Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.728
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Chem Biodivers ; 21(6): e202400258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581076

RESUMEN

We presented a strategy utilizing 2D NMR-based metabolomic analysis of crude extracts, categorized by different pharmacological activities, to rapidly identify the primary bioactive components of TCM. It was applied to identify the potential bioactive components from Scutellaria crude extracts that exhibit anti-non-small cell lung cancer (anti-NSCLC) activity. Four Scutellaria species were chosen as the study subjects because of their close phylogenetic relationship, but their crude extracts exhibit significantly different anti-NSCLC activity. Cell proliferation assay was used to assess the anti-NSCLC activity of four species of Scutellaria. 1H-13C HSQC spectra were acquired for the chemical profiling of these crude extracts. Based on the pharmacological classification (PCA, OPLS-DA and univariate hypothesis test) were performed to identify the bioactive constituents in Scutellaria associated with the anti-NSCLC activity. As a result, three compounds, baicalein, wogonin and scutellarin were identified as bioactive compounds. The anti-NSCLC activity of the three potential active compounds were further confirmed via cell proliferation assay. The mechanism of the anti-NSCLC activity by these active constituents was further explored via flow cytometry and western blot analyses. This study demonstrated 2D NMR-based metabolomic analysis of pharmacologically classified crude extracts to be an efficient approach to the identification of active components of herbal medicine.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Espectroscopía de Resonancia Magnética , Metabolómica , Extractos Vegetales , Scutellaria , Scutellaria/química , Humanos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Apigenina/farmacología , Apigenina/química , Apigenina/aislamiento & purificación , Apigenina/análisis , Flavanonas/farmacología , Flavanonas/química , Flavanonas/aislamiento & purificación , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Glucuronatos/farmacología , Glucuronatos/aislamiento & purificación , Glucuronatos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales
2.
Front Cell Infect Microbiol ; 14: 1328741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665877

RESUMEN

Polycystic ovary syndrome (PCOS) is a common systemic disorder related to endocrine disorders, affecting the fertility of women of childbearing age. It is associated with glucose and lipid metabolism disorders, altered gut microbiota, and insulin resistance. Modern treatments like pioglitazone, metformin, and spironolactone target specific symptoms of PCOS, while in Chinese medicine, moxibustion is a common treatment. This study explores moxibustion's impact on PCOS by establishing a dehydroepiandrosterone (DHEA)-induced PCOS rat model. Thirty-six specific pathogen-free female Sprague-Dawley rats were divided into four groups: a normal control group (CTRL), a PCOS model group (PCOS), a moxibustion treatment group (MBT), and a metformin treatment group (MET). The MBT rats received moxibustion, and the MET rats underwent metformin gavage for two weeks. We evaluated ovarian tissue changes, serum testosterone, fasting blood glucose (FBG), and fasting insulin levels. Additionally, we calculated the insulin sensitivity index (ISI) and the homeostasis model assessment of insulin resistance index (HOMA-IR). We used 16S rDNA sequencing for assessing the gut microbiota, 1H NMR spectroscopy for evaluating metabolic changes, and Spearman correlation analysis for investigating the associations between metabolites and gut microbiota composition. The results indicate that moxibustion therapy significantly ameliorated ovarian dysfunction and insulin resistance in DHEA-induced PCOS rats. We observed marked differences in the composition of gut microbiota and the spectrum of fecal metabolic products between CTRL and PCOS rats. Intriguingly, following moxibustion intervention, these differences were largely diminished, demonstrating the regulatory effect of moxibustion on gut microbiota. Specifically, moxibustion altered the gut microbiota by increasing the abundance of UCG-005 and Turicibacter, as well as decreasing the abundance of Desulfovibrio. Concurrently, we also noted that moxibustion promoted an increase in levels of short-chain fatty acids (including acetate, propionate, and butyrate) associated with the gut microbiota of PCOS rats, further emphasizing its positive impact on gut microbes. Additionally, moxibustion also exhibited effects in lowering FBG, testosterone, and fasting insulin levels, which are key biochemical indicators associated with PCOS and insulin resistance. Therefore, these findings suggest that moxibustion could alleviate DHEA-induced PCOS by regulating metabolic levels, restoring balance in gut microbiota, and modulating interactions between gut microbiota and host metabolites.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Resistencia a la Insulina , Moxibustión , Síndrome del Ovario Poliquístico , Ratas Sprague-Dawley , Animales , Síndrome del Ovario Poliquístico/terapia , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Moxibustión/métodos , Ratas , Deshidroepiandrosterona/metabolismo , Glucemia/metabolismo , Insulina/sangre , Insulina/metabolismo , Metformina/farmacología , Testosterona/sangre , Ovario/metabolismo , Ovario/microbiología
3.
Saudi Pharm J ; 32(4): 102016, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38463183

RESUMEN

Derris elliptica (Wall.) Benth, a native medicinal plant, has been used to treat diabetes for centuries; however, comprehensive documentation of its bioactive constituents and therapeutic effectiveness is lacking. In this study, we investigated the phytochemical profile and antidiabetic potential of D. elliptica methanolic leaf extract (DEME) in diabetic Sprague Dawley rats induced with streptozotocin (STZ). In normal rats, acute oral toxicity evaluations were conducted, and in STZ-induced rats, antidiabetic properties were investigated. 14 days of oral administration of standard glibenclamide and the extract at 200 and 400 mg/kg body weight to diabetic rodents. Assessed parameters included blood glucose levels, alterations in body weight, biochemical markers, and histological analysis of the pancreas, liver, and kidney. Numerous phytoconstituents were uncovered through qualitative phytochemical assays, 1H NMR, and 1H-13C HSQC screening. Quercetin was identified by 1H NMR characterization, and a ceramide analogue compound was isolated and partially characterized by 1H NMR. There were no indications of toxicity or mortality. The treatment with DEME significantly (p < 0.001) decreased body weight and had a remarkable hypoglycemic effect. Both 200 mg/kg and 400 mg/kg extract concentrations decreased total cholesterol levels significantly (p < 0.01 and p < 0.05, respectively). In addition, glibenclamide and the 400 mg/kg dose of extract increased serum insulin levels substantially (p < 0.05) and decreased total bilirubin, lactic acid dehydrogenase, aspartate aminotransferase, and alanine aminotransferase levels. In addition to glibenclamide, treatment with DEME has exhibited cytoprotective effects and increased insulin secretion, thereby exerting a potent antihyperglycemic effect. These results suggest that D. elliptica may have therapeutic potential for the treatment of diabetes mellitus.

4.
Yakugaku Zasshi ; 144(4): 373-380, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38556310

RESUMEN

Crude drugs and Kampo formulations derived from natural materials such as plants, animals, and minerals are multicomponent medicines that contain numerous chemical constituents. Quantitative determination of characteristic constituents for quality control is crucial for the standardization and quality assurance of natural medicines. Quantitative assays to determine marker compound contents are commonly performed using HPLC systems. In order to achieve accurate quantitative determination, it is essential to use standard materials with well-defined purities corresponding to the target analytes. Many marker compounds used as standard materials must be purified and isolated from natural products while ensuring sufficient purity. However, the composition of impurities in the standard material differs among different batches due to differences in the raw materials and their extraction, separation, and purification processes. Therefore, controlling the purity of standard materials derived from natural products is more complex than that of synthetic substances. Quantitative NMR (qNMR), which has become widely used as an absolute quantitative method for low-molecule organic compounds, makes it possible to solve these issues. qNMR has been introduced into the crude drug section of the Japanese Pharmacopoeia (JP) for evaluating the purity of standard materials used for the assay. This review outlines an example of quantitative determination using relative molar sensitivity (RMS) based on qNMR adopted in the JP and introduces the latest efforts toward the application of qNMR to standard materials used for crude drugs in this context.


Asunto(s)
Productos Biológicos , Espectroscopía de Resonancia Magnética/métodos , Control de Calidad , Cromatografía Líquida de Alta Presión , Medicina Kampo
5.
Water Res ; 254: 121420, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492478

RESUMEN

Global warming is leading to extended stratification in deep lakes, which may exacerbate phosphorus (P) limitation in the upper waters. Conversion of labile dissolved organic P (DOP) is a possible adaptive strategy to maintain primary production. To test this, the spatiotemporal distributions of various soluble P fractions and phosphomonesterase (PME)/phosphodiesterase (PDE) activities were investigated in Lake Fuxian during the stratification period and the transition capacity of organic P and its impact on primary productivity were evaluated. The results indicated that the DOP concentration (mean 0.20 ± 0.05 µmol L-1) was significantly higher than that of dissolved inorganic P (DIP) (mean 0.08 ± 0.03 µmol L-1) in the epilimnion and metalimnion, which were predominantly composed of orthophosphate monoester (monoester-P) and orthophosphate diesters (diester-P). The low ratio of diester-P / monoester-P and high activities of PME and PDE indicate DOP mineralization in the epilimnion and metalimnion. We detected a DIP threshold of approximately 0.19 µmol L-1, corresponding to the highest total PME activity in the lake. Meta-analysis further demonstrated that DIP thresholds of PME activities were prevalent in oligotrophic (0.19 µmol L-1) and mesotrophic (0.74 µmol L-1) inland waters. In contrast to the phosphate-sensitive phosphatase PME, dissolved PDE was expressed independent of phosphate availability and its activity invariably correlated with chlorophyll a, suggesting the involvement of phytoplankton in DOP utilization. This study provides important field evidence for the DOP transformation processes and the strategy for maintaining primary productivity in P-deficient scenarios, which contributes to the understanding of P cycles and the mechanisms of system adaptation to future long-term P limitations in stratified waters.


Asunto(s)
Lagos , Fósforo , Clorofila A , Fosfatos , Fitoplancton
6.
Mol Nutr Food Res ; 68(7): e2300770, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522032

RESUMEN

SCOPE: Gastro-AD (GAD) is a soy flour derived product that undergoes an industrial fermentation with Lactobacillus delbrueckii R0187 and has demonstrated clinical effects in gastroesophageal reflux and peptic ulcer symptom resolution. The aim of this study is to describe and link GAD's metabolomic profile to plausible mechanisms that manifest and explain the documented clinical outcomes. METHODS AND RESULTS: 1H NMR spectroscopy with multivariate statistical analysis is used to characterize the prefermented soy flour and GAD products. The acquired spectra are screened using various resources and the molecular assignments are confirmed using total correlation spectroscopy (TOCSY). Peaks corresponding to different metabolites are integrated and compared between the two products for relative changes. HPLC and GC are used to quantify some specific molecules. NMR analyses demonstrate significant changes in the composition of various assigned bioactive moieties. HPLC and GC analysis demonstrate deglycation of isoflavones after fermentation, resulting in estrogenically active secondary metabolites that have been previously shown to help to reduce inflammation. CONCLUSION: The identification of bioactive molecules, such as genistein and SCFAs, capable of modulating anti-inflammatory signaling cascades in the stomach's gastric and neuroendocrine tissues can explain the reported biological effects in GAD and is supported by in vivo data.


Asunto(s)
Genisteína , Isoflavonas , Genisteína/metabolismo , Isoflavonas/metabolismo , Suplementos Dietéticos , Fermentación
7.
Fitoterapia ; 175: 105897, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479618

RESUMEN

Globally, obesity has become one of the major health problems. This study was conducted to evaluate the anti-obesity potential of Cymbopogon schoenanthus methanolic extract (CS) in rats. Fifty male Wistar rats of six to eight weeks old, 100-120 g body weight (BW) were randomly assigned into 5 groups (n = 10): The control group was fed a basal diet. CS-group was supplied with basal diet and orally given CS (200 mg/kg BW) for 12 weeks. HFD-group was fed a high-fat diet (HFD) for 18 weeks. HFD + CS-group was fed on HFD and CS HFD then CS-group was fed HFD for 12 weeks then shifted to basal diet and CS for another 6 weeks. Phytochemical analysis of CS indicated the presence of various terpenes and flavonoid compounds. Among the compounds characterized are quercetin, apigenin, luteolin, orientin, eudesmene, cymbopogonol, caffeic acid, coumaric acid, and linolenic acid. Supplementation of HFD significantly increased the body weight, levels of serum triacylglycerol, total cholesterol, very low-density lipoprotein, low-density lipo-protein (HDL), glucose, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. In addition, HFD up-regulated the protein expression of uncoupling protein (UCP)-1 in both brown and white adipose tissue; and the expression of hepatic mRNA of sterol regulatory element-binding protein (SREBP)-1c and SREBP-2. However, it decreased the serum level of HDL, and protein expression level of UCP-1 in both brown and white adipose tissue. Treatment of HFD-fed animals with CS extract either concurrently (HFD + CS-group), or after obesity induction (HFD then CS-group) significantly reversed all HFD-induced alterations in body weight; food intake; serum biochemical profile (including hyperglycemia, dyslipidemia); and tissue gene expressions. These results indicate that CS methanolic extract ameliorated HFD-induced obesity, serum biochemical, hepatic, and adipose tissue gene expression alterations. CS extract accomplished these effects mostly through its various identified bioactive compounds which have been proven to have anti-obesity and anti-diabetic activities.


Asunto(s)
Fármacos Antiobesidad , Cymbopogon , Dieta Alta en Grasa , Dislipidemias , Obesidad , Extractos Vegetales , Ratas Wistar , Animales , Masculino , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Ratas , Cymbopogon/química , Dislipidemias/tratamiento farmacológico , Fármacos Antiobesidad/farmacología , Termogénesis/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteína Desacopladora 1/metabolismo , Fitoquímicos/farmacología
8.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338962

RESUMEN

Phosphorus-containing metabolites occupy a prominent position in cell pathways. The phosphorometabolomic approach in human sperm samples will deliver valuable information as new male fertility biomarkers could emerge. This study analyzed, by 31P-NMR, seminal plasma and whole semen from asthenozoospermic and normozoospermic samples (71% vs. 27% and 45% vs. 17%, total and progressive sperm motility, respectively), and also ejaculates from healthy donors. At least 16 phosphorus-containing metabolites involved in central energy metabolism and phospholipid, nucleotide, and nicotinamide metabolic pathways were assigned and different abundances between the samples with distinct sperm quality was detected. Specifically, higher levels of phosphocholine, glucose-1-phosphate, and to a lesser degree, acetyl phosphate were found in the asthenozoospermic seminal plasma. Notably, the phosphorometabolites implicated in lipid metabolism were highlighted in the seminal plasma, while those associated with carbohydrate metabolism were more abundant in the spermatozoa. Higher levels of phosphocholine, glucose-1-phosphate, and acetyl phosphate in the seminal plasma with poor quality suggest their crucial role in supporting sperm motility through energy metabolic pathways. In the seminal plasma, phosphorometabolites related to lipid metabolism were prominent; however, spermatozoa metabolism is more dependent on carbohydrate-related energy pathways. Understanding the presence and function of sperm phosphorylated metabolites will enhance our knowledge of the metabolic profile of healthy human sperm, improving assessment and differential diagnosis.


Asunto(s)
Astenozoospermia , Organofosfatos , Semen , Humanos , Masculino , Semen/metabolismo , Fosforilcolina/metabolismo , Motilidad Espermática , Espermatozoides/metabolismo , Astenozoospermia/metabolismo , Fósforo/metabolismo , Análisis de Semen
9.
Molecules ; 29(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338357

RESUMEN

With a growing focus on green chemistry, the extraction of natural products with natural deep eutectic solvents (NADES), which are eutectic mixtures of hydrogen bond donors and acceptors, has become an ever-expanding field of research. However, the use of NADES for the extraction of spilanthol from Acmella oleracea (L.) R.K.Jansen has not yet been investigated. Therefore, in this study, 20 choline chloride-based NADES, and for comparison, ethanol, were used as green extraction agents for spilanthol from Acmella oleracea flower heads. The effects of time, water addition, and temperature on NADES extractions were investigated and analysed by HPLC-DAD quantification. Additionally, UHPLC-DAD-ESI-MSn results for dichloromethane extracts, as well as the isolation of spilanthol and other main constituents as reference compounds, are reported. The best green extraction results were achieved by choline chloride (ChCl) with 1,2-propanediol (P, 1:2 molar ratio, +20% water) at 244.58 µg/mL, comparable to yields with ethanol (245.93 µg/mL). Methylurea (MeU, 1:2, +20% water) also showed promising results as a hydrogen bond donor in combination with choline chloride (208.12 µg/mL). In further experiments with NADES ChCl/P (1:2) and ChCl/MeU (1:2), extraction time had the least effect on spilanthol extraction with NADES, while yield decreased with water addition over 20% and increased with extraction temperature up to 80 °C. NADES are promising extraction agents for the extraction of spilanthol, and these findings could lead to applicable extracts for medicinal purposes, due to their non-toxic constituents.


Asunto(s)
Asteraceae , Disolventes Eutécticos Profundos , Alcamidas Poliinsaturadas , Solventes/química , Extractos Vegetales/química , Agua/química , Etanol , Colina/química
10.
Biotechnol J ; 19(2): e2300495, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403407

RESUMEN

The optimization of bioprocess for CHO cell culture involves careful consideration of factors such as nutrient consumption, metabolic byproduct accumulation, cell growth, and monoclonal antibody (mAb) production. Valuable insights can be obtained by understanding cellular physiology to ensure robust and efficient bioprocess. This study aims to improve our understanding of the CHO-K1 cell metabolism using 1 H NMR-based metabolomics. Initially, the variations in culture performance and metabolic profiles under varied aeration conditions and copper supplementations were thoroughly examined. Furthermore, a comprehensive metabolic pathway analysis was performed to assess the impact of these conditions on the implicated pathways. The results revealed substantial alterations in the pyruvate metabolism, histidine metabolism, as well as phenylalanine, tyrosine and tryptophan biosynthesis, which were especially evident in cultures subjected to copper deficiency conditions. Conclusively, significant metabolites governing cell growth and mAb titer were identified through orthogonal partial least square-discriminant analysis (OPLS-DA). Metabolites, including glycerol, alanine, formate, glutamate, phenylalanine, and valine, exhibited strong associations with distinct cell growth phases. Additionally, glycerol, acetate, lactate, formate, glycine, histidine, and aspartate emerged as metabolites influencing cell productivity. This study demonstrates the potential of employing 1 H NMR-based metabolomics technology in bioprocess research. It provides valuable guidance for feed medium development, feeding strategy design, bioprocess parameter adjustments, and ultimately the enhancement of cell proliferation and mAb yield.


Asunto(s)
Cobre , Histidina , Cricetinae , Animales , Glicerol , Metabolómica/métodos , Cricetulus , Fenilalanina , Formiatos , Suplementos Dietéticos
11.
Heliyon ; 10(4): e26274, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38384556

RESUMEN

Natural traditional medicine extensively uses certain terpenes and gives plants their flavor, aroma, and color. Treatments for bacterial infections, malaria, and cardiovascular disorders, anti-inflammatory, promote circulation, and heal wounds. 3,7-Dimethyl-1,6-octadien-3-ol (Linalool) is a naturally occurring monoterpene alcohol with no cycle and is a colorless liquid. Spectral analysis such as UV absorption spectra, NMR for structure determination, and IR and Raman for vibrational analysis. The Quantum mechanical approach uses DFT, ELF, and LOL-promolecular electron density, non-relaxed, and atomic density analysis. The biomolecular studies such as molecular dynamics using protein-ligand complex with HIV-1 organism (energy minimization). ADMET for the usage of linalool in different metabolism studies and Molecular docking for binding affinity, its reactive site estimation, and macromolecules that come into contact with protein receptors and conclude ligand binding affinity with protein.

12.
Int J Biol Macromol ; 262(Pt 1): 130018, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331057

RESUMEN

The potential prebiotic feature of Bletilla striata polysaccharides (BSP) has been widely accepted, while the beneficial effect of BSP on high-fat-diet-induced obesity is unclear. Moreover, the "crosstalk" between microbiota and metabolomic profile in high-fat-diet-induced obese mice supplemented with BSP still need to be further explored. The present study attempted to illustrate the effect of BSP and/or composite polysaccharides on high-fat-diet-induced obese mice by combining multi-matrix (feces, urine, liver) metabolomics and gut microbiome. The results showed that BSP and/or composite polysaccharides were able to reduce the abnormal weight gain induced by high-fat diet. A total of 175 molecules were characterized by proton nuclear magnetic resonance (1H NMR) in feces, urine and liver, suggesting that multi-matrix metabolomics could provide a comprehensive view of metabolic regulatory mechanism of BSP in high-fat-diet-induced obese mice. Several pathways were altered in response to BSP supplementation, mainly pertaining to amino acid, purine, pyrimidine, ascorbate and aldarate metabolisms. In addition, BSP ameliorated high-fat-diet-induced imbalanced gut microbiome, by lowering the ratio of Firmicutes/Bacteroidetes. Significant correlations were illustrated between particular microbiota's features and specific metabolites. Overall, the anti-obesity effect of BSP could be attributed to the amelioration of the disorders of gut microbiota and to the regulation of the "gut-liver axis" metabolism.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , Obesidad/etiología , Obesidad/inducido químicamente , Polisacáridos/química , Suplementos Dietéticos , Ratones Endogámicos C57BL
13.
Int J Biol Macromol ; 264(Pt 1): 130289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378107

RESUMEN

Using 7 % KOH, the polysaccharide PAK has been isolated from the coniferous greens of Norway spruce. PAK was found to contain predominantly arabinoglucuronoxylan, xyloglucan and arabinan, but also pectic polysaccharides, glucomannan and arabinogalactan proteins (AGPs), as determined by 1D/2D NMR analysis. It was found that fractionation of PAK on DEAE-cellulose resulted in simultaneous elution of pectins, arabinoglucuronoxylans and AGPs. It was evident that the content of 4-OMe-α-D-GlcpA and xylose, 1,4-ß-D-GlcpA, and T-ß-D-GlcpA increased with an increase in NaCl concentration. However, 1,4-α-D-GalpA content was almost independent of NaCl concentration, indicating unchanged pectic polysaccharide concentration. Interestingly, pectins extracted with 0.1-0.3 M NaCl solutions were richer in rhamnogalacturonan-I (RG-I) than those extracted with water and 0.01 M NaCl. Conclusion: The content of RG-I, AGPs and arabinoglucuronoxylan rises with rising NaCl concentration. An intense signal indicating an intermolecular linkage between the xylan and RG-I domains, i.e. that part of the arabinoglucuronoxylan is covalently bound to RG-I, is observed in the HMBC spectra of the polysaccharides obtained. The discovery here of a new relationship between rhamnogalacturonan I and xylan contradicts the prevailing cell wall model.


Asunto(s)
Abies , Mucoproteínas , Picea , Xilanos , Abies/metabolismo , Cloruro de Sodio , Polisacáridos/química , Pectinas/química , Proteínas de Plantas
14.
Sci Total Environ ; 918: 170582, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38309349

RESUMEN

Phosphorus (P) loss caused by the irrational use of manure organic fertilizer has become a worldwide environmental problem, which has caused a potential threat to water safety and intensified agricultural non-point source pollution. Hydrothermal carbonization is method with a low-energy consumption and high efficiency to deal with environmental problems. Application of pig manure-derived hydrochar (PMH) to soil exhibited potential of sustainable development compared with the pristine pig manure (PM). However, the effects of PMH on the distribution of P among the fractions/forms and the interaction between microorganisms and P forms and its relevance to the potential loss of P in paddy fields has not been clarified. Therefore, in this study, a soil column experiment was conducted using the untreated soil (control), and the PM, PMH1 (PMH derived at 180 °C), and PMH2 (PMH derived at 260 °C) treated soils (at the dose of 0.05 %) and rice was cultivated to investigate the effects of PM and PMH on the P fractions, mobilization, ad potential loss via the induced changes on soil microbial community after a complete growing season of rice. The trend of P utilization was evaluated by P speciation via continuous extraction and 31P NMR. The addition of PMH reduced the proportion of residual P in soil by 23.8-26.3 %, and increased the proportion of HCl-P and orthophosphate by 116.2-158.6 % and 6.1-6.8 % compared to PM. The abundance of gcd gene developed after the application of PMH2, which enhanced the mobile forms of soil P utilization via secreting gluconic acid. The network diagram analysis concluded that the changes in various P forms were mainly related to Proteobacteria, Bacteroides, Firmicutes and Acidobacteria. The results illustrated that PMH mitigate the potential risk of P loss more than PM by altering P fractions and affecting soil microbial community.


Asunto(s)
Microbiota , Oryza , Porcinos , Animales , Suelo/química , Oryza/microbiología , Estiércol , Fósforo/análisis , Fertilizantes/análisis
15.
Carbohydr Res ; 536: 109053, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38310807

RESUMEN

The purity, content, and structure of the polysaccharides prepared from a specific medicinal plant are the fundamental basis to interpret the observed biological activities. An ultrafiltration-based method has been developed for rapid preparation of total and fractional polysaccharides from Radix Astragali in high yield and purity. This method involves extraction of plant material by hot water, treatment with Sevag reagent, and ultrafiltration using molecular weight cutoff concentrators. The prepared polysaccharides were assessed by 1H NMR spectroscopy, providing general purity, fingerprinting, and structural information. This method may be used to efficiently screen polysaccharides in plants.


Asunto(s)
Astragalus propinquus , Medicamentos Herbarios Chinos , Protones , Espectroscopía de Resonancia Magnética , Polisacáridos
16.
Front Pharmacol ; 15: 1353325, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370476

RESUMEN

Introduction: Zhusha Anshen Wan (ZSASW) is a traditional Chinese medicine compound mainly composed of mineral drugs. In clinical practice, ZSASW did not show the toxicity of administering equal doses of cinnabar alone, suggesting that the four combination herbs in ZSASW can alleviate the damage of cinnabar. The effect of each herb on reducing the toxicity of cinnabar has not been fully explained. Methods: In our study, we utilized a metabonomics approach based on high-resolution 1H nuclear magnetic resonance spectroscopy to investigate the reduction of toxicity by each herb in ZSASW. Liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum were also performed. Results: Partial least squares-discriminant analysis (PLS-DA) was conducted to distinct different metabolic profiles in the urine and serum from the rats. Liver and kidney histopathology examinations, as well as analysis of serum clinical chemistry analysis, were also carried out. The metabolic profiles of the urine and serum of the rats in the CGU (treated with cinnabar and Glycyrrhiza uralensis Fisch) and CCC (treated with cinnabar and Coptis chinensis French) groups were remarkably similar to those of the control group, while those of the CRG (treated with cinnabar and Rehmannia glutinosa Libosch) and CAS (treated with cinnabar and Angelica sinensis) groups were close to those of the cinnabar group. The metabolic profiles of the urine and serum of the rats in the CGU and CCC groups were remarkably similar to those of the control group, while those of the CRG and CAS groups were close to those of the cinnabar group. Changes in endogenous metabolites associated with toxicity were identified. Rehmannia glutinosa, Rhizoma Coptidis and Glycyrrhiza uralensis Fisch could maintain the dynamic balance of the intestinal flora. These results were also verified by liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum. The results suggested that Discussion: The metabolic mechanism of single drug detoxification in compound prescriptions has been elucidated. Coptis chinensis and Glycyrrhiza uralensis serve as the primary detoxification agents within ZSASW for mitigating liver, kidney, and intestinal damage caused by cinnabar. Detoxification can be observed through changes in the levels of various endogenous metabolites and related metabolic pathways.

17.
Carbohydr Polym ; 330: 121838, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368088

RESUMEN

As a key component in cell walls of numerous organisms ranging from green algae to higher plants, AGPs play principal roles in many biological processes such as cell-cell adhesion and regulating Ca2+ signaling pathway as a Ca2+-capacitor. Consistently, AGP structures vary from species to species and from tissue to tissue. To understand the functions of AGPs, it is vital to know their structural differences relative to their location in the plant. Thus, AGPs were purified from different Arabidopsis tissues. Analyses of these AGPs demonstrated that the AGPs comprised covalently linked pectin and AGP, referred to as pectic-AGPs. Importantly, these pectic-AGPs were glycosylated with a remarkable variety of polysaccharides including homogalacturonan, rhamnogalacturonan-I, and type II arabinogalactan at different ratios and lengths. This result not only suggests that pectic-AGP is a major form of Arabidopsis AGPs, but also supports AGPs serve as crosslinkers covalently connecting pectins with structures tailored for tissue-specific functions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Mucoproteínas/metabolismo , Pectinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/química
18.
Molecules ; 29(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398549

RESUMEN

The iminosugar 1-deoxynojirimicyn (DNJ) contained in mulberry leaves has displayed systemic beneficial effects against disorders of carbohydrate metabolism. Nevertheless, its effect is impaired by the short half-life. Alginate-based carriers were developed to encapsulate a DNJ-rich mulberry extract: Ca-alginate beads, obtained by external gelation, and spray-dried alginate microparticles (SDMs). Mean size and distribution, morphology, drug loading, encapsulation efficiency, experimental yield, and release characteristics were determined for the two formulations. Ca-alginate beads and SDMs exhibited an encapsulation efficiency of about 54% and 98%, respectively, and a DNJ loading in the range of 0.43-0.63 µg/mg. The in vitro release study demonstrated the carriers' capability in controlling the DNJ release in acid and basic conditions (<50% in 5 h), due to electrostatic interactions, which were demonstrated by 1H-NMR relaxometry studies. Thus, alginate-based particles proved to be promising strategies for producing food supplements containing mulberry leaf extracts for the management of hyperglycemic state.


Asunto(s)
Alginatos , Morus , Alginatos/metabolismo , 1-Desoxinojirimicina/química , Morus/química , Suplementos Dietéticos , Extractos Vegetales/química , Hojas de la Planta/metabolismo
19.
Molecules ; 29(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398564

RESUMEN

One new compound with an isoindolinone skeleton, along with erinacines A, C, and S, was isolated from the mycelia of Hericium erinaceus, an edible fungus with a long history of use in traditional Chinese medicine. Based on analysis of MS and NMR spectral data, the structure of the compound was identified as (2E,6E)-8-(2-(1-carboxy-3-methylbutyl)-4,6-dihydroxy-1-oxoisoindolin-5-yl)-2,6-dimethylocta-2,6-dienoic acid. In light of this discovery, we have given this compound the name erinacerin W. Using a co-culture in vitro LPS-activated BV2 microglia-induced SH-SY5Y neuroinflammation model, the results showed that erinacerin W demonstrated protection against the LPS-activated BV-2 cell-induced overexpression of IL-6, IL-1ß, and TNF-α on SH-SY5Y cells. This finding may provide potential therapeutic approaches for central nervous disorders.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/farmacología , Lipopolisacáridos/farmacología , Hericium
20.
Molecules ; 29(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38202834

RESUMEN

This article applies nuclear magnetic resonance technology to the study of boron-containing traditional Chinese medicine, in order to explore the morphological evolution of boron elements in traditional Chinese medicine. Borax is a traditional Chinese medicine with anti-corrosion, anti-inflammatory, antibacterial, and anticonvulsant effects. It is made by boiling, removing stones, and drying borax minerals like borate salts. This article introduces an 11B nuclear magnetic resonance method for identifying and characterizing boron-containing compounds in TCM. We applied this technology to borax aqueous solutions in different chemical environments and found that with boron mixed in the form of SP2 hybridization in equilateral triangles and SP3 hybridization in equilateral tetrahedra, the pH changes in alkaline environments significantly affected the ratio of the two. At the same time, it was found that in addition to the raw material peak, boron signals of other boron-containing compounds were also detected in 20 commercially available boron-containing TCM preparations. These new boron-containing compounds may be true pharmaceutical active ingredients, and adding them directly to the formula can improve quality and safety. This article describes the detection of 11B NMR in boron-containing traditional Chinese medicine preparations. It is simple, non-destructive, and can provide chemical fingerprint studies for boron-containing traditional Chinese medicine.


Asunto(s)
Boratos , Boro , Medicina Tradicional China , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA