Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mitochondrial DNA B Resour ; 8(12): 1421-1425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130729

RESUMEN

Ludwigia adscendens (L.) Hara, 1953 (L. adscendens) belongs to the family Onagraceae, which is a traditional medicinal plant distributed worldwide. In this study, the first complete chloroplast genome of L. adscendens was sequenced and assembled. The assembled chloroplast genome of L. adscendens is 159,560 bp in length, containing a pair of inverted repeat region A (IRA) of 24,762 bp, inverted repeat region B (IRB) of 24,762 bp, separated by a large single-copy (LSC) sequence of 90,276 bp and a small single-copy (SSC) region of 19, 760 bp, respectively. A total of 129 genes were annotated in the entire chloroplast genome, consisting of 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 84 protein-coding genes, with a total GC content of 37.27%. The phylogenomic analysis showed that L. adscendens was closely related to L. octovalvis in the Onagraceae family. Further evolutionary studies of the genus Ludwigia could benefit from the complete chloroplast genome of L. adscendens present in this study and the obtained results would provide useful information for future phylogenetic, taxonomic, and evolutionary studies on Onagraceae.

2.
Biol Pharm Bull ; 46(11): 1535-1547, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37914356

RESUMEN

The introduction of combined anti-retroviral therapy (cART) in 1996, along with a continual breakthrough in anti-human immunodeficiency virus-1 (HIV-1) drugs, has improved the life expectancies of HIV-1-infected individuals. However, the incidence of drug-resistant viruses between individuals undergoing cART and treatment-naïve individuals is a common challenge. Therefore, there is a requirement to explore potential drug targets by considering various stages of the viral life cycle. For instance, the late stage, or viral release stage, remains uninvestigated extensively in antiviral drug discovery. In this study, we prepared a natural plant library and selected candidate plant extracts that inhibited HIV-1 release based on our laboratory-established screening system. The plant extracts from Epilobium hirsutum L. and Chamerion angustifolium (L.) Holub, belonging to the family Onagraceae, decreased HIV-1 release and accelerated the apoptosis in HIV-1-infected T cells but not uninfected T cells. A flavonol glycoside quercetin with oenothein B in Onagraceae reduced HIV-1 release in HIV-1-infected T cells. Moreover, extracts from Chamerion angustifolium (L.) Holub and Senna alexandrina Mill. inhibited the infectivity of progeny viruses. Together, these results suggest that C. angustifolium (L.) Holub contains quercetin with oenothein B that synergistically blocks viral replication and kills infected cells via an apoptotic pathway. Consequently, the plant extracts from the plant library of Turkey might be suitable candidates for developing novel anti-retroviral drugs that target the late phase of the HIV-1 life cycle.


Asunto(s)
VIH-1 , Onagraceae , Humanos , Quercetina/farmacología , Extractos Vegetales/farmacología , Turquía , Apoptosis
3.
Chem Biodivers ; 20(12): e202300922, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37997279

RESUMEN

This study examined the effects of methanol extract and its sub-extracts from Epilobium angustifolium on α-glucosidase and α-amylase activity. Secondary metabolites and amino acids were quantified using LC-MS/MS. Dichloromethane sub-extract displayed the highest activity and was chosen for further investigation. Despite the widespread use of E. angustifolium, genotoxicity studies were conducted to assess its safety. Dichloromethane significantly inhibited α-glucosidase (IC50 =17.340 µg/mL), making it approximately 293 times more effective than acarbose. Six known compounds, including gallic acid (1), a mixture of quercetin-3-O-α-galactoside (2a) and quercetin-3-O-α-glucoside (2b), quercetin-3-O-α-glucuronic acid (3), quercetin-3-O-α-rhamnoside (4), and kaempferol-3-O-α-rhamnoside (5) were identified. Quercetin-3-O-α-rhamnoside exhibited the highest inhibition of α-glucosidase (IC50 =1735±85 µM), making it 3.70 times more effective than acarbose. Dichloromethane also showed significant antigenotoxic activity against mutagenesis induced by NaN3, 9-AA, 4-NPD, and MNNG. Gallic acid was found in the highest abundance (13253.6931 ng/mL) in the methanolic extract. Furthermore, L-Aspartic acid was the most concentrated amino acid (363.5620 nmol/mL) in the methanolic extract.


Asunto(s)
Epilobium , Quercetina , Quercetina/química , Epilobium/química , Hipoglucemiantes/farmacología , Acarbosa , alfa-Glucosidasas , Cromatografía Liquida , Cloruro de Metileno , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Ácido Gálico/farmacología , Fitoquímicos/farmacología , Fitoquímicos/análisis
4.
Am J Bot ; 110(7): e16201, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37306119

RESUMEN

PREMISE: Pollen movement is a crucial component of dispersal in seed plants. Although pollen dispersal is well studied, methodological constraints have made it challenging to directly track pollen flow within multiple populations across landscapes. We labeled pollen with quantum dots, a new technique that overcomes past limitations, to evaluate the spatial scale of pollen dispersal and its relationship with conspecific density within 11 populations of Clarkia xantiana subsp. xantiana, a bee-pollinated annual plant. METHODS: We used experimental arrays in two years to track pollen movement across distances of 5-35 m within nine populations and across distances of 10-70 m within two additional populations. We tested for distance decay of pollen dispersal, whether conspecific density modulated dispersal distance, and whether dispersal kernels varied among populations across an environmentally complex landscape. RESULTS: Labeled pollen receipt did not decline with distance over 35 m within eight of nine populations or over 70 m within either of two populations. Pollen receipt increased with conspecific density. Overall, dispersal kernels were consistent across populations. CONCLUSIONS: The surprising uniformity in dispersal distance within different populations was likely influenced by low precipitation and plant density in our study years. This suggests that spatiotemporal variation in the abiotic environment substantially influences the extent of gene flow within and among populations.


Asunto(s)
Polinización , Puntos Cuánticos , Abejas , Animales , Polen/genética , Semillas/genética , Flujo Génico , Repeticiones de Microsatélite , Variación Genética
5.
Am J Bot ; 110(6): e16156, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36934437

RESUMEN

PREMISE: Animal pollinators play an important role in pollen dispersal. Here, we assessed differences in pollen and seed dispersal and the role of pollinator functional groups with different foraging behaviors in generating patterns of genetic diversity over similar geographic ranges for two closely related taxa. We focused on two members of Oenothera section Calylophus (Onagraceae) that co-occur on gypsum outcrops throughout the northern Chihuahuan Desert but differ in floral phenotype and primary pollinator: Oenothera gayleana (bee) and O. hartwegii subsp. filifolia (hawkmoth). METHODS: We measured breeding system and floral traits and studied gene flow and population differentiation at the local (<13 km; four populations) and landscape (60-440 km; five populations) scales using 10-11 nuclear (pollen dispersal) and three plastid (seed dispersal) microsatellite markers. RESULTS: Both taxa were self-incompatible and floral traits were consistent with expectations for different pollinators. Seed and pollen dispersal patterns were distinctly different for both species. We found no evidence of genetic structure at the local scale but did at the landscape scale; O. gayleana showed greater differentiation and significant isolation by distance than in O. hartwegii subsp. filifolia. The plastid data were consistent with gravity dispersal of seeds and suggest that pollen dispersal is the principal driver of genetic structure in both species. CONCLUSIONS: We demonstrated that pollinator functional groups can impact genetic differentiation in different and predictable ways. Hawkmoths, with larger foraging distances, can maintain gene flow across greater spatial scales than bees.


Asunto(s)
Mariposas Nocturnas , Oenothera , Onagraceae , Abejas/genética , Animales , Polinización , Fitomejoramiento , Polen/genética , Flores
6.
Nat Prod Res ; 36(5): 1296-1299, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33305606

RESUMEN

This article presents the evaluation of anticholinesterase effects of aerial parts of Epilobium angustifolium, E. stevenii and E. hirsutum and isolated flavonoids from E. angustifolium, and quantification of the flavonoids by HPLC. Besides, the highest acetylcholinesterase inhibition was seen in the EtOAc sub-extracts of E. angustifolium and E. stevenii (36.51 ± 1.88 and 39.89 ± 3.09%, respectively), whereas EtOAc sub-extract of E. angustifolium had the best butyrylcholinesterase inhibition (62.09 ± 1.98%). Hyperoside showed strong inhibition activity on both enzymes. The active EtOAc sub-extract of E. angustifolium was quantitatively analyzed for their content of hyperoside (quercetin-3-O-ß-D-galactoside) by HPLC. The content of hyperoside in EtOAc sub-extract of E. angustifolium was detected as 3.312%. The anatomical structures of the stem, leaf, sepal, petal, anther, and filament of E. angustifolium were investigated. The anatomical properties given in this study provide a description of E. angustifolium.[Formula: see text].


Asunto(s)
Epilobium , Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa/farmacología , Cromatografía Líquida de Alta Presión , Epilobium/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Quercetina/análogos & derivados , Quercetina/farmacología
7.
Antioxidants (Basel) ; 10(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34439548

RESUMEN

Willowherb (Epilobium angustifolium L., family Onagraceae) is a well-known food and medicinal plant used after fermentation as a source of beverages with high antioxidant potential. Despite this long history of use, only a few papers have described the chemical profile and bioactivity of fermented willowherb tea in general. To understand the basic metabolic differences of non-fermented and fermented E. angustifolium leaves, we used general chemical analysis, high-performance liquid chromatography with photodiode array detection and electrospray ionization triple quadrupole mass spectrometric detection assay, and an isolation technique. As a result, the content of 14 chemical groups of compounds was compared in the two plant materials; 59 compounds were detected, including 36 new metabolites; and a new water-soluble phenolic polymer of melanoidin nature was isolated and characterized. The fundamental chemical shifts in fermented E. angustifolium leaves relate mainly to the decrease of ellagitannin content, while there is an increase of melanoidin percentage and saving of the antioxidant potential, despite the significant changes detected. The strong antioxidative properties of the new melanoidin were revealed in a series of in vitro bioassays, and a simulated gastrointestinal and colonic digestion model demonstrated the stability of melanoidin and its antioxidant activity. Finally, we concluded that the new melanoidin is a basic antioxidant of the fermented leaves of E. angustifolium, and it can be recommended for additional study as a promising food and medicinal antioxidant agent.

8.
Am J Bot ; 108(9): 1612-1624, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34460097

RESUMEN

PREMISE: Heterospecific pollen transfer, the transfer of pollen between species, is common among co-flowering plants, yet the amount of pollen received is extremely variable among species. Intraspecific variation in heterospecific pollen receipt can be even greater, but we lack an understanding of its causes and fitness consequences in wild populations. METHODS: We examined potential drivers of variation in heterospecific pollen receipt in Oenothera fruticosa. We evaluated the relationship between heterospecific and conspecific pollen receipt and considered how visitation by different pollinator groups, local floral neighborhood composition, and flowering phenology affect the total amount and proportion of heterospecific pollen received. Finally, we tested whether variation in heterospecific pollen receipt translated into lower seed production. RESULTS: Heterospecific pollen was ubiquitous on O. fruticosa stigmas, but the amount received was highly variable and unrelated to conspecific pollen receipt. Heterospecific pollen receipt depended on pollinator type, the proportion of nearby conspecific flowers, and flowering date. Significant interactions revealed that the effects of pollinator type and neighborhood were not independent, further contributing to variation in heterospecific pollen. Naturally occurring levels of heterospecific pollen were sufficient to negatively impact seed set, but large amounts of conspecific pollen counteracted this detrimental effect. CONCLUSIONS: Although selection could act on floral traits that attract quality pollinators and promote synchronous flowering in O. fruticosa, the risk of heterospecific pollen is equally dependent on local floral context. This work highlights how extrinsic and intrinsic factors contribute to intraspecific variation in heterospecific pollen receipt in wild plants, with significant fitness consequences.


Asunto(s)
Magnoliopsida , Oenothera , Flores , Polen , Polinización
9.
J Ethnopharmacol ; 281: 114450, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34314807

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Onagraceae is a widely distributed family of flowering plants comprises about 17 genera and more than 650 species of herbs, shrubs, and trees. Onagraceae also common as willowherb family or evening primrose family is divided into two subfamilies; Ludwigioideae (mainly genus; Ludwigia) and Onagroideae. Family Onagraceae is characterized by its numerous traditional uses as treatment of hormonal imbalances, urinary system ailments, prostate health maintenance, and antimicrobial effects. AIM OF THE STUDY: This review aims to introduce a holistic overview on the phytochemical composition, economical importance and ethnopharmacological value of different species of family Onagraceae. MATERIALS AND METHODS: Literature review was performed using different data bases such as PubMed, Web of Science, Google Scholar and Reaxys searching for articles focused on phytochemical composition, bioactivity and ethnopharmacological history of Onagraceae species. RESULTS: Different species of Onagraceae were reported to have a great variety of phytochemicals including flavonoids, tannins, phenolic acids, triterpenoids, saponins, and volatile/fixed oils. Onagraceae exhibited several health benefits and pharmacological activities including anti-inflammatory, antiarthritic and analgesic, antioxidant, cytotoxic, antidiabetic, and antimicrobial. CONCLUSIONS: Family Onagraceae is an extremely important family with diverse phytochemical composition which enriches their pharmacological importance and hence it's commercial and economical value.


Asunto(s)
Etnofarmacología , Medicina Tradicional , Onagraceae/química , Fitoquímicos/química , Fitoquímicos/uso terapéutico , Fitoterapia , Humanos
10.
Am J Bot ; 106(7): 906-921, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31283844

RESUMEN

PREMISE: Although polyploidy commonly occurs in angiosperms, not all polyploidization events lead to successful lineages, and environmental conditions could influence cytotype dynamics and polyploid success. Low soil nitrogen and/or phosphorus concentrations often limit ecosystem primary productivity, and changes in these nutrients might differentially favor some cytotypes over others, thereby influencing polyploid establishment. METHODS: We grew diploid, established tetraploid, and neotetraploid Chamerion angustifolium (fireweed) in a greenhouse under low and high soil nitrogen and phosphorus conditions and different competition treatments and measured plant performance (height, biomass, flower production, and root bud production) and insect damage responses. By comparing neotetraploids to established tetraploids, we were able to examine traits and responses that might directly arise from polyploidization before they are modified by natural selection and/or genetic drift. RESULTS: We found that (1) neopolyploids were the least likely to survive and flower and experienced the most herbivore damage, regardless of nutrient conditions; (2) both neo- and established tetraploids had greater biomass and root bud production under nutrient-enriched conditions, whereas diploid biomass and root bud production was not significantly affected by nutrients; and (3) intra-cytotype competition more negatively affected diploids and established tetraploids than it did neotetraploids. CONCLUSIONS: Following polyploidization, biomass and clonal growth might be more immediately affected by environmental nutrient availabilities than plant survival, flowering, and/or responses to herbivory, which could influence competitive dynamics. Specifically, polyploids might have competitive and colonizing advantages over diploids under nutrient-enriched conditions favoring their establishment, although establishment may also depend upon the density and occurrences of other related cytotypes in a population.


Asunto(s)
Herbivoria , Nitrógeno/metabolismo , Onagraceae/fisiología , Fósforo/metabolismo , Tetraploidía , Animales , Biomasa , Flores/crecimiento & desarrollo , Insectos , Raíces de Plantas/crecimiento & desarrollo
11.
Molecules ; 23(3)2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29498647

RESUMEN

In 1990, Okuda et al. reported the first isolation and characterization of oenothein B, a unique ellagitannin dimer with a macrocyclic structure, from the Oenothera erythrosepala leaves. Since then, a variety of macrocyclic analogs, including trimeric-heptameric oligomers have been isolated from various medicinal plants belonging to Onagraceae, Lythraceae, and Myrtaceae. Among notable in vitro and in vivo biological activities reported for oenothein B are antioxidant, anti-inflammatory, enzyme inhibitory, antitumor, antimicrobial, and immunomodulatory activities. Oenothein B and related oligomers, and/or plant extracts containing them have thus attracted increasing interest as promising targets for the development of chemopreventive agents of life-related diseases associated with oxygen stress in human health. In order to better understand the significance of this type of ellagitannin in medicinal plants, this review summarizes (1) the structural characteristics of oenothein B and related dimers; (2) the oxidative metabolites of oenothein B up to heptameric oligomers; (3) the distribution of oenotheins and other macrocyclic analogs in the plant kingdom; and (4) the pharmacological activities hitherto documented for oenothein B, including those recently found by our laboratory.


Asunto(s)
Antiinfecciosos/química , Antineoplásicos Fitogénicos/química , Taninos Hidrolizables/química , Lythraceae/química , Myrtaceae/química , Onagraceae/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Taninos Hidrolizables/aislamiento & purificación , Taninos Hidrolizables/farmacología , Factores Inmunológicos/química , Factores Inmunológicos/aislamiento & purificación , Factores Inmunológicos/farmacología , Extractos Vegetales/química , Plantas Medicinales
12.
Am J Bot ; 103(11): 1950-1963, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27803000

RESUMEN

PREMISE OF THE STUDY: Land-use change is cited as a primary driver of global biodiversity loss, with myriad consequences for species, populations, and ecosystems. However, few studies have examined its impact on species interactions, particularly pollination. Furthermore, when the effects of land-use change on pollination have been studied, the focus has largely been on species pollinated by diurnal pollinators, namely, bees and butterflies. Here, we focus on Oenothera harringtonii, a night-flowering, disturbance-adapted species that has experienced a range-wide gradient of land-use change. We tested the hypothesis that the negative impacts of land-use change are mitigated by long-distance pollination. METHODS: Our study included both temporal (4 yr) and spatial (19 populations range-wide, and 1, 2, and 5 km from the population center) data, providing a comprehensive understanding of the role of land-use change on pollination biology and reproduction. KEY RESULTS: We first confirmed that O. harringtonii is self-incompatible and reliant on pollinators for reproduction. We then showed that hawkmoths (primarily Hyles lineata) are highly reliable and effective pollinators in both space and time. Unlike other studies, we did not detect an effect of population size, increased isolation, or a reduction in suitable habitat in areas with evidence of land-use change on pollination (visitation, pollen removal and deposition). Furthermore, the proportion of suitable habitat and other fragmentation metrics examined were not associated with population size or density in this plant species. CONCLUSIONS: We conclude that nocturnal pollination of Oenothera harringtonii via hawkmoths is robust to the negative impacts of land-use change.


Asunto(s)
Manduca/fisiología , Polinización , Animales , Biodiversidad , Demografía , Ecosistema , Flores/fisiología , Oenothera/fisiología , Polen/fisiología , Densidad de Población , Reproducción
13.
Am J Bot ; 103(3): 408-22, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26933011

RESUMEN

PREMISE OF THE STUDY: One proposed function of long styles is to intensify selection among male gametophytes relative to short styles. If so, given sufficient competition, longer styles will have higher rates of pollen tube attrition (failure to reach the style base) within the style than shorter ones. Alternatively, style length may influence pollen receipt, which itself may affect attrition rates. METHODS: We tested these predictions by collecting senescing styles from wild populations of two insect-pollinated Clarkia species. We examined the number of pollen grains adhering to the stigma, length of styles, and rates of attrition from the stigma surface to the stigma-style junction (SSJ), from the SSJ to the style base, and from the stigma surface to the style base. Multivariate analyses estimated the independent effects of pollen grains per stigma, the number of pollen tubes at the SSJ, and style length on attrition. KEY RESULTS: Style length was generally positively correlated with pollen receipt, and the number of pollen grains per stigma was positively correlated with all three attrition rates. In neither species was any attrition rate affected by style length independent of the number of pollen grains per stigma. CONCLUSIONS: Pollen attrition was mediated by style length, but the function of style length was primarily to increase the number of germinating pollen grains, which affected attrition rates either through stigma clogging or pollen-pollen interactions. Style length may have a direct effect on pollen receipt due to the stigma's position relative to pollinator body parts, but traits correlated with style length may also directly affect pollen receipt.


Asunto(s)
Clarkia/anatomía & histología , Clarkia/fisiología , Flores/anatomía & histología , Flores/fisiología , Polen/fisiología , Germinación , Modelos Lineales , Análisis Multivariante , Fenotipo , Tubo Polínico/fisiología , Tamaño de la Muestra
14.
Magn Reson Chem ; 52(1-2): 32-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24170450

RESUMEN

A new triterpenoid bidesmoside (leptocarposide) possessing an acyl group in their glycosidic moiety (1), together with the known luteolin-8-C-glucoside (2) and 1-O-ß-D-glucopyranosyl-(2S,3R,8E)-2-[(2'R)-2-hydroxypalmitoylamino]-8-octadecen-1,3-diol (3) was isolated from the n-butanol-soluble fraction of whole plant of Ludwigia leptocarpa (Nutt) Hara (Onagraceae). Structure of compound 1 has been assigned on the basis of spectroscopic data ((1)H and (13)C NMR, (1)H-(1)H COSY, HSQC, HMBC, and ROESY), mass spectrometry, and by comparison with the literature. This compound was further screened for its potential antioxidant properties by using the radical scavenging assay model 2,2-diphenyl-1-picrylhydrazyl and reveals non-potent antioxidant activities, while compound 2 shows SC50 of 0,038 mM.


Asunto(s)
Glicósidos/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Modelos Moleculares , Onagraceae/química , Extractos Vegetales/química , Triterpenos/química , Simulación por Computador , Conformación Molecular , Protones
15.
Am J Bot ; 100(10): 2052-65, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24107580

RESUMEN

PREMISE OF THE STUDY: Fuchsia (Onagraceae) anthers, pollen, and an ornithophilous Fuchsia-like flower from an earliest Miocene lacustrine diatomite deposit at Foulden Maar, southern New Zealand confirm a long record for Fuchsia in New Zealand and probably an equally long history for its distinctive honeyeater pollination syndrome. The anthers contain in situ pollen of the fossil palynomorph previously assigned to Diporites aspis Pocknall et Mildenh. (Onagraceae: Fuchsia L.). • METHODS: We undertook comparative studies of the flower and anther morphology of the newly discovered macrofossils and compared the in situ pollen grains from the anthers with dispersed pollen grains from extant species. • KEY RESULTS: The anther mass is referred to a new, extinct species, Fuchsia antiqua D.E.Lee, Conran, Bannister, U.Kaulfuss & Mildenh. (Onagraceae), and is associated with a fossilized Fuchsia-like flower from the same small mining pit. Because Diporites van der Hammen is typified by a fungal sporomorph, the replacement name for D. aspis is Koninidites aspis (Pocknall & Mildenh.) Mildenh. gen. & comb. nov. Phylogenetic placement of the fossils agrees with a proximal position to either sect. Skinnera or sect. Procumbentes. These are the oldest macrofossils of Fuchsia globally. • CONCLUSIONS: The floral structures are remarkably similar to those of modern New Zealand Fuchsia. They suggest that the distinctive honeyeater bird-pollination syndrome/association seen in modern New Zealand was already established by the late Oligocene-earliest Miocene. The implications for the biogeography and paleoecology of Fuchsia in Australasia are discussed.


Asunto(s)
Fósiles , Onagraceae/anatomía & histología , Polen/anatomía & histología , Nueva Zelanda , Onagraceae/clasificación , Onagraceae/ultraestructura , Filogenia , Polen/ultraestructura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA