Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 330: 118205, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38641079

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng is a valuable herb in traditional Chinese medicine. Modern research has shown that it has various benefits, including tonifying vital energy, nourishing and strengthening the body, calming the mind, improving cognitive function, regulating fluids, and returning blood pressure, etc. Rg1 is a primary active component of ginseng. It protects hippocampal neurons, improves synaptic plasticity, enhances cognitive function, and boosts immunity. Furthermore, it exhibits anti-aging and anti-fatigue properties and holds great potential for preventing and managing neurodegenerative diseases (NDDs). AIM OF THE STUDY: The objective of this study was to examine the role of Rg1 in treating chronic inflammatory NDDs and its molecular mechanisms. MATERIALS AND METHODS: In vivo, we investigated the protective effects of Rg1 against chronic neuroinflammation and cognitive deficits in mice induced by 200 µg/kg lipopolysaccharide (LPS) for 21 days using behavioral tests, pathological sections, Western blot, qPCR and immunostaining. In vitro experiments involved the stimulation of HT22 cells with 10 µg/ml of LPS, verification of the therapeutic effect of Rg1, and elucidation of its potential mechanism of action using H2DCFDA staining, BODIPY™ 581/591 C11, JC-1 staining, Western blot, and immunostaining. RESULTS: Firstly, it was found that Rg1 significantly improved chronic LPS-induced behavioral and cognitive dysfunction in mice. Further studies showed that Rg1 significantly attenuated LPS-induced neuronal damage by reducing levels of IL-6, IL-1ß and ROS, and inhibiting AIM2 inflammasome. Furthermore, chronic LPS exposure induced the onset of neuronal ferroptosis by increasing the lipid peroxidation product MDA and regulating the ferroptosis-associated proteins Gpx4, xCT, FSP1, DMT1 and TfR, which were reversed by Rg1 treatment. Additionally, Rg1 was found to activate Nrf2 and its downstream antioxidant enzymes, such as HO1 and NQO1, both in vivo and in vitro. In vitro studies also showed that the Nrf2 inhibitor ML385 could inhibit the anti-inflammatory, antioxidant, and anti-ferroptosis effects of Rg1. CONCLUSIONS: This study demonstrated that Rg1 administration ameliorated chronic LPS-induced cognitive deficits and neuronal ferroptosis in mice by inhibiting neuroinflammation and oxidative stress. The underlying mechanisms may be related to the inhibition of AIM2 inflammasome and activation of Nrf2 signaling. These findings provide valuable insights into the treatment of chronic neuroinflammation and associated NDDs.


Asunto(s)
Disfunción Cognitiva , Ferroptosis , Ginsenósidos , Neuronas , Transducción de Señal , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Línea Celular , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Proteínas de Unión al ADN , Ferroptosis/efectos de los fármacos , Ginsenósidos/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos
2.
Molecules ; 29(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543018

RESUMEN

Que Zui tea (QT) is an important herbal tea in the diet of the 'Yi' people, an ethnic group in China, and it has shown significant antioxidant, anti-inflammatory, and hepatoprotective effects in vitro. This study aims to explore the protective effects of the aqueous-ethanol extract (QE) taken from QT against ᴅ-galactose (ᴅ-gal)-induced oxidative stress damage in mice and its potential mechanisms. QE was identified as UHPLC-HRMS/MS for its chemical composition and possible bioactive substances. Thus, QE is rich in phenolic and flavonoid compounds. Twelve compounds were identified, the main components of which were chlorogenic acid, quinic acid, and 6'-O-caffeoylarbutin. Histopathological and biochemical analysis revealed that QE significantly alleviated brain, liver, and kidney damage in ᴅ-gal-treated mice. Moreover, QE remarkably attenuated oxidative stress by activating the Nrf2/HO-1 pathway to increase the expression of antioxidant indexes, including GSH, GSH-Px, CAT, SOD, and T-AOC. In addition, QE administration could inhibit the IL-1ß and IL-6 levels, which suppress the inflammatory response. QE could noticeably alleviate apoptosis by inhibiting the expressions of Caspase-3 and Bax proteins in the brains, livers, and kidneys of mice. The anti-apoptosis mechanism may be related to the upregulation of the SIRT1 protein and the downregulation of the p53 protein induced by QE in the brain, liver, and kidney tissues of mice. Molecular docking analysis demonstrated that the main components of QE, 6'-O-caffeoylarbutin, chlorogenic acid, quinic acid, and robustaside A, had good binding ability with Nrf2 and SIRT1 proteins. The present study indicated that QE could alleviate ᴅ-gal-induced brain, liver and kidney damage in mice by inhibiting the oxidative stress and cell apoptosis; additionally, the potential mechanism may be associated with the SIRT1/Nrf2 signaling pathway.


Asunto(s)
Antioxidantes , Arbutina/análogos & derivados , Ácidos Cafeicos , Galactosa , Humanos , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Galactosa/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Sirtuina 1/metabolismo , Ácido Clorogénico/farmacología , Simulación del Acoplamiento Molecular , Ácido Quínico/farmacología , Estrés Oxidativo , Transducción de Señal ,
3.
Fish Shellfish Immunol ; 144: 109294, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092096

RESUMEN

N-acetylcysteine (NAC) positively contributes to enhancing animal health, regulating inflammation and reducing stress by participating in the synthesis of cysteine, glutathione, and taurine in the body. The present study aims to investigate the effects of dietary different levels of NAC on the morphology, function and physiological state of hepatopancreas in juvenile common carp (Cyprinus carpio). 450 common carps were randomly divided into 5 groups: N1 (basal diet), N2 (1.5 g/kg NAC diet), N3 (3.0 g/kg NAC diet), N4 (4.5 g/kg NAC diet) and N5 (6.0 g/kg NAC diet), and fed for 8 weeks. The results indicated that dietary 3.0-6.0 g/kg NAC reduced hepatopancreas lipid vacuoles and nuclear translocation, and inhibited apoptosis in common carp. Simultaneously, the activities of hepatopancreas alanine aminotransferase and aspartate aminotransferase progressively increased with rising dietary NAC levels. Dietary NAC enhanced the non-specific immune function of common carp, and exerted anti-inflammatory effects by inhibiting the MAPK/NF-κB signaling pathway. Additionally, dietary 3.0-6.0 g/kg NAC significantly improved the antioxidant capacity of common carp, which was associated with enhanced glutathione metabolism, clearance of ROS and the activation of Nrf2 signaling pathway. In summary, NAC has the potential to alleviate inflammation, mitigate oxidative stress and inhibit apoptosis via the MAPK/NF-κB/Nrf2 signaling pathway, thereby improving hepatopancreas function and health of common carp. The current findings provide a theoretical basis for promoting the application of NAC in aquaculture and ecological cultivation of aquatic animals.


Asunto(s)
Antioxidantes , Carpas , Animales , Antioxidantes/metabolismo , FN-kappa B/metabolismo , Acetilcisteína/farmacología , Carpas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hepatopáncreas/metabolismo , Transducción de Señal , Dieta/veterinaria , Inflamación/veterinaria , Glutatión , Suplementos Dietéticos
4.
J Ethnopharmacol ; 321: 117495, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016572

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: When left untreated, liver fibrosis (LF) causes various chronic liver diseases. Earthworms (Pheretima aspergillum) are widely used in traditional medicine because of their capacity to relieve hepatic diseases. AIM OF THE STUDY: This study aimed to explore the anti-LF effects of water extract of earthworms (WEE) and the underlying molecular mechanisms. MATERIALS AND METHODS: A CCl4-induced mouse model of LF was used to study the impact of WEE on LF in vivo. The anti-LF activity of WEE in mice was compared with that of silybin, which can be clinically applied in LF intervention and was used as a positive control. Activation of LX-2 hepatic stellate cells (HSCs) and apoptosis and ferroptosis of AML-12 hepatocytes induced by TGFß1 were used as in vitro models. RESULTS: WEE drastically improved LF in mice. WEE reduced markers of activated HSCs in mice and inhibited TGFß1-induced activation of LX-2 HSCs in vitro. Additionally, WEE suppressed CCl4-induced apoptosis and ferroptosis in mouse hepatocytes. Mechanistically, WEE induced Nrf2 to enter the nuclei of the mouse liver cells, and the hepatic levels of Nrf2-downstream antioxidative factors increased. LKB1/AMPK/GSK3ß is an upstream regulatory cascade of Nrf2. In the LF mouse model, WEE increased hepatic phosphorylated LKB1, AMPK, and GSK3ß levels. Similar results were obtained for the LX-2 cells. In AML-12 hepatocytes and LX-2 HSCs, WEE elevated intracellular Nrf2 levels, promoted its nuclear translocation, and inhibited TGFß1-induced ROS accumulation. Knocking down LKB1 abolished the impact of WEE on the AMPK/GSK3ß/Nrf2 cascade and eliminated its protective effects against TGFß1. CONCLUSIONS: Our findings reveal that WEE improves mouse LF triggered by CCl4 and supports its application as a promising hepatoprotective agent against LF. The potentiation of the hepatic antioxidative AMPK/GSK3ß/Nrf2 cascade by activating LKB1 and the subsequent suppression of HSC activation and hepatocyte apoptosis and ferroptosis are implicated in WEE-mediated alleviation of LF.


Asunto(s)
Leucemia Mieloide Aguda , Oligoquetos , Animales , Ratones , Factor 2 Relacionado con NF-E2 , Proteínas Quinasas Activadas por AMP , Glucógeno Sintasa Quinasa 3 beta , Hígado , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Hepatocitos , Fibrosis , Células Estrelladas Hepáticas , Modelos Animales de Enfermedad , Antioxidantes/efectos adversos , Leucemia Mieloide Aguda/patología
5.
J Ethnopharmacol ; 322: 117576, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104880

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Type 1 diabetes mellitus (T1DM) results from insulin deficiency due to the destruction of pancreatic ß-cells. Previously, our studies showed that inhibition of Keap1/Nrf2 signaling pathway promoted the onset of T1DM, which suggests that finding drugs that can activate the Keap1/Nrf2 signaling may be a promising therapeutic strategy for the T1DM treatment. Astragalus membranaceus (Fisch.) Bunge is a common traditional Chinese medicine that has been frequently applied in Chinese clinics for the treatment of diabetes and other diseases. Formononetin (FMNT), one of the major isoflavonoid constituents isolated from this herbal medicine, possesses diverse pharmacological benefits and T1DM therapeutic potential. However, the exact molecular mechanisms underlying the action of FMNT in ameliorating T1DM have yet to be fully elucidated. AIMS OF THE STUDY: This study is to investigate the regulation of FMNT on the Keap1/Nrf2 signaling pathway to ameliorate T1DM based on network pharmacology approach combined with experimental validation. MATERIALS AND METHODS: A mouse-derived pancreatic islet ß-cell line (MIN6) was used for the in vitro studies. An alloxan (ALX)-induced T1DM model in wild-type and Nrf2 knockout (Nrf2-/-) C57BL/6J mice were established for the in vivo experiments. The protective effects of FMNT against ALX-stimulated MIN6 cell injury were evaluated using MTT, EdU, apoptosis and comet assays. The levels of blood glucose in mice were measured by using a blood monitor and test strips. The protein expression was detected by Western blot analysis. Furthermore, the binding affinity of FMNT to Keap1 was evaluated using cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, and solvent-induced protein precipitation (SIP) assay. The interaction pattern between FMNT and Keap1 was assessed by molecular docking and molecular dynamics simulation techniques. RESULTS: Network pharmacology analysis revealed that FMNT exerted its therapeutic effect against T1DM by mainly regulating oxidative stress response-associated signaling molecules and pathways, such as Nrf2 regulating anti-oxidant/detoxification enzymes and Keap1-Nrf2 signaling pathway. The in vivo results showed that FMNT significantly deceased the ALX-induced high blood glucose levels and conversely increased the ALX-induced low insulin contents. In vitro, FMNT markedly protected MIN6 cells from ALX-induced cytotoxicity, proliferation inhibition and DNA damage and reduced the ALX-stimulated cell apoptosis. FMNT also inhibited ALX-induced overproduction of intracellular ROS to alleviate oxidative stress. In addition, FMNT could bind to Keap1 to notably activate the Keap1/Nrf2 signaling to upregulate Nrf2 expression and promote the Nrf2 translocation from the cytoplasm to the nucleus, resulting in enhancing the expression of antioxidant proteins HO-1 and NQO1. Inhibition of Keap1/Nrf2 signaling by ALX was also markedly abolished in the cells and mice exposed to FMNT. Moreover, these effects of FMNT in ameliorating T1DM were not observed in Nrf2-/- mice. CONCLUSIONS: This study demonstrates that FMNT could bind to Keap1 to activate the Keap1/Nrf2 signaling to prevent intracellular ROS overproduction, thereby attenuating ALX-induced MIN6 cell injury and ameliorating ALX-stimulated T1DM. Results from this study might provide evidence and new insight into the therapeutic effect of FMNT and indicate that FMNT is a promising candidate agent for the treatment of T1DM in clinics.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Isoflavonas , Ratones , Animales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Astragalus propinquus , Glucemia , Simulación del Acoplamiento Molecular , Farmacología en Red , Ratones Endogámicos C57BL , Estrés Oxidativo , Transducción de Señal , Insulinas/metabolismo , Insulinas/farmacología
6.
J Ethnopharmacol ; 323: 117679, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38160863

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: SuanZaoRen Decoction (SZRD), a famous herbal prescription, and has been widely proven to have positive therapeutic effects on insomnia, depression and Alzheimer's disease (AD). However, the anti-AD molecular mechanism of SZRD remains to be further investigated. AIM OF THE STUDY: To elucidate the molecular mechanism of SZRD's improvement in AD's neuronal loss, synaptic damage and ferroptosis by regulating DJ-1/Nrf2 signaling pathway. MATERIALS AND METHODS: LC-MS/MS was used to detect the active ingredients from SZRD. APP/PS1 mice was treated with SZRD and a ferroptosis inhibitor (Liproxstatin-1), respectively. Upon the completion of behavioral tests, Nissl staining, FJB staining, Golgi staining, immunofluorescence, immunohistochemistry, and transmission electron microscopy were preformed to evaluate the effects of SZRD on neuronal loss, synaptic damage, Aß deposition. Iron staining, transmission electron microscopy, and iron assay kit was performed to estimate the effects of SZRD on ferroptosis. SOD kit, MDA kit, GSH kit, and GSH/GSSG kit were utilized to measure the oxidative stress levels in the hippocampus. The protein expression of TfR1, FTH1, FTL, FPN1, DJ-1, Nrf2, GPX4, SLC7A11, and ACSL4 were detected by Western blot. RESULTS: A total of 16 active ingredients were identified from SZRD extract. SZRD SZRD significantly alleviated learning and memory impairment in APP/PS1 mice. SZRD improved the hippocampal neuronal loss and degenerated neurons in APP/PS1 mice via inhibiting the Aß deposit. SZRD mitigated the hippocampal synaptic damage in APP/PS1 mice. SZRD inhibited iron accumulation, and alleviated the oxidative stress level in the hippocampus of APP/PS1 mice. Meanwhile, SZRD could up-regulate the protein expression level of FPN1, DJ-1, Nrf2, GPX4 and SLC7A11 in the hippocampus, and inhibit TfR1, FTH1, FTL, and ACSL4 protein expression. CONCLUSION: SZRD alleviated neuronal loss, synaptic damage and ferroptosis in AD via activating DJ-1/Nrf2 signaling pathway.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Ferroptosis , Animales , Ratones , Cromatografía Liquida , Factor 2 Relacionado con NF-E2 , Espectrometría de Masas en Tándem , Transducción de Señal , Hierro
7.
Int Immunopharmacol ; 125(Pt A): 111079, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38149576

RESUMEN

Sepsis is a life-threatening organ dysfunction associated with macrophage overactivation. Targeted therapy against macrophages is considered a promising strategy for sepsis treatment. Mollugin (MLG), a compound extracted from traditional Chinese medicine Rubia cordifolia L., possesses anti-tumor and anti-inflammatory activities. This study aimed to investigate the anti-inflammatory effects and mechanisms of MLG in macrophages and its therapeutic role in CLP-induced sepsis in mice. The results demonstrated that MLG downregulated the inflammatory response induced by LPS or tumor necrosis factor α (TNF-α) in macrophages. Mechanistically, MLG suppressed the phosphorylation of TAK1, the upstream modulator of IKKα/ß and MAPKs, thereby inhibiting the pro-inflammatory signaling transduction of NF-κB and MAPKs. Additionally, MLG also activated the Nrf2 antioxidant pathway, reducing intracellular reactive oxygen species. CETSA and molecular docking analyses revealed that MLG could effectively bind to TAK1 and Keap1, which may be involved in the inhibition of TAK1- NF-κB/MAPKs and activation of Nrf2 mediated by MLG. Animal study demonstrated that MLG ameliorated inflammatory injury of lung and liver in CLP-induced sepsis mice probably by reducing the levels of pro-inflammatory cytokines. Therefore, our study suggests that bi-directional roles of MLG in improving sepsis via blocking the TAK1-NF-κB/MAPKs and activating Nrf2 pathways, indicating its potential as a promising candidate drug for sepsis treatment.


Asunto(s)
FN-kappa B , Sepsis , Ratones , Animales , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Simulación del Acoplamiento Molecular , Inflamación/tratamiento farmacológico , Macrófagos , Antiinflamatorios/efectos adversos , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Lipopolisacáridos/farmacología
8.
Biol Trace Elem Res ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968493

RESUMEN

Previous studies, including our own, have demonstrated that arsenic exposure can induce liver fibrosis, while the underlying mechanism remains unclear and there is currently no effective pharmacological intervention available. Recent research has demonstrated that vitamin D supplementation can ameliorate liver fibrosis caused by various etiologies, potentially through modulation of the Nrf2 signaling pathways. However, it remains unclear whether vitamin D intervention can mitigate arsenic-caused liver fibrosis. As is known hepatic stellate cells (HSCs) activation and extracellular matrix (ECM) deposition are pivotal in the pathogenesis of liver fibrosis. In this study, we investigated the intervention effect of calcitriol (a form of active vitamin D) on arsenite-triggered Lx-2 cells (a human hepatic stellate cell line) activation and ECM oversecretion. Additionally, we also elucidated the role and mechanism of Nrf2 antioxidant signaling pathway. Our results demonstrated that calcitriol intervention significantly inhibits Lx-2 cell activation and ECM oversecretion induced by arsenite exposure. Additionally, calcitriol activates Nrf2 and its downstream antioxidant enzyme expression in Lx-2 cells, thereby reducing ROS overproduction caused by arsenite exposure. Further investigation reveals that calcitriol activates the Nrf2 signaling pathway and inhibits arsenite-triggered Lx-2 cell activation and ECM oversecretion by targeting vitamin D receptor (VDR). In conclusion, this study has demonstrated that vitamin D intervention can effectively inhibit HSC activation and ECM oversecretion triggered by arsenite exposure through its antioxidant activity. This provides a novel strategy for targeted nutritional intervention in the treatment of arsenic-induced liver fibrosis.

9.
Aging Cell ; 22(9): e13912, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37365714

RESUMEN

Age-related osteoporosis is associated with increased oxidative stress and cellular senescence. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound that has strong antioxidant capacity; however, the effect and underlying mechanism of PQQ on aging-related osteoporosis remain unclear. The purpose of this study was to investigate whether dietary PQQ supplementation can prevent osteoporosis caused by natural aging, and the potential mechanism underlying PQQ antioxidant activity. Here, we found that when 6-month-old or 12-month-old wild-type mice were supplemented with PQQ for 12 months or 6 months, respectively, PQQ could prevent age-related osteoporosis in mice by inhibiting osteoclastic bone resorption and stimulating osteoblastic bone formation. Mechanistically, pharmmapper screening and molecular docking studies revealed that PQQ appears to bind to MCM3 and reduces its ubiquitination-mediated degradation; stabilized MCM3 then competes with Nrf2 for binding to Keap1, thus activating Nrf2-antioxidant response element (ARE) signaling. PQQ-induced Nrf2 activation inhibited bone resorption through increasing stress response capacity and transcriptionally upregulating fibrillin-1 (Fbn1), thus reducing Rankl production in osteoblast-lineage cells and decreasing osteoclast activation; as well, bone formation was stimulated by inhibiting osteoblastic DNA damage and osteocyte senescence. Furthermore, Nrf2 knockout significantly blunted the inhibitory effects of PQQ on oxidative stress, on increased osteoclast activity and on the development of aging-related osteoporosis. This study reveals the underlying mechanism of PQQ's strong antioxidant capacity and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced osteoporosis.


Asunto(s)
Resorción Ósea , Osteoporosis , Ratones , Animales , Antioxidantes/metabolismo , Cofactor PQQ/farmacología , Cofactor PQQ/metabolismo , Cofactor PQQ/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Regulación hacia Arriba , Fibrilina-1/metabolismo , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Envejecimiento , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Resorción Ósea/tratamiento farmacológico
10.
J Pharm Pharmacol ; 75(9): 1212-1224, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37329511

RESUMEN

OBJECTIVES: Scutellaria baicalensis leaf (SLE), the above-ground part of the traditional Chinese medicine Scutellaria baicalensis Georgi, is rich in resources and contains a large number of flavonoids with anti-inflammatory, antioxidant and neuroprotective functions. The present study evaluated the ameliorative effects and related mechanisms of SLE on d-gal-induced ageing rats, providing a theoretical basis for the exploitation of SLE. METHODS: This experiment investigated the mechanism of SLE for anti-ageing by non-targeted metabonomics technology combined with targeted quantitative analysis and molecular biology technology. KEY FINDINGS: Non-targeted metabonomics analysis showed that 39 different metabolites were screened out. Among them, 38 metabolites were regulated by SLE (0.4 g/kg), and 33 metabolites were regulated by SLE (0.8 g/kg). Through enrichment analysis, glutamine-glutamate metabolic pathway was identified as the key metabolic pathway. Subsequently, the results of targeted quantitative and biochemical analysis displayed that the contents of key metabolites and the activities of enzymes in glutamine-glutamate metabolic pathway and glutathione synthesis could be regulated by SLE. Furthermore, the results of Western blotting indicated that SLE significantly modulated the expression of Nrf2, GCLC, GCLM, HO-1, and NQO1 proteins. CONCLUSION: To sum up, the anti-ageing mechanism of SLE was related to glutamine-glutamate metabolism pathway and Nrf2 signalling pathway.


Asunto(s)
Glutamina , Scutellaria baicalensis , Ratas , Animales , Scutellaria baicalensis/química , Glutamina/metabolismo , Ácido Glutámico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hígado , Envejecimiento/metabolismo , Hojas de la Planta , Glutatión/metabolismo
11.
Med Oncol ; 40(7): 188, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226027

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer and the main cause of cancer death globally. The use of medicinal herbs as chemotherapeutic agents in cancer treatment is receiving attention as they possess no or minimum side effects. Isorhamnetin (IRN), a flavonoid, has been under attention for its anti-inflammatory and anti-proliferative properties in a number of cancers, including colorectal, skin, and lung cancers. However, the in vivo mechanism of isorhamnetin to suppress liver cancer has yet to be explored. METHODS AND RESULT: HCC was induced by N-diethylnitrosamine (DEN) and carbon tetrachloride (CCL4) in Swiss albino mice. Isorhamnetin (100 mg/kg body weight) was given to examine its anti-tumor properties in HCC mice model. Histological analysis and liver function assays were performed to assess changes in liver anatomy. Probable molecular pathways were explored using immunoblot, qPCR, ELISA, and immunohistochemistry techniques. Isorhamnetin inhibited various pro-inflammatory cytokines to suppress cancer-inducing inflammation. Additionally, it regulated Akt and MAPKs to suppress Nrf2 signaling. Isorhamnetin activated PPAR-γ and autophagy while suppressing cell cycle progression in DEN + CCl4-administered mice. Additionally, isorhamnetin regulated various signaling pathways to suppress cell proliferation, metabolism, and epithelial-mesenchymal transition in HCC. CONCLUSION: Regulating diverse cellular signaling pathways makes isorhamnetin a better anti-cancer chemotherapeutic candidate in HCC. Importantly, the anti-TNF-α properties of isorhamnetin could prove it a valuable therapeutic agent in sorafenib-resistant HCC patients. Additionally, anti-TGF-ß properties of isorhamnetin could be utilized to reduce the EMT-inducing side effects of doxorubicin.


Asunto(s)
Carcinoma Hepatocelular , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Inhibidores del Factor de Necrosis Tumoral , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Quercetina/farmacología , Quercetina/uso terapéutico
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(4): 577-584, 2023 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-37202193

RESUMEN

OBJECTIVE: To explore the mechanism underlying the inhibitory effect of quercetin against testicular oxidative damage induced by a mixture of 3 commonly used phthalates (MPEs) in rats. METHODS: Forty male Sprague-Dawley rats were randomly divided into control group, MPEs exposure group, and MPEs with low-, median- and high-dose quercetin treatment groups. For MPEs exposure, the rats were subjected to intragastric administration of MPEs at the daily dose of 900 mg/kg for 30 consecutive days; Quercetin treatments were administered in the same manner at the daily dose of 10, 30, and 90 mg/kg. After the treatments, serum levels of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), and testicular malondialdeyhde (MDA), catalase (CAT) and superoxide dismutase (SOD) were detected, and testicular pathologies of the rats were observed with HE staining. The expressions of nuclear factor-E2-related factor 2 (Nrf2), Kelch-like ECH2 associated protein 1 (Keap1) and heme oxygenase 1 (HO-1) in the testis were detected using immunofluorescence assay and Western blotting. RESULTS: Compared with the control group, the rats with MPEs exposure showed significant reductions of the anogenital distance, weight of the testis and epididymis, and the coefficients of the testis and epididymis with lowered serum testosterone, LH and FSH levels (P < 0.05). Testicular histological examination revealed atrophy of the seminiferous tubules, spermatogenic arrest, and hyperplasia of the Leydig cells in MPEs-exposed rats. MPEs exposure also caused significant increments of testicular Nrf2, MDA, SOD, CAT and HO-1 expressions and lowered testicular Keap1 expression (P < 0.05). Treatment with quercetin at the median and high doses significantly ameliorated the pathological changes induced by MPEs exposure (P < 0.05). CONCLUSION: Quercetin treatment inhibits MPEs-induced oxidative testicular damage in rats possibly by direct scavenging of free radicals to lower testicular oxidative stress and restore the regulation of the Nrf2 signaling pathway.


Asunto(s)
Quercetina , Testículo , Ratas , Masculino , Animales , Quercetina/farmacología , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo , Testosterona/farmacología , Superóxido Dismutasa/metabolismo , Hormona Folículo Estimulante , Hormona Luteinizante
13.
BMC Complement Med Ther ; 23(1): 112, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37046263

RESUMEN

BACKGROUND: Mori Fructus is an economical and readily available traditional Chinese medicine and food. Polysaccharides in Mori Fructus have clear antioxidant activity and have been found to alleviate oxidative stress (OS)-induced liver damage in experimental studies. The mechanism of regulation of cellular antioxidant activity by mulberry polysaccharides has been suggested to be Nrf2, but it is not clear whether the Nrf2 pathway is mediated by activation of other targets, and the exact process of effects in hepatocytes has yet to be elucidated. METHODS: In this study, the basic characterization of total polysaccharides extracted from mulberry fruits (Morus nigra Linn.) was analyzed. A model of oxidative damage induced by H2O2 in HepG2 cells was established. The levels of cellular oxidation-related markers, including ROS, SOD and Gpx, were then examined. Furthermore, Q-PCR and Western-blot were used to detect the expression of genes and proteins related to the PI3K/Akt-mediated Nrf2 signaling pathway. RESULTS: The results showed that a total mulberry polysaccharides (TMP) has a molecular weight of 57.5 kDa with a pyranose ring mainly composed of glucose (48.81%), galactose (22.79%) and mannose (18.2%). TMP reduced the accumulation of ROS in HepG2 cells after H2O2 treatment and modulated the activity of SOD and Gpx. Q-PCR and Western-blot showed that TMP could up-regulate the expression of p-PI3K, p-AKT, Nrf2, NQO1 and HO-1. CONCLUSIONS: This study demonstrates that TMP can reduce ROS accumulation in H2O2-treated HepG2 cells and restore cell viability by activating the PI3K/AKT-mediated Nrf2 pathway. TMP may be a potent antioxidant agent that could slow down oxidative damage to the liver.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Morus , Humanos , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Hep G2 , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Frutas , Factor 2 Relacionado con NF-E2/metabolismo , Superóxido Dismutasa/metabolismo , Polisacáridos/farmacología
14.
Molecules ; 28(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903551

RESUMEN

Carnosic acid is a diterpenoid abundantly present in plants belonging to the genus Rosmarinus and Salvia of the family Lamiaceae, accounting for their application in traditional medicine. The diverse biological properties of carnosic acid that include antioxidant, anti-inflammatory, and anticarcinogenic activities have instigated studies on its mechanistic role, providing further insights into its potential as a therapeutic agent. Accumulating evidence has established the relevance of carnosic acid as a neuroprotective agent exhibiting therapeutic efficacy in combatting neuronal-injury-induced disorders. The physiological importance of carnosic acid in the mitigation of neurodegenerative disorders is just beginning to be understood. This review summarizes the current data on the mode of action through which carnosic acid exerts its neuroprotective role that may serve to strategize novel therapeutic approaches for these debilitating neurodegenerative disorders.


Asunto(s)
Fármacos Neuroprotectores , Rosmarinus , Fármacos Neuroprotectores/farmacología , Antioxidantes/farmacología , Abietanos/farmacología , Extractos Vegetales/farmacología
15.
Carbohydr Polym ; 306: 120601, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36746570

RESUMEN

EuOCP3, with a molecular weight of 38.1 kDa, is an acidic polysaccharide purified from Eucommia ulmoides Oliver cortex. Herein, we determined that the main backbone of EuOCP3 was predominantly composed of →4)-α-GalpA-(1 â†’ 4)-α-GalpA-(1→, →4)-α-GalpA-(1 â†’ 5)-α-Araf-(1→, →4)-α-GalpA-(1 â†’ 2)-α-Rhap-(1→, and →4)-α-GalpA-(1 â†’ 5)-α-Araf-(1 â†’ 2)-α-Rhap-(1 â†’ repeating blocks, which were connected by →2,3,5)-α-Araf-(1→. The side chains, substituted at C-2 and C-5 of →2,3,5)-α-Araf-(1→, contained T-ß-Araf→ and T-ß-Araf â†’ 4)-α-GalpA-(1 â†’ residues. In dexamethasone (Dex)-induced osteoporosis (OP) mice, EuOCP3 treatment restored cortical bone thickness, increased mineralized bone area, enhanced the number of osteoblasts, and decreased the number of osteoclasts on the surface of cortical bone. Combining analysis of gut microflora, serum metabolite profiles, and biological detection results, we demonstrated that EuOCP3 regulated the abundance of specific species within the gut microflora, such as g_Dorea and g_Prevotella, and ameliorated oxidative stress. In turn, enhancement of osteogenic function and restoration of bone metabolism via the extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway was indicated. The current findings contribute to understanding the potential of EuOCP3 in anti-OP treatment.


Asunto(s)
Eucommiaceae , Osteoporosis , Ratones , Animales , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Pectinas/química , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico
16.
Mol Immunol ; 155: 110-123, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773597

RESUMEN

Fatty liver hemorrhage syndrome (FLHS) seriously threatens the health and performance of laying hens, and the occurrence and development of FLHS are closely related to oxidative damage and inflammation; thus, diets supplemental with activated substances to relive the oxidative stress and inflammation maybe effectively control the occurrences of FLHS. Dehydroepiandrosterone (DHEA) has beneficial effects in fat-reduction, anti-oxidation and anti-inflammation, and it was widely applied to alleviate multiple metabolic-related diseases; however, there are few reports on whether DHEA can prevent against metabolic-related diseases by modulating oxidative stress and inflammation, especially FLHS in laying hens. Herein, present study aimed to investigate the regulatory actions and potential molecular mechanism of DHEA on inflammation and oxidative stress triggered by oleic acid (OA)-stimulation in primary chicken hepatocytes and chicken hepatocellular carcinoma cell line (LMH). The results showed that DHEA significantly alleviated oxidative stress challenged by OA-stimulation via activation of AMP-activated protein kinase (AMPK)-nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in hepatocytes, which led to relieving effect of DHEA on inflammatory by inhibiting mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) signaling pathways. Mechanistically, we found that the activation of AMPK-Nrf2 signaling pathway by DHEA treatment was mediated by G-protein coupled estrogen receptor (GPR30/GPER) in OA-stimulated hepatocytes. Further investigation found that DHEA activated the GPR30-mediated AMPK-Nrf2 signaling pathways to increase antioxidant capacity and inhibit mitochondrial reactive oxygen species (ROS) overproduction, which thereby inhibiting the activation of ROS-induced MAPK and NF-κB signaling pathways in OA-stimulated hepatocytes. Overall, these data demonstrated that DHEA attenuates the oxidative stress and inflammation triggered by OA-stimulation, and these beneficial effects of DHEA are achieved by activating the GPR30-mediated AMPK-Nrf2 signaling to prevent the impairment of mitochondrial function, and thereby inhibiting the activation of ROS-induced MAPK and NF-κB signaling pathways in hepatocytes. These results revealed the effects and mechanisms of DHEA on oxidative stress and inflammation, and also provide substantial information to support it as a potential nutritional supplement in preventing the occurrences of FLHS in laying hens and other metabolic-related diseases in animals and humans.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácido Oléico , Humanos , Animales , Femenino , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ácido Oléico/efectos adversos , Ácido Oléico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Pollos , Estrés Oxidativo , Hepatocitos/metabolismo , Inflamación/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Deshidroepiandrosterona/farmacología
17.
Biol Trace Elem Res ; 201(4): 1748-1760, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35581429

RESUMEN

Ammonia (NH3) is a harmful gas in livestock houses. So far, many researchers have demonstrated that NH3 is detrimental to animal and human organs. Selenium (Se) is one of the essential trace elements in the body and has a good antioxidant effect. However, there was little conclusive evidence that Se alleviated NH3 poisoning. To investigate the toxic mechanism of NH3 on pig spleen and the antagonistic effect of L-selenomethionine, a porcine NH3-poisoning model and an L-selenomethionine intervention model were established in this study. Our results showed that NH3 exposure increased the apoptosis rate, while L-selenomethionine supplementation alleviated the process of excessive apoptosis. Immunofluorescence staining, real-time quantitative polymerase chain reaction (qRT-PCR), and western blot results confirmed that exposure to NH3 changed the expression levels of interleukin family factors, apoptosis, death receptor, and oxidative stress factors. Our study further confirmed that excessive NH3 induced inflammatory response and mediated necroptosis leading to cell apoptosis by activating the Nrf2 signaling pathway. Excessive NH3 could mediate spleen injury through oxidative stress-induced mitochondrial dynamics disorder. L-Selenomethionine could alleviate inflammation and abnormal apoptosis by inhibiting the IL-17/TNF-α/FADD axis. Our study would pave the way for comparative medicine and environmental toxicology.


Asunto(s)
Selenio , Humanos , Animales , Porcinos , Selenio/farmacología , Selenio/metabolismo , Amoníaco/farmacología , Amoníaco/toxicidad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Selenometionina/farmacología , Selenometionina/metabolismo , Bazo/metabolismo , Pollos/metabolismo , Transducción de Señal , Antioxidantes/metabolismo , Apoptosis , Estrés Oxidativo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucinas/metabolismo , Interleucinas/farmacología , Receptores de Muerte Celular/metabolismo
18.
J Am Nutr Assoc ; 42(5): 495-515, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35771985

RESUMEN

Hepatotoxicity caused by the overdose of various medications is a leading cause of drug-induced liver injury. Overdose of drugs causes hepatocellular necrosis. Nutraceuticals are reported to prevent drug-induced liver failure. The present article aims to review the protection provided by various medicinal plants against hepatotoxic drugs. Ayurveda is considered a conventional restorative arrangement in India. It is consistently used for ages and is still used today to cure drug-induced hepatotoxicity by focusing on antioxidant stress response pathways such as the nuclear factor erythroid-2 (Nrf-2) antioxidant response element signaling pathway. Nrf-2 is a key transcription factor that entangles Kelch-like ECH-associating protein 1, a protein found in the cell cytoplasm. Some antioxidant enzymes, such as gamma glycine cysteine ligase (γ-GCL) and heme oxygenase-1 (HO-1), are expressed in Nrf-2 targeted genes. Their expression, in turn, decreases the stimulation of hepatic macrophages and induces the messenger RNA (mRNA) articulation of proinflammatory factors including tumor necrosis factor α. This review will cover various medicinal plants from a mechanistic view and how they stimulate and interact with Nrf-2, the master regulator of the antioxidant response to counterbalance oxidative stress. Interestingly, therapeutic plants have become popular in the medical sector due to safer yet effective supplementation for the prevention and treatment of new human diseases. The contemporary study is expected to collect information on a variety of therapeutic traditional herbs that have been studied in the context of drug-induced liver toxicity, as nutraceuticals are the most effective treatments for oxidative stress-induced hepatotoxicity. They are less genotoxic, have a lower cost, and are readily available. Together, nutraceuticals exert protective effects against drug-induced hepatotoxicity through the inhibition of oxidative stress, inflammation, and apoptosis. Its mechanism(s) are considered to be associated with the γ-GCL/HO-1 and Nrf-2 signaling pathways.KEY TEACHING POINTSThe liver is the most significant vital organ that carries out metabolic activities of the body such as the synthesis of glycogen, the formation of triglycerides and cholesterol, as well as the formation of bile.Acute liver failure is caused by the consumption of certain drugs; drug-induced liver injury is the major condition.The chemopreventive activity of nutraceuticals may be related to oxidative stress reduction and attenuation of biosynthetic processes involved in hepatic injury via amelioration of the nuclear factor erythroid-2 (Nrf-2) signaling pathway.Nrf-2 is a key transcription factor that is found in the cell cytoplasm resulting in the expression of various genes such as gamma glycine cysteine ligase and heme oxygenase-1.Nutraceutical-rich phytochemicals possess high antioxidant activity, which helps in the prevention of hepatic injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Antioxidantes/farmacología , Hemo-Oxigenasa 1/metabolismo , Cisteína/farmacología , Transducción de Señal , Suplementos Dietéticos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Ligasas/metabolismo , Factores de Transcripción/farmacología
19.
Metab Brain Dis ; 38(2): 641-655, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36456714

RESUMEN

Sleep deprivation (SD) is prevalent throughout the world, which has negative effects on cognitive abilities, and causing mood alterations. 8-O-acetyl shanzhiside methylester (8-OaS), a chief component in Lamiophlomis rotata (L. rotata) Kudo, possesses potent neuroprotective properties and analgesic effects. Here, we evaluated the alleviative effects of 8-OaS on memory impairment and anxiety in mice subjected to SD (for 72-h). Our results demonstrated that 8-OaS (0.2, 2, 20 mg/kg) administration dose-dependently ameliorated behavioral abnormalities in SD mice, accompanied with restored synaptic plasticity and reduced shrinkage and loss of hippocampal neurons. 8-OaS reduced the inflammatory response and oxidative stress injury in hippocampus caused by SD, which may be related to inhibition of NLRP3 inflammasome-mediated inflammatory process and activation of the Nrf2/HO-1 pathway. SD also led to increases in the expressions of TLR-4/MyD88, active NF-κB, pro-IL-1ß, TNFα and MDA, as well as a decrease in the level of SOD in mice hippocampus, which were reversed by 8-OaS administration. Moreover, our molecular docking analyses showed that 8-OaS also has good affinity for NLRP3 and Nrf2 signaling pathways. These results suggested that 8-OaS could be used as a novel herbal medicine for the treatment of sleep loss and for use as a structural base for developing new drugs.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Privación de Sueño , Animales , Ratones , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Cognición , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Privación de Sueño/complicaciones , Privación de Sueño/tratamiento farmacológico
20.
Artículo en Chino | WPRIM | ID: wpr-986964

RESUMEN

OBJECTIVE@#To explore the mechanism underlying the inhibitory effect of quercetin against testicular oxidative damage induced by a mixture of 3 commonly used phthalates (MPEs) in rats.@*METHODS@#Forty male Sprague-Dawley rats were randomly divided into control group, MPEs exposure group, and MPEs with low-, median- and high-dose quercetin treatment groups. For MPEs exposure, the rats were subjected to intragastric administration of MPEs at the daily dose of 900 mg/kg for 30 consecutive days; Quercetin treatments were administered in the same manner at the daily dose of 10, 30, and 90 mg/kg. After the treatments, serum levels of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), and testicular malondialdeyhde (MDA), catalase (CAT) and superoxide dismutase (SOD) were detected, and testicular pathologies of the rats were observed with HE staining. The expressions of nuclear factor-E2-related factor 2 (Nrf2), Kelch-like ECH2 associated protein 1 (Keap1) and heme oxygenase 1 (HO-1) in the testis were detected using immunofluorescence assay and Western blotting.@*RESULTS@#Compared with the control group, the rats with MPEs exposure showed significant reductions of the anogenital distance, weight of the testis and epididymis, and the coefficients of the testis and epididymis with lowered serum testosterone, LH and FSH levels (P < 0.05). Testicular histological examination revealed atrophy of the seminiferous tubules, spermatogenic arrest, and hyperplasia of the Leydig cells in MPEs-exposed rats. MPEs exposure also caused significant increments of testicular Nrf2, MDA, SOD, CAT and HO-1 expressions and lowered testicular Keap1 expression (P < 0.05). Treatment with quercetin at the median and high doses significantly ameliorated the pathological changes induced by MPEs exposure (P < 0.05).@*CONCLUSION@#Quercetin treatment inhibits MPEs-induced oxidative testicular damage in rats possibly by direct scavenging of free radicals to lower testicular oxidative stress and restore the regulation of the Nrf2 signaling pathway.


Asunto(s)
Ratas , Masculino , Animales , Testículo , Quercetina/farmacología , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo , Testosterona/farmacología , Superóxido Dismutasa/metabolismo , Hormona Folículo Estimulante , Hormona Luteinizante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA