Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biochem Mol Toxicol ; 37(10): e23403, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37701944

RESUMEN

Doxorubicin (DOX) has been used to treat various types of cancer, but its application is limited due to its heart toxicity as well as other drawbacks. Chronic inhibition of Na+ /H+ exchanger (NHE1) reduces heart failure and reduces the production of reactive oxygen species (ROS); vitamin B6 (VitB6 ) has been demonstrated to have a crucial role in antioxidant mechanism. So, this study was designed to explore the effect of VitB6 supplement on the DOX-induced cardiotoxicity and to imply whether NHE1 is involved. Ultrasonic cardiogram analysis revealed that VitB6 supplement could alleviate DOX-induced cardiotoxicity; hematoxylin and eosin (HE) and Masson's staining further confirmed this effect. Furthermore, VitB6 supplement exhibited significant antioxidative stress and antiapoptosis effect, which was evidenced by decreased serum malondialdehyde (MDA) content and increased serum superoxide dismutase (SOD) content, and decreased Bcl-2-associated X protein/B-cell lymphoma-2 ratio, respectively. Collectively, VitB6 supplement may exert antioxidative and antiapoptosis effects to improve cardiac function by decreasing NHE1 expression and improve DOX-induced cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Vitamina B 6 , Humanos , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Vitamina B 6/farmacología , Doxorrubicina/toxicidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , Vitaminas/farmacología , Apoptosis
2.
Biochim Biophys Acta Gen Subj ; 1867(2): 130278, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36410610

RESUMEN

It has been demonstrated that supplementation with the two main omega 3 polyunsaturated fatty acids (ω3 FAs), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), leads to modifications in the cardiac physiology. ω3 FAs can affect the membrane's lipid composition, as well as proteins' location and/or function. The Na+/H+ exchanger (NHE1) is an integral membrane protein involved in the maintenance of intracellular pH and its hyperactivity has been associated with the development of various cardiovascular diseases such as cardiac hypertrophy. Our aim was to determine the effect of ω3 FAs on systolic blood pressure (SBP), lipid profiles, NHE1 activity, and cardiac function in spontaneously hypertensive rats (SHR) using Wistar rats (W) as normotensive control. After weaning, the rats received orally ω3 FAs (200 mg/kg body mass/day/ 4 months). We measured SBP, lipid profiles, and different echocardiography parameters, which were used to calculate cardiac hypertrophy index, systolic function, and ventricular geometry. The rats were sacrificed, and ventricular cardiomyocytes were obtained to measure NHE1 activity. While the treatment with ω3 FAs did not affect the SBP, lipid analysis of plasma revealed a significant decrease in omega-6/omega-3 ratio, correlated with a significant reduction in left ventricular mass index in SHR. The NHE1 activity was significantly higher in SHR compared with W. While in W the NHE1 activity was similar in both groups, a significant decrease in NHE1 activity was detected in SHRs supplemented with ω3 FAs, reaching values comparable with W. Altogether, these findings revealed that diet supplementation with ω3 FAs since early age prevents the development of cardiac hypertrophy in SHR, perhaps by decreasing NHE1 activity, without altering hemodynamic overload.


Asunto(s)
Ácidos Grasos Omega-3 , Ratas , Animales , Ratas Wistar , Ácidos Grasos Omega-3/farmacología , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Ratas Endogámicas SHR , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/prevención & control
3.
Acta Biochim Biophys Sin (Shanghai) ; 53(10): 1310-1320, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34409427

RESUMEN

Endothelial dysfunction is the pathological basis of atherosclerosis. Incomplete understanding of endothelial dysfunction etiology has impeded drug development for this devastating disease despite the currently available therapies. Floralozone, an aroma flavor, specifically exists in rabbit ear grass. Recently, floralozone has been demonstrated to inhibit atherosclerosis, but the underlying mechanisms are undefined. The present study was undertaken to explore whether floralozone pharmacologically targets endothelial dysfunction and therefore exerts therapeutic effects on atherosclerosis. The Na+/H+ exchanger 1 (NHE1), a channel protein, plays a vital role in atherosclerosis. Whether NHE1 is involved in the therapeutic effects of floralozone on endothelial dysfunction has yet to be further answered. By performing oil red staining and hematoxylin-eosin staining, vascular functional study, and oxidative stress monitoring, we found that floralozone not only reduced the size of carotid atherosclerotic plaque but also prevented endothelial dysfunction in atherosclerotic rats. NHE1 expression was upregulated in the inner membrane of carotid arteries and H2O2-induced primary rat aortic endothelial cells. Inspiringly, floralozone prevented the upregulation of NHE1 in vivo and in vitro. Notably, the administration of NHE1 activator LiCl significantly weakened the protective effect of floralozone on endothelial dysfunction in vivo and in vitro. Our study demonstrated that floralozone exerted its protective effect on endothelial dysfunction in atherosclerosis by ameliorating NHE1. NHE1 maybe a drug target for the treatment of atherosclerosis, and floralozone may be an effective drug to meet the urgent needs of atherosclerosis patients by dampening NHE1.


Asunto(s)
Aterosclerosis , Endotelio Vascular , Extractos Vegetales , Sustancias Protectoras , Intercambiador 1 de Sodio-Hidrógeno , Animales , Masculino , Aorta/citología , Aorta/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/prevención & control , Arterias Carótidas/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Endotelio Vascular/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Placa Aterosclerótica/prevención & control , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Ratas Sprague-Dawley , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiador 1 de Sodio-Hidrógeno/metabolismo
4.
Neuroscience ; 465: 154-165, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33957206

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) channel is expressed in a subset of nociceptive neurons. This channel integrates several nociceptive signals. Particularly, it is modulated by intracellular pH (pHi). Na+/H+ exchanger 1 (NHE1) contributes to the maintenance of pHi in nociceptors. However, it is currently unknown whether the interaction between TRPA1 and NHE1 contributes to the nociceptive processing. Thus, the purpose of this study was to assess the functional interaction between NHE1 and TRPA1 in small dorsal root ganglion (DRG) neurons from primary culture obtained from adult rats. Moreover, we also evaluated their possible interaction in acute and inflammatory pain. Zoniporide (selective NHE1 inhibitor) reduced pHi and increased intracellular calcium in a concentration-dependent fashion in DRG neurons. Zoniporide and allyl isothiocyanate (AITC, TRPA1 agonist) increased calcium transients in the same DRG neuron, whereas that A-967079 (TRPA1 antagonist) prevented the effect of zoniporide in DRG neurons. Repeated AITC induced TRPA1 desensitization and this effect was prevented by zoniporide. Both NHE1 and TRPA1 were localized at the membrane surface of DRG neurons in culture. Local peripheral zoniporide enhanced AITC-induced pronociception and this effect was prevented by A-967079. Likewise, zoniporide potentiated Complete Freund's Adjuvant (CFA)-induced hypersensitivity, effect which was prevented by A-967079 in vivo. CFA paw injection increased TRPA1 and decresed NHE1 protein expression in DRG. These results suggest a functional interaction between NHE1 and TRPA1 in DRG neurons in vitro. Moreover, data suggest that this interaction participates in acute and inflamatory pain conditions in vivo.


Asunto(s)
Ganglios Espinales , Canales de Potencial de Receptor Transitorio , Animales , Neuronas , Nocicepción , Ratas , Intercambiador 1 de Sodio-Hidrógeno , Canal Catiónico TRPA1
5.
J Cell Physiol ; 234(4): 4681-4694, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30191998

RESUMEN

The heart is highly active metabolically but relatively underperfused and, therefore, vulnerable to ischemia. In addition to acidosis, a key component of ischemia is hypoxia that can modulate gene expression and protein function as part of an adaptive or even maladaptive response. Here, using cardiac-derived HL-1 cells, we investigate the effect of various hypoxic stimuli on the expression and activity of Na+ /H + exchanger 1 (NHE1), a principal regulator of intracellular pH. Acute (10 min) anoxia produced a reversible decrease in the sarcolemmal NHE1 activity attributable to NHE1 internalization. Treatment with either 1% O 2 or dimethyloxaloylglycine (DMOG; 1 mM) for 48-hr stabilized hypoxia-inducible factor 1 and reduced the sarcolemmal NHE1 activity by internalization, but without a change in total NHE1 immunoreactivity or message levels of the coding gene ( SLC9A1) determined in whole-cell lysates. Unlike the effect of DMOG, which was rapidly reversed on washout, reoxygenation after a prolonged period of hypoxia did not reverse the effects on NHE1, unless media were also supplemented with a membrane-permeant derivative of glutathione (GSH). Without a prior hypoxic episode, GSH supplementation had no effect on the NHE1 activity. Thus, posthypoxic NHE1 reinsertion can only take place if cells have a sufficient reservoir of a reducing agent. We propose that oxidative stress under prolonged hypoxia depletes intracellular GSH to an extent that curtails NHE1 reinsertion once the hypoxic stimulus is withdrawn. This effect may be cardioprotective, as rapid postischaemic restoration of the NHE1 activity is known to trigger reperfusion injury by producing an intracellular Na + -overload, which is proarrhythmogenic.


Asunto(s)
Antioxidantes/metabolismo , Miocitos Cardíacos/metabolismo , Sarcolema/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Glutatión/metabolismo , Concentración de Iones de Hidrógeno , Factor 1 Inducible por Hipoxia/metabolismo , Cinética , Ratones , Transporte de Proteínas , Intercambiador 1 de Sodio-Hidrógeno/genética
6.
Am J Chin Med ; 46(8): 1915-1931, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30525897

RESUMEN

Na + /H + exchanger 1 (NHE1) plays a vital role in the oncogenesis and development of hepatocellular carcinoma (HCC) and has been regarded as a promising target for the treatment of HCC. Ginsenoside Rg3 (Rg3), a bioactive ginseng compound, is suggested to possess pleiotropic antitumor effects on HCC. However, the underlying mechanisms of Rg3 suppressing HCC remain unclear. In the present study, we uncovered a novel antitumor mechanism of Rg3 on HCC by decreasing NHE1 expression through in vivo and in vitro studies. Mechanistically, we demonstrated that epidermal growth factor (EGF) could dramatically upregulate NHE1 expression, while increasing the phosphorylated extracellular signal-regulated protein kinase (ERK1/2) level and hypoxia-inducible factor 1 alpha (HIF-1 α) expression. In the presence of ERK1/2-specific inhibitor PD98059, EGF stimulated HIF-1 α and NHE1 expression was obviously blocked in addition, the presence of HIF-1 α -specific inhibitor 2-methoxyestradiol (2-MeOE2) blocked EGF stimulated NHE1 expression. Moreover, results from in vivo and in vitro studies indicate that Rg3 treatment markedly decreased the expression of EGF, EGF receptor (EGFR), phosphorylated ERK1/2 and HIF-1 α . Conclusively, these findings suggested that NHE1 was stimulated by EGF, and Rg3 could decrease NHE1 expression by integrally inhibiting EGF-EGFR-ERK1/2-HIF- α signal axis in HCC. Together, our evidence indicated that Rg3 was an effective multi-targets antitumor agent for the treatment of HCC.


Asunto(s)
Antineoplásicos Fitogénicos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Expresión Génica/efectos de los fármacos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Terapia Molecular Dirigida , Fitoterapia , Intercambiador 1 de Sodio-Hidrógeno/genética , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Línea Celular Tumoral , Humanos
7.
Cardiovasc Pathol ; 24(4): 236-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25670255

RESUMEN

BACKGROUND: Reactive oxygen species, such as superoxide, are being increasingly recognized as key components of a vast array of signaling pathways. Angiotensin II is a well-recognized stimulus for superoxide production through NADPH oxidase activation and opening of the mitochondrial ATP-sensitive potassium channels (mKATP). A role for this mechanism has been proposed to explain several physiological effects of the peptide. The aim of this study was to evaluate the involvement of this mechanism in the inotropic response to 100nmol/L angiotensin II. METHODS: Sarcomere shortening and intracellular pH (BCECF-epifluorescence technique) were evaluated in isolated cat ventricular myocytes placed in a perfusion chamber on the stage of an inverted microscope. Myocardial superoxide production was evaluated by the lucigenin quimioluminiscence method. RESULTS: Angiotensin II (100nmol/L) increased~70% sarcomere shortening, effect that was only partially prevented by NADPH oxidase inhibition, mKATP channel blockade or inhibition of the cardiac Na(+)/H(+) exchanger (NHE-1). Moreover, angiotensin II stimulates NHE-1 activity by a NADPH oxidase-dependent mechanism. Myocardial superoxide production was also increased by angiotensin II, and this action was completely prevented either by NADPH oxidase inhibition or mKATP channel blockade. CONCLUSIONS: The positive inotropic response to 100nmol/L angiotensin II is due to both ROS/NHE-1 dependent and independent pathways, this being a point of divergence with the signaling previously described to be triggered by lower concentrations of angiotensin II (i.e.: 1nmol/L).


Asunto(s)
Angiotensina II/farmacología , Cardiotónicos/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Superóxidos/metabolismo , Animales , Gatos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Ventrículos Cardíacos/metabolismo , Concentración de Iones de Hidrógeno , Miocitos Cardíacos/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Transducción de Señal/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA