereby enhancing microbial demand for P, with increased soil P availability especially in the early incubation period. Glucose or hemicellulose addition changed soil microbial diversity and community composition, leading to enhanced growth and interactions of P solubilizing microorganisms such as Desulfitobacterium, Bacillus and Desulfosporosinus. Our results infer the importance of pH alteration and competitive sorption between PO4 and functional groups of recalcitrant C (e.g., lignin) with Fe/Al (hydr) oxides in regulating soil P availability. Further, the microbial response to labile C additions led to increased P availability in the P-deficient soil. This study provides important mechanistic information to guide microbially-regulated soil P management in agricultural ecosystems.


Asunto(s)
Microbiota , Suelo , Carbono , Fósforo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA