Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(3): 349-370, mayo 2024. ilus
Artículo en Inglés | LILACS | ID: biblio-1538077

RESUMEN

Age-related neurological disorders (ANDs), including neurodegenerative diseases, are complex illnesses with an increasing risk with advancing years. The central nervous system's neuropathological conditions, including oxidative stress, neuroinflammation, and protein misfolding, are what define ANDs. Due to the rise in age-dependent prevalence, efforts have been made to combat ANDs. Vitis viniferahas a long history of usageto treat a variety of illness symptoms. Because multiple ligand sites may be targeted, Vitis viniferacomponents can be employed to treat ANDs. This is demonstrated by the link between the structure and action of these compounds. This review demonstrates that Vitis viniferaand its constituents, including flavonoids, phenolic compounds, stilbenoidsandaromatic acids, are effective at reducing the neurological symptoms and pathological conditions of ANDs. This is done by acting as an antioxidant and anti-inflammatory. The active Vitis vinifera ingredients have therapeutic effects on ANDs, as this review explains.


Las enfermedades neurológicas asociadas a la edad (AND, por su sigla en inglés) incluyendo las enfermedades neurodegenerativas, son enfermedades complejas con un riesgo creciente con la edad. Las condiciones neuropatológicas del sistema nervioso central, que incluyen el estrés oxidativo, la neuro inflamación, y el plegado erróneo de proteínas, son lo que define las AND. Debido al aumento en la prevalencia dependiente de la edad, se han hecho esfuerzos para combatir las AND. Vitis vinifera tiene una larga historia de uso para el tratamiento de síntomas. Puesto que puede hacer objetivo a muchos sitios ligando, los componentes de Vitis viniferase pueden utilizar para tratar AND. Esto se demuestra por el vínculo entre la estructura y la acción de estos compuestos. Esta revisión demuestra que la Vitis viniferay sus constituyentes, incluídos los flavonoides, componentes fenólicos, estilbenoides, y ácidos aromáticos, son efectivos para reducir los síntomas neurológicos y las condiciones patológicas de AND. Esto se produce por su acción como antioxidante y antiinflamatorio. Los ingredientes activos de Vitis vinifera tienen efectos terapéuticos en AND, y esta revisión lo explica.


Asunto(s)
Extractos Vegetales/uso terapéutico , Vitis/química , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico
2.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612605

RESUMEN

Central nervous system (CNS) damage leads to severe neurological dysfunction as a result of neuronal cell death and axonal degeneration. As, in the mature CNS, neurons have little ability to regenerate their axons and reconstruct neural loss, demyelination is one of the hallmarks of neurological disorders such as multiple sclerosis (MS). Unfortunately, remyelination, as a regenerative process, is often insufficient to prevent axonal loss and improve neurological deficits after demyelination. Currently, there are still no effective therapeutic tools to restore neurological function, but interestingly, emerging studies prove the beneficial effects of lipid supplementation in a wide variety of pathological processes in the human body. In the future, available lipids with a proven beneficial effect on CNS regeneration could be included in supportive therapy, but this topic still requires further studies. Based on our and others' research, we review the role of exogenous lipids, pointing to substrates that are crucial in the remyelination process but are omitted in available studies, justifying the properly profiled supply of lipids in the human diet as a supportive therapy during CNS regeneration.


Asunto(s)
Sistema Nervioso Central , Esclerosis Múltiple , Humanos , Ácidos Grasos Monoinsaturados , Esclerosis Múltiple/tratamiento farmacológico , Suplementos Dietéticos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38472370

RESUMEN

It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.

4.
Mol Neurobiol ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427213

RESUMEN

Inflammation in the nervous system is one of the key features of many neurodegenerative diseases. It is increasingly being identified as a critical pathophysiological primitive mechanism associated with chronic neurodegenerative diseases following traumatic brain injury (TBI). Phytochemicals have a wide range of clinical properties due to their antioxidant and anti-inflammatory effects. Currently, there are few drugs available for the treatment of neurodegenerative diseases other than symptomatic relief. Numerous studies have shown that plant-derived compounds, in particular polyphenols, protect against various neurodegenerative diseases and are safe for consumption. Polyphenols exert protective effects on TBI via restoration of nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR4), and Nod-like receptor family proteins (NLRPs) pathways. In addition, these phytochemicals and their derivatives upregulate the phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/AKT) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, which have critical functions in modulating TBI symptoms. There is supporting evidence that medicinal plants and phytochemicals are protective in different TBI models, though future clinical trials are needed to clarify the precise mechanisms and functions of different polyphenolic compounds in TBI.

5.
Expert Opin Drug Discov ; 19(5): 565-585, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38509691

RESUMEN

INTRODUCTION: Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED: The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION: Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.


Asunto(s)
Caenorhabditis elegans , Modelos Animales de Enfermedad , Desarrollo de Medicamentos , Descubrimiento de Drogas , Enfermedades Neurodegenerativas , Caenorhabditis elegans/efectos de los fármacos , Animales , Humanos , Descubrimiento de Drogas/métodos , Desarrollo de Medicamentos/métodos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/fisiopatología , Ensayos Analíticos de Alto Rendimiento/métodos , Evaluación Preclínica de Medicamentos/métodos , Trastornos del Neurodesarrollo/tratamiento farmacológico , Trastornos del Neurodesarrollo/fisiopatología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/fisiopatología
6.
Expert Rev Neurother ; 24(3): 313-324, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379273

RESUMEN

INTRODUCTION: Targeted interventions are needed to delay or prevent the onset of neurodegenerative diseases. Poor dietary habits are associated with cognitive decline, highlighting the benefits of a healthy diet with fish and polyunsaturated fatty acids (PUFAs). Intake of omega-3 PUFAs docosahexaenoic acid (DHA), α-linolenic acid (ALA) and eicosapentaenoic acid (EPA) is linked with healthy aging, cardiovascular benefits, and reduced risk of Alzheimer's disease. Although omega-3 has health benefits, its intake is often inadequate and insufficient in modern diets. Although fish oil supplements offer an alternative source, inconsistent results from clinical trials raise questions about the factors determining their success. AREAS COVERED: In this this review, the authors discuss the aforementioned determining factors and highlight strategies that could enhance the effectiveness of omega-3 PUFAs interventions for dementia and cognitive decline. Moreover, the authors provide suggestions for potential future research. EXPERT OPINION: Factors such as diet, lifestyle, and genetic predisposition can all influence the effectiveness of omega-3 supplementation. When implementing clinical trials, it is crucial to consider these factors and recognize their potential impact on the interpretation of results. It is important to study each variable independently and the interactions between them.


Asunto(s)
Demencia , Ácidos Grasos Omega-3 , Humanos , Ácidos Grasos Omega-3/uso terapéutico , Ácido Eicosapentaenoico/uso terapéutico , Ácidos Docosahexaenoicos/uso terapéutico , Suplementos Dietéticos , Demencia/prevención & control , Demencia/tratamiento farmacológico
7.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38338901

RESUMEN

Neurodegenerative diseases involve the progressive dysfunction and loss of neurons in the central nervous system and thus present a significant challenge due to the absence of effective therapies for halting or reversing their progression. Based on the characteristics of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), which have prolonged incubation periods and protracted courses, exploring non-invasive physical therapy methods is essential for alleviating such diseases and ensuring that patients have an improved quality of life. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits and functions by stimulating, healing, regenerating, and protecting organizations at risk of injury, degradation, or death. Over the last two decades, PBM has gained widespread recognition as a non-invasive physical therapy method, showing efficacy in pain relief, anti-inflammatory responses, and tissue regeneration. Its application has expanded into the fields of neurology and psychiatry, where extensive research has been conducted. This paper presents a review and evaluation of studies investigating PBM in neurodegenerative diseases, with a specific emphasis on recent applications in AD and PD treatment for both animal and human subjects. Molecular mechanisms related to neuron damage and cognitive impairment are scrutinized, offering valuable insights into PBM's potential as a non-invasive therapeutic strategy.


Asunto(s)
Enfermedad de Alzheimer , Terapia por Luz de Baja Intensidad , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Enfermedades Neurodegenerativas/radioterapia , Terapia por Luz de Baja Intensidad/métodos , Calidad de Vida , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico
8.
Antioxidants (Basel) ; 13(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38397800

RESUMEN

Alzheimer's disease is a progressive neurodegenerative disorder with a complex etiology, and effective interventions to prevent or delay its onset remain a global health challenge. In recent years, there has been growing interest in the potential role of probiotic and vitamin supplementation as complementary strategies for Alzheimer's disease prevention. This review paper explores the current scientific literature on the use of probiotics and vitamins, particularly vitamin A, D, E, K, and B-complex vitamins, in the context of Alzheimer's disease prevention and management. We delve into the mechanisms through which probiotics may modulate gut-brain interactions and neuroinflammation while vitamins play crucial roles in neuronal health and cognitive function. The paper also examines the collective impact of this combinational therapy on reducing the risk factors associated with Alzheimer's disease, such as oxidative stress, inflammation, and gut dysbiosis. By providing a comprehensive overview of the existing evidence and potential mechanisms, this review aims to shed light on the promise of probiotic and vitamin co-supplementation as a multifaceted approach to combat Alzheimer's disease, offering insights into possible avenues for future research and clinical application.

9.
Cent Nerv Syst Agents Med Chem ; 24(2): 129-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265386

RESUMEN

Neurodegenerative disorder is a serious condition that is caused by abnormal or no neurological function. Neurodegenerative disease is a major growing cause of mortality and morbidity worldwide, especially in the elderly. After World War Ⅱ, eugenics term was exterminated from medicines. Neurodegenerative disease is a genetically inherited disease. Lifestyle changes, environmental factors, and genetic modification, together or alone, are involved in the occurrence of this disorder. The major examples of neurodegenerative disorders are Alzheimer's and Parkinson's disease, in which apoptosis and necrosis are the two major death pathways for neurons. It has been determined from various studies that the etiology of the neurodegenerative disease involves the role of oxidative stress and anti-oxidant defence system, which are prime factors associated with the activation of signal transduction pathway that is responsible for the formation of synuclein in the brain and manifestation of toxic reactions in the form of functional abnormality, which ultimately leads to the dysfunction of neuronal pathway or cell. There has not been much success in the discovery of effective therapy to treat neurodegenerative diseases because the main cause of abnormal functioning or death of neurons is not well known. However, the use of natural products that are derived from plants has effective therapeutic potential against neurodegenerative disease. The natural compounds with medicinal properties to prevent neurological dysfunction are curcumin, wolfberry, ginseng, and Withania somnifera. The selection and use of natural compounds are based on their strong anti-inflammatory and anti-oxidant properties against neurodegenerative disease. Herbal products have active constituents that play an important role in the prevention of communication errors between neurons and neurotransmitters and their respective receptors in the brain, which influence their function. Considering this, natural products have great potential against neurodegenerative diseases. This article reviews the natural compounds used to treat neurodegenerative diseases and their mechanisms of action.


Asunto(s)
Enfermedades Neurodegenerativas , Fitoquímicos , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Animales , Fitoquímicos/uso terapéutico , Fitoquímicos/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/química
10.
J Parkinsons Dis ; 14(s1): S21-S34, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38251061

RESUMEN

The aim of this review is to examine the intersection of Parkinson's disease (PD) with nutrition, to identify best nutritional practices based on current evidence, and to identify gaps in the evidence and suggest future directions. Epidemiological work has linked various dietary patterns and food groups to changes in PD risk; however, fewer studies have evaluated the role of various diets, dietary components, and supplements in the management of established PD. There is substantial interest in exploring the role of diet-related interventions in both symptomatic management and potential disease modification. In this paper, we evaluate the utility of several dietary patterns, including the Mediterranean (MeDi), Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND), Alternative Healthy Eating Index (AHEI), vegan/vegetarian, and ketogenic diet in persons with PD. Additionally, we provide an overview of the evidence relating several individual food groups and nutritional supplements to PD risk, symptoms and progression.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/dietoterapia , Dieta Mediterránea , Dieta Cetogénica , Suplementos Dietéticos , Dieta
11.
Arch Pharm Res ; 47(2): 146-164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225532

RESUMEN

The gut microbiota that exists in the human gastrointestinal tract is incredibly important for the maintenance of general health as it contributes to multiple aspects of host physiology. Recent research has revealed a dynamic connection between the gut microbiota and the central nervous system, that can influence neurodegenerative diseases (NDs). Indeed, imbalances in the gut microbiota, or dysbiosis, play a vital role in the pathogenesis and progression of human diseases, particularly NDs. Herbal medicine has been used for centuries to treat human diseases, including NDs. These compounds help to relieve symptoms and delay the progression of NDs by improving intestinal barrier function, reducing neuroinflammation, and modulating neurotransmitter production. Notably, herbal medicine can mitigate the progression of NDs by regulating the gut microbiota. Therefore, an in-depth understanding of the potential mechanisms by which herbal medicine regulates the gut microbiota in the treatment of NDs can help explain the pathogenesis of NDs from a novel perspective and propose novel therapeutic strategies for NDs. In this review, we investigate the potential neuroprotective effects of herbal medicine, focusing on its ability to regulate the gut microbiota and restore homeostasis. We also highlight the challenges and future research priorities of the integration of herbal medicine and modern medicine. As the global population ages, access to this information is becoming increasingly important for developing effective treatments for these diseases.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , Microbioma Gastrointestinal/fisiología , Enfermedades Neurodegenerativas/patología , Sistema Nervioso Central , Encéfalo/patología , Extractos Vegetales/farmacología , Disbiosis/tratamiento farmacológico , Disbiosis/patología
12.
J Ginseng Res ; 48(1): 20-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223824

RESUMEN

Red ginseng (RG) is widely used as a herbal medicine. As the human lifespan has increased, numerous diseases have developed, and RG has also been used to treat various diseases. Neurodegenerative diseases are major problems that modern people face through their lives. Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are featured by progressive nerve system damage. Recently, neuroinflammation has emerged as a degenerative factor and is an immune response in which cytokines with nerve cells that constitute the nervous system. RG, a natural herbal medicine with fewer side effects than chemically synthesized drugs, is currently in the spotlight. Therefore, we reviewed studies reporting the roles of RG in treating neuroinflammation and neurodegenerative diseases and found that RG might help alleviate neurodegenerative diseases by regulating neuroinflammation.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38173062

RESUMEN

Neurodegenerative disease is mainly characterized by the accumulation of misfolded proteins, contributing to mitochondrial impairments, increased production of proinflammatory cytokines and reactive oxygen species, and neuroinflammation resulting in synaptic loss and neuronal loss. These pathophysiological factors are a serious concern in the treatment of neurodegenerative diseases. Based on the symptoms of various neurodegenerative diseases, different treatments are available, but they have serious side effects and fail in clinical trials, too. Therefore, treatments for neurodegenerative diseases are still a challenge at present. Thus, it is important to study an alternative option. Capsaicin is a naturally occurring alkaloid found in capsicum. Besides the TRPV1 receptor activator in nociception, capsaicin showed a protective effect in brain-related disorders. Capsaicin also reduces the aggregation of misfolded proteins, improves mitochondrial function, and decreases ROS generation. Its antioxidant role is due to increased expression of an nrf2-mediated signaling pathway. Nrf2 is a nuclear erythroid 2-related factor, a transcription factor, which has a crucial role in maintaining the normal function of mitochondria and the cellular defense system against oxidative stress. Intriguingly, Nrf2 mediated pathway improved the upregulation of antioxidant genes and inhibition of microglial-induced inflammation, improved mitochondrial resilience and functions, leading to decreased ROS in neurodegenerative conditions, suggesting that Nrf2 activation could be a better therapeutic approach to target pathophysiology of neurodegenerative disease. Therefore, the present review has evaluated the potential role of capsaicin as a pharmacological agent for the treatment and management of various neurodegenerative diseases via the Nrf2-mediated signaling pathway.

14.
Eur J Neurosci ; 59(7): 1833-1847, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38217338

RESUMEN

Neurodegenerative diseases (NDs) are a significant global health concern, primarily affecting middle and older populations. Recently, there has been growing interest in herbal therapeutics as a potential approach to address diverse neuropathological conditions. Despite the widespread prevalence of NDs, limited phytochemical has been reported for their promising therapeutic potential with distinct underlying mechanisms. Additionally, the intricate molecular pathways influenced by herbal phytoconstituents, particularly in neurodegenerative disorders, are also not well documented. This report explores the phytoconstituents of Ficus racemosa (F. racemosa), an unfamiliar plant of the Moraceae family, for their potential interactions with pathological pathways of NDs. The influential phytoconstituents of F. racemosa, including polyphenols, glycosides, terpenoids, and furocoumarin, have been reported for targeting diverse pathological states. We proposed the most convincing molecular interplay between leading phytoconstituents and detrimental signalling cascades. However, extensive research is required to thoroughly understand the phytochemical persuaded intricate molecular pathway. The comprehensive evidence strongly suggests that F. racemosa and its natural compounds could be valuable in treating NDs. This points towards an exciting path for future research and the development of potential treatments based on a molecular level.


Asunto(s)
Ficus , Enfermedades Neurodegenerativas , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ficus/química , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fitoquímicos
15.
Small ; 20(8): e2304082, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37767608

RESUMEN

Bioenergetic deficits are known to be significant contributors to neurodegenerative diseases. Nevertheless, identifying safe and effective means to address intracellular bioenergetic deficits remains a significant challenge. This work provides mechanistic insights into the energy metabolism-regulating function of colloidal Au nanocrystals, referred to as CNM-Au8, that are synthesized electrochemically in the absence of surface-capping organic ligands. When neurons are subjected to excitotoxic stressors or toxic peptides, treatment of neurons with CNM-Au8 results in dose-dependent neuronal survival and neurite network preservation across multiple neuronal subtypes. CNM-Au8 efficiently catalyzes the conversion of an energetic cofactor, nicotinamide adenine dinucleotide hydride (NADH), into its oxidized counterpart (NAD+ ), which promotes bioenergy production by regulating the intracellular level of adenosine triphosphate. Detailed kinetic measurements reveal that CNM-Au8-catalyzed NADH oxidation obeys Michaelis-Menten kinetics and exhibits pH-dependent kinetic profiles. Photoexcited charge carriers and photothermal effect, which result from optical excitations and decay of the plasmonic electron oscillations or the interband electronic transitions in CNM-Au8, are further harnessed as unique leverages to modulate reaction kinetics. As exemplified by this work, Au nanocrystals with deliberately tailored structures and surfactant-free clean surfaces hold great promise for developing next-generation therapeutic agents for neurodegenerative diseases.


Asunto(s)
NAD , Enfermedades Neurodegenerativas , Humanos , NAD/química , Oro/química , Oxidación-Reducción
16.
Prostaglandins Other Lipid Mediat ; 170: 106799, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37977351

RESUMEN

Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Multiple Sclerosis pose substantial public health challenges. While genetics play a primary role, recent research emphasizes the impact of environmental factors, particularly diet and lifestyle. This study investigates the initiating effects of Omega (ω)- 3 and Omega (ω)- 6 fatty acids on neuroinflammation, potentially contributing to these diseases. Using BV-2 microglial cells, we explored the influence of different fatty acid compositions and ratios on cell viability, cytokine production, morphological changes, and lipid peroxidation. Notably, a 2/1 ω-6:ω-3 ratio led to decreased cell viability. Fatty acid compositions influenced cytokine secretion, with reduced TNF-α suggesting anti-inflammatory effects. IL-17 increased, while IL-4 and IL-10 decreased in the 15/1 ω-6:ω-3 ratio, indicating complex cytokine interactions. This study found that polyunsaturated fatty acids interventions induced microglial activation, altering cell morphology even without immunostimulants. These findings demonstrate the intricate nature of fatty acid interactions with microglial cells and their potential implications for neuroinflammation. Further research is needed to clarify mechanisms and their relevance to neurodegenerative diseases, informing possible therapeutic strategies.


Asunto(s)
Ácidos Grasos Omega-3 , Enfermedades Neurodegenerativas , Humanos , Ácidos Grasos , Enfermedades Neuroinflamatorias , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Citocinas , Enfermedades Neurodegenerativas/tratamiento farmacológico
17.
J Am Nutr Assoc ; 43(1): 20-32, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37186678

RESUMEN

Neurodegenerative diseases are a serious problem throughout the world. There are several causes of neurodegenerative diseases; these include genetic predisposition, accumulation of misfolded proteins, oxidative stress, neuroinflammation, and excitotoxicity. Oxidative stress increases the production of reactive oxygen species (ROS) that advance lipid peroxidation, DNA damage, and neuroinflammation. The cellular antioxidant system (superoxide dismutase, catalase, peroxidase, and reduced glutathione) plays a crucial role in scavenging free radicals. An imbalance in the defensive actions of antioxidants and overproduction of ROS intensify neurodegeneration. The formation of misfolded proteins, glutamate toxicity, oxidative stress, and cytokine imbalance promote the pathogenesis of Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Antioxidants are now attractive molecules to fight against neurodegeneration. Certain vitamins (A, E, C) and polyphenolic compounds (flavonoids) show excellent antioxidant properties. Diet is the major source of antioxidants. However, diet medicinal herbs are also rich sources of numerous flavonoids. Antioxidants prevent ROS-mediated neuronal degeneration in post-oxidative stress conditions. The present review is focused on the pathogenesis of neurodegenerative diseases and the protective role of antioxidants. KEY TEACHING POINTSThis review shows that multiple factors are directly or indirectly associated with the pathogenesis of neurodegenerative diseases.Failure to cellular antioxidant capacity increases oxidative stress that intensifies neuroinflammation and disease progression.Different vitamins, carotenoids, and flavonoids, having antioxidant capacity, can be considered protective agents.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/prevención & control , Antioxidantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Enfermedades Neuroinflamatorias , Vitaminas , Flavonoides/farmacología
18.
Ecotoxicol Environ Saf ; 270: 115841, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113799

RESUMEN

N-nitrosodiethylamine (ND) is an extremely toxic unavoidable environmental contaminant. CopperII-albumin (CuAB) complex, a newly developed Cu complex, showed antioxidant and anti-inflammatory potential. Hereby, we explored the plausible neuroprotective role of CuAB complex toward ND-evoked neurotoxicity in mice. Twenty-four male mice were sorted into 4 groups (6 mice each). Control group, mice were administered oral distilled water; and CuAB group, mice received CuAB complex at a dose of 817 µg/kg orally, three times weekly. In ND group, ND was given intraperitoneally (50 mg/kg body weight, once weekly for 6 w). CuAB+ND group, mice were administered a combination of CuAB and ND. The brain was quickly extracted upon completion of the experimental protocol for the evaluation of the oxidative/antioxidative markers, inflammatory cytokines, and histopathological examination. Oxidative stress was induced after ND exposure indicated by a reduction in GSH and SOD1 level, with increased MDA level. In addition, decreased expression of SOD1 proteins, Nrf2, and 5-HT mRNA expression levels were noticed. An apoptotic cascade has also been elicited, evidenced by overexpression of Cyt c, Cl. Casp 3. In addition, increased regulation of proinflammatory genes (TNF-α, IL-6, iNOS, Casp1, and NF-κB (p65/p50); besides, increment of protein expression of P-IKBα and reduced expression of IKBα. Pretreatment with CuAB complex significantly ameliorated ND neuronal damage. Our results recommend CuAB complex supplementation because it exerts neuroprotective effects against ND-induced toxicity.


Asunto(s)
Cobre , Síndromes de Neurotoxicidad , Ratones , Masculino , Animales , Cobre/toxicidad , Dietilnitrosamina/farmacología , Superóxido Dismutasa-1/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Estrés Oxidativo , Transducción de Señal , Antioxidantes/farmacología , Antioxidantes/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control , Factor 2 Relacionado con NF-E2/metabolismo
19.
Artículo en Chino | WPRIM | ID: wpr-1003429

RESUMEN

Neuroinflammation is a common pathological feature of neurodegenerative diseases (NDs). Microglia (MG), a resident macrophage in the brain with a unique developmental origin, is the core driver of neuroinflammation. It can participate in the occurrence and development of NDs through different polarization states and play a key role in regulating neurogenesis and synapse shaping and maintaining homeostasis. MG can be divided into M1 pro-inflammatory phenotype and M2 anti-inflammatory phenotype according to its function. The inflammatory mediators released by the M1 phenotype can lead to nerve degeneration and myelin sheath damage, while the activation of the M2 phenotype is required to inhibit the inflammatory response and promote tissue repair. With the advantages of multi-pathway, multi-target, and bidirectional regulation, traditional Chinese medicine can regulate the polarization balance of MG and has dual effects on NDs such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. The active components of traditional Chinese medicine and its compound can inhibit the activation of MG by regulating phosphatidylinositol-3-kinases/protein kinase B(PI3K/Akt), NOD-like receptor thermal protein domain associated protein 3(NLRP3), signal transducer and activator of transcription factor1(STAT1), nuclear transcription factor kappa B(NF-κB), and other pathways, promote the polarization of M1 phenotype to M2 phenotype, reduce the expression of interleukin(IL)-6, tumor necrosis factor-α(TNF-α), and other pro-inflammatory factors, and increase the secretion of IL-10, arginase-1(Arg-1), and other anti-inflammatory factors. It can also reduce β-amyloid deposition and tau protein expression in Alzheimer's disease, alleviate dopaminergic neuronal damage in Parkinson's disease, and relieve demyelination, inflammatory cell infiltration, and related clinical symptoms of multiple sclerosis. The bidirectional regulation of the M1/M2 polarization balance of MG by traditional Chinese medicine is a potential strategy for the treatment of NDs. This paper focused on the targets of the regulation of MG polarization balance by traditional Chinese medicine monomer and its compound in the treatment of NDs, so as to further study and summarize the existing research results and provide ideas and basis for the future treatment of NDs.

20.
Curr Neuropharmacol ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38037913

RESUMEN

Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA