Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Comput Biol Med ; 175: 108491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657467

RESUMEN

Insomnia, a widespread public health issue, is associated with substantial distress and daytime functionality impairments and can predispose to depression and cardiovascular disease. Cognitive Behavioral Anti-insomnia therapies including benzodiazepines often face limitations due to patient adherence or potential adverse effects. This study focused on identifying novel bioactive compounds from medicinal plants, aiming to discover and develop new therapeutic agents with low risk-to-benefit ratios using computational drug discovery methods. Through a systematic framework involving compound library preparation, evaluation of drug-likeness and pharmacokinetics, toxicity prediction, molecular docking, and molecular dynamic simulations, two natural compounds such as 2-(4-hydroxy-3-methoxyphenyl)-8-methoxy-6-prop-2-enyl-3,4-dihydro-2H-chromen-3-ol from Ocimum tenuiflorum and 7-(2-hydroxypropan-2-yl)-1,4a-dimethyl-9-oxo-3,4,10,10a-tetrahydro-2H-phenanthrene-1-carboxylic acid from Poria cocos exhibited high binding affinity with orexin receptor type 1 (OX1R) and type 2 (OX2R), surpassing commercial drugs used in insomnia treatment. Additionally, they showed interactions with critical amino acid residues within the receptors that play crucial roles in competitive inhibitor activity, like commercial drugs such as Suvorexant, Lemborexant, and Daridorexant. Further, molecular dynamics simulations of the protein-ligand complexes under conditions that mimic the in vivo environment revealed both compounds' sustained and robust interactions with the OX1R and OX2R, reinforcing their potential as effective therapeutic candidates. Furthermore, upon evaluating both compounds' drug-likeness, pharmacokinetics, and toxicity profiles, it was discerned that they displayed considerable drug-like properties and favorable pharmacokinetics, along with diminished toxicity. The research provides a solid foundation for further exploring and validating these compounds as potential anti-insomnia therapeutics.


Asunto(s)
Simulación del Acoplamiento Molecular , Ocimum , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Humanos , Ocimum/química , Simulación de Dinámica Molecular , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico
2.
J Comp Neurol ; 532(3): e25602, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38483002

RESUMEN

The orexinergic/hypocretinergic system, while having several roles, appears to be a key link in the balance between arousal and food intake. In birds, to date, this system has only been examined anatomically in four species, all with brains smaller than 3.5 g and of limited phylogenetic range. Here, using orexin-A immunohistochemistry, we describe the distribution, morphology, and nuclear parcellation of orexinergic neurons within the hypothalami of a Congo gray and a Timneh gray parrot, a pied crow, an emu, and a common ostrich. These birds represent a broad phylogeny, with brains ranging in size from 7.85 to 26.5 g. Within the hypothalami of the species studied, the orexinergic neurons were organized in two clusters, and a densely packed paraventricular hypothalamic nucleus cluster located within the medial hypothalamus (Hyp), but not contacting the ventricle, and a more loosely packed lateral hypothalamic cluster in the lateral Hyp. Stereological analysis revealed a strong correlation, using phylogenetic generalized least squares regression analyses, between brain mass and the total number of orexinergic neurons, as well as soma parameters such as volume and area. Orexinergic axonal terminals evinced two types of boutons, larger and the smaller en passant boutons. Unlike the orexinergic system in mammals, which has several variances in cluster organization, that of the birds studied, in the present and previous studies, currently shows organizational invariance, despite the differences in brain and body mass, phylogenetic relationships, and life-histories of the species studied.


Asunto(s)
Neuropéptidos , Animales , Neuropéptidos/metabolismo , Filogenia , Neuronas/metabolismo , Orexinas , Encéfalo/metabolismo , Hipotálamo/metabolismo , Aves , Mamíferos
3.
Neuron ; 112(7): 1165-1181.e8, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301648

RESUMEN

Physical exercise is known to reduce anxiety, but the underlying brain mechanisms remain unclear. Here, we explore a hypothalamo-cerebello-amygdalar circuit that may mediate motor-dependent alleviation of anxiety. This three-neuron loop, in which the cerebellar dentate nucleus takes center stage, bridges the motor system with the emotional system. Subjecting animals to a constant rotarod engages glutamatergic cerebellar dentate neurons that drive PKCδ+ amygdalar neurons to elicit an anxiolytic effect. Moreover, challenging animals on an accelerated rather than a constant rotarod engages hypothalamic neurons that provide a superimposed anxiolytic effect via an orexinergic projection to the dentate neurons that activate the amygdala. Our findings reveal a cerebello-limbic pathway that may contribute to motor-triggered alleviation of anxiety and that may be optimally exploited during challenging physical exercise.


Asunto(s)
Ansiolíticos , Animales , Ansiedad/metabolismo , Hipotálamo , Cerebelo , Trastornos de Ansiedad
4.
Neuron ; 112(5): 805-820.e4, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38101395

RESUMEN

The deepest layer of the cortex (layer 6b [L6b]) contains relatively few neurons, but it is the only cortical layer responsive to the potent wake-promoting neuropeptide orexin/hypocretin. Can these few neurons significantly influence brain state? Here, we show that L6b-photoactivation causes a surprisingly robust enhancement of attention-associated high-gamma oscillations and population spiking while abolishing slow waves in sleep-deprived mice. To explain this powerful impact on brain state, we investigated L6b's synaptic output using optogenetics, electrophysiology, and monoCaTChR ex vivo. We found powerful output in the higher-order thalamus and apical dendrites of L5 pyramidal neurons, via L1a and L5a, as well as in superior colliculus and L6 interneurons. L6b subpopulations with distinct morphologies and short- and long-term plasticities project to these diverse targets. The L1a-targeting subpopulation triggered powerful NMDA-receptor-dependent spikes that elicited burst firing in L5. We conclude that orexin/hypocretin-activated cortical neurons form a multifaceted, fine-tuned circuit for the sustained control of the higher-order thalamocortical system.


Asunto(s)
Dendritas , Neuronas , Ratones , Animales , Orexinas , Dendritas/fisiología , Neuronas/fisiología , Tálamo/fisiología , Células Piramidales
5.
Br J Pharmacol ; 181(9): 1474-1493, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38129941

RESUMEN

BACKGROUND AND PURPOSE: We evaluated the hypothesis that central orexin application could counteract motion sickness responses through regulating neural activity in target brain areas. EXPERIMENTAL APPROACH: Thec effects of intracerebroventricular (i.c.v.) injection of orexin-A and SB-334867 (OX1 antagonist) on motion sickness-induced anorexia, nausea-like behaviour (conditioned gaping), hypoactivity and hypothermia were investigated in rats subjected to Ferris wheel-like rotation. Orexin-A responsive brain areas were identified using Fos immunolabelling and were verified via motion sickness responses after intranucleus injection of orexin-A, SB-334867 and TCS-OX2-29 (OX2 antagonist). The efficacy of intranasal application of orexin-A versus scopolamine on motion sickness symptoms in cats was also investigated. KEY RESULTS: Orexin-A (i.c.v.) dose-dependently attenuated motion sickness-related behavioural responses and hypothermia. Fos expression was inhibited in the ventral part of the dorsomedial hypothalamus (DMV) and the paraventricular nucleus (PVN), but was enhanced in the ventral part of the premammillary nucleus ventral part (PMV) by orexin-A (20 µg) in rotated animals. Motion sickness responses were differentially inhibited by orexin-A injection into the DMV (anorexia and hypoactivity), the PVN (conditioned gaping) and the PMV (hypothermia). SB-334867 and TCS-OX2-29 (i.c.v. and intranucleus injection) inhibited behavioural and thermal effects of orexin-A. Orexin-A (60 µg·kg-1) and scopolamine inhibited rotation-induced emesis and non-retching/vomiting symptoms, while orexin-A also attenuated anorexia with mild salivation in motion sickness cats. CONCLUSION AND IMPLICATIONS: Orexin-A might relieve motion sickness through acting on OX1 and OX2 receptors in various hypothalamus nuclei. Intranasal orexin-A could be a potential strategy against motion sickness.


Asunto(s)
Benzoxazoles , Hipotermia , Mareo por Movimiento , Naftiridinas , Urea/análogos & derivados , Ratas , Gatos , Animales , Orexinas/farmacología , Receptores de Orexina/metabolismo , Anorexia/metabolismo , Hipotálamo/metabolismo , Mareo por Movimiento/tratamiento farmacológico , Mareo por Movimiento/metabolismo , Escopolamina/metabolismo , Escopolamina/farmacología , Antagonistas de los Receptores de Orexina/metabolismo , Antagonistas de los Receptores de Orexina/farmacología
6.
J Physiol Sci ; 73(1): 34, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066417

RESUMEN

Mice fed a single meal daily at a fixed time display food anticipatory activity (FAA). It has been reported that the insular cortex (IC) plays an essential role in food anticipation, and lateral hypothalamus (LH) regulates the expression of FAA. However, how these areas contribute to FAA production is still unclear. Thus, we examined the temporal and spatial activation pattern of neurons in the IC and LH during the food anticipation period to determine their role in FAA establishment. We observed an increase of c-Fos-positive neurons in the IC and LH, including orexin neurons of male adult C57BL/6 mice. These neurons were gradually activated from the 1st day to 15th day of restricted feeding. The activation of these brain regions, however, peaked at a distinct point in the food restriction procedure. These results suggest that the IC and LH are differently involved in the neural network for FAA production.


Asunto(s)
Conducta Alimentaria , Área Hipotalámica Lateral , Ratones , Animales , Masculino , Corteza Insular , Ingestión de Alimentos/fisiología , Ratones Endogámicos C57BL , Neuronas , Hipotálamo/metabolismo
7.
Eur J Neurosci ; 58(9): 4002-4010, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37818927

RESUMEN

Recent studies have focused on how sickness behaviours, including lethargy, are coordinated in the brain in response to peripheral infections. Decreased hypocretin (orexin) signalling is associated with lethargy and previous research suggests that hypocretin signalling is downregulated during sickness. However, there are studies that find increases or no change in hypocretin signalling during sickness. It is further unknown whether hypocretin receptor expression changes during sickness. Using lipopolysaccharide (LPS) to induce sickness in female mice, we investigated how LPS-injection affects gene expression of hypocretin receptors and prepro-hypocretin as well as hypocretin-1 peptide concentrations in brain tissue. We found that hypocretin receptor 1 gene expression was downregulated during sickness in the lateral hypothalamus and ventral tegmental area, but not in the dorsal raphe nucleus or locus coeruleus. We found no changes in hypocretin receptor 2 expression. Using a gene expression calculation that accounts for primer efficiencies and multiple endogenous controls, we were unable to detect changes in prepro-hypocretin expression. Using radioimmunoassay, we found no change in hypocretin-1 peptide in rostral brain tissue. Our results indicate that hypocretin receptor expression can fluctuate during sickness, adding an additional level of complexity to understanding hypocretin signalling during sickness.


Asunto(s)
Área Hipotalámica Lateral , Neuropéptidos , Ratones , Femenino , Animales , Orexinas/metabolismo , Área Hipotalámica Lateral/metabolismo , Receptores de Orexina/metabolismo , Neuropéptidos/metabolismo , Área Tegmental Ventral/metabolismo , Letargia/metabolismo , Lipopolisacáridos/metabolismo , Hipotálamo/metabolismo
8.
Brain Res Bull ; 201: 110712, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481143

RESUMEN

The lateral hypothalamus' orexinergic system has been associated with anxiety-related behaviors, and electroacupuncture (EA) modifies orexin neurons to control the anti-anxiety process. However, in a rat model of post-traumatic stress disorder (PTSD), the important role of LH orexin neurons (OXNs) in the anxiolytic effects induced by EA has not been explored. In this study, rats underwent modified single prolonged stress (MSPS) for seven days before developing EA. The rats were then subjected to elevated plus maze (EPM) and open field (OFT) tests, and western blot and c-Fos/orexin double labeling investigations were carried out to determine the functional activation of LH orexinergic neurons. Compared to MSPS model rats, it has been demonstrated that EA stimulation enhanced the amount of time spent in the central zone (TSCZ) in OFT and the amount of time spent in the open arm (TSOA) in EPM in MSPS model rats (P < 0.01). After behavioral testing, MSPS model rats had decreased activated c-Fos positive OXNs. Still, EA in SPS rats increased that number and elevated orexin type 1 receptors (OXR1) protein expression in the LH. Furthermore, after administering SB334867 (an OXR1 antagonist) to MSPS model rats, the effects of EA therapy on anxiety-like behaviors (ALBs) were significantly diminished. Additionally, when low-dose orexin-A (LORXA) was administered intracerebroventricularly together with EA stimulation in MSPS rats, the anxiolytic effects of the stimulation were substantially enhanced (P < 0.05). The results of this study reveal the mechanisms by which acupuncture may reduce PTSD and advance our understanding of the function of LH orexin signaling in EA's anxiolytic effects.


Asunto(s)
Ansiolíticos , Electroacupuntura , Trastornos por Estrés Postraumático , Animales , Ratas , Trastornos por Estrés Postraumático/terapia , Ansiolíticos/farmacología , Orexinas , Área Hipotalámica Lateral , Neuronas
9.
Neurol Neurochir Pol ; 57(4): 335-343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37461841

RESUMEN

INTRODUCTION: The pathogenesis of parkinsonisms is not fully understood. Among possible factors which may influence the course of neurodegenerative diseases, endocrine abnormalities may be interpreted as having been underevaluated. STATE OF THE ART: Growing interest is associated with the role of neuropeptides such as orexin. Orexin is a neuropeptide produced by orexigenic neurons in the lateral parts of the hypothalamus and is linked with excitement, wakefulness and appetite. An extended analysis of this neuropeptide might answer whether changes in the metabolism of orexin is more likely to be a cause or a consequence of neurodegeneration. CLINICAL SIGNIFICANCE: Orexin is a neuropeptide produced by orexigenic neurons in the lateral parts of the hypothalamus and is linked with excitement, wakefulness and appetite. The aim of this study was to discuss the role of this factor and its abnormalities in the pathogenesis and course of parkinsonian syndrome. FUTURE DIRECTIONS: Understanding the role of orexin in these diseases may be interpreted as an important feature in evolving therapeutical methods. Further evaluation based on larger groups of patients is required.


Asunto(s)
Neuropéptidos , Humanos , Orexinas/metabolismo , Neuropéptidos/metabolismo , Hipotálamo/metabolismo , Vigilia/fisiología
10.
J Comp Neurol ; 531(15): 1510-1524, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37434469

RESUMEN

Olfactory cues play a key role in natural behaviors such as finding food, finding mates, and avoiding predators. In principle, the ability of the olfactory system to carry out these perceptual functions would be facilitated by signaling related to an organism's physiological state. One candidate pathway includes a direct projection from the hypothalamus to the main olfactory bulb, the first stage of olfactory sensory processing. The pathway from the hypothalamus to the main olfactory bulb is thought to include neurons that express the neuropeptide orexin, although the proportion that is orexinergic remains unknown. A current model proposes that the orexin population is heterogeneous, yet it remains unknown whether the proportion that innervates the main olfactory bulb reflects a distinct subpopulation of the orexin population. Herein, we carried out combined retrograde tract tracing with immunohistochemistry for orexin-A in the mouse to define the proportion of hypothalamic input to the main olfactory bulb that is orexinergic and to determine what fraction of the orexin-A population innervates the bulb. The numbers and spatial positions of all retrogradely labeled neurons and all the orexin-A-expressing neurons were quantified in sequential sections through the hypothalamus. Retrogradely labeled neurons were found in the ipsilateral hypothalamus, of which 22% expressed orexin-A. The retrogradely labeled neurons that did and did not express orexin-A could be anatomically distinguished based on their spatial position and cell body area. Remarkably, only 7% of all the orexin-A neurons were retrogradely labeled, suggesting that only a small fraction of the orexin-A population directly innervate the main olfactory bulb. These neurons spatially overlapped with the orexin-A neurons that did not innervate the bulb, although the two cell populations were differentiated based on cell body area. Overall, these results support a model in which olfactory sensory processing is influenced by orexinergic feedback at the first synapse in the olfactory processing pathway.


Asunto(s)
Neuropéptidos , Bulbo Olfatorio , Ratones , Animales , Orexinas/metabolismo , Bulbo Olfatorio/metabolismo , Área Hipotalámica Lateral , Neuropéptidos/metabolismo , Neuronas/metabolismo , Hipotálamo/metabolismo
11.
Front Endocrinol (Lausanne) ; 14: 1206353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441503

RESUMEN

Introduction: Chaihu-Longgu-Muli decoction (CLMD) is a well-used ancient formula originally recorded in the "Treatise on Febrile Diseases" written by the founding theorist of Traditional Chinese Medicine, Doctor Zhang Zhongjing. While it has been used extensively as a therapeutic treatment for neuropsychiatric disorders, such as insomnia, anxiety and dementia, its mechanisms remain unclear. Methods: In order to analyze the therapeutic mechanism of CLMD in chronic renal failure and insomnia, An adenine diet-induced chronic kidney disease (CKD) model was established in mice, Furthermore, we analyzed the impact of CLMD on sleep behavior and cognitive function in CKD mice, as well as the production of insomnia related regulatory proteins and inflammatory factors. Results: CLMD significantly improved circadian rhythm and sleep disturbance in CKD mice. The insomnia related regulatory proteins, Orexin, Orexin R1, and Orexin R2 in the hypothalamus of CKD mice decreased significantly, while Orexin and its receptors increased remarkably after CLMD intervention. Following administration of CLMD, reduced neuron loss and improved learning as well as memory ability were observed in CKD mice. And CLMD intervention effectively improved the chronic inflflammatory state of CKD mice. Discussion: Our results showed that CLMD could improve sleep and cognitive levels in CKD mice. The mechanism may be related to the up-regulation of Orexin-A and increased phosphorylation level of CaMKK2/AMPK, which further inhibits NF-κB downstream signaling pathways, thereby improving the disordered inflammatory state in the central and peripheral system. However, More research is required to confirm the clinical significance of the study.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Renal Crónica , Trastornos del Inicio y del Mantenimiento del Sueño , Ratones , Animales , Orexinas , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico
12.
Neuropeptides ; 101: 102336, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37290176

RESUMEN

Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.


Asunto(s)
Área Hipotalámica Lateral , Privación de Sueño , Ratas , Masculino , Animales , Orexinas/metabolismo , Área Hipotalámica Lateral/metabolismo , Privación de Sueño/metabolismo , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Ratas Wistar , Interleucina-4/metabolismo , Interleucina-4/farmacología , Interleucina-6/metabolismo , Interleucina-6/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Ingestión de Alimentos/fisiología , ARN Mensajero/metabolismo , Receptores de Orexina/metabolismo
13.
Biomolecules ; 13(4)2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-37189339

RESUMEN

The orexin system is related to food behavior, energy balance, wakefulness and the reward system. It consists of the neuropeptides orexin A and B, and their receptors, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). OX1R has selective affinity for orexin A, and is implicated in multiple functions, such as reward, emotions, and autonomic regulation. This study provides information about the OX1R distribution in human hypothalamus. The human hypothalamus, despite its small size, demonstrates a remarkable complexity in terms of cell populations and cellular morphology. Numerous studies have focused on various neurotransmitters and neuropeptides in the hypothalamus, both in animals and humans, however, there is limited experimental data on the morphological characteristics of neurons. The immunohistochemical analysis of the human hypothalamus revealed that OX1R is mainly found in the lateral hypothalamic area, the lateral preoptic nucleus, the supraoptic nucleus, the dorsomedial nucleus, the ventromedial nucleus, and the paraventricular nucleus. The rest of the hypothalamic nuclei do not express the receptor, except for a very low number of neurons in the mammillary bodies. After identifying the nuclei and neuronal groups that were immunopositive for OX1R, a morphological and morphometric analysis of those neurons was conducted using the Golgi method. The analysis revealed that the neurons in the lateral hypothalamic area were uniform in terms of their morphological characteristics, often forming small groups of three to four neurons. A high proportion of neurons in this area (over 80%) expressed the OX1R, with particularly high expression in the lateral tuberal nucleus (over 95% of neurons). These results were analyzed, and shown to represent, at the cellular level, the distribution of OX1R, and we discuss the regulatory role of orexin A in the intra-hypothalamic areas, such as its special role in the plasticity of neurons, as well as in neuronal networks of the human hypothalamus.


Asunto(s)
Hipotálamo , Neuropéptidos , Animales , Humanos , Orexinas/metabolismo , Receptores de Orexina/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Neuronas/metabolismo
14.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37111298

RESUMEN

Insomnia is an important public health problem. The currently available treatments for insomnia can cause some adverse effects. Orexin receptors 1 (OX1R) and 2 (OX2R) are burgeoning targets for insomnia treatment. It is an effective approach to screening OX1R and OX2R antagonists from traditional Chinese medicine, which contains abundant and diverse chemical components. This study established an in-home ligand library of small-molecule compounds from medicinal plants with a definite hypnotic effect, as described in the Chinese Pharmacopoeia. Molecular docking was applied to virtually screen potential orexin receptor antagonists using molecular operating environment software, and surface plasmon resonance (SPR) technology was used to detect the binding affinity between potential active compounds and orexin receptors. Finally, the results of virtual screening and SPR analysis were verified through in vitro assays. We successfully screened one potential lead compound (neferine) as an orexin receptor antagonist from the in-home ligand library, which contained more than 1000 compounds. The screened compound was validated as a potential agent for insomnia treatment through comprehensive biological assays. This research enabled the discovery of a potential small-molecule antagonist of orexin receptors for the treatment of insomnia, providing a novel screening approach for the detection of potential candidate compounds for corresponding targets.

15.
J Affect Disord ; 332: 299-308, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37060954

RESUMEN

BACKGROUND: Bright light therapy (BLT) is the first-line treatment for seasonal affective disorder. However, the neural mechanisms underlying BLT are unclear. To begin filling this gap, the present study examined the impact of BLT on sleep/wakefulness, daily rhythms, and the wakefulness-promoting orexin/hypocretin system in a diurnal rodent, Nile grass rats (Arvicanthis niloticus). METHODS: Male and female grass rats were housed under a 12:12 h light/dark cycle with dim light (50 lx) during the day. The experimental group received daily 1-h early morning BLT (full-spectrum white light, 10,000 lx), while the control group received narrowband red light for 4 weeks. Sleep/wakefulness and in-cage locomotor activity were monitored, followed by examination of hypothalamic prepro-orexin and orexin receptors OX1R and OX2R expression in corticolimbic brain regions. RESULTS: The BLT group had higher wakefulness during light treatment, better nighttime sleep quality, and improved daily rhythm entrainment compared to controls. The impact of BLT on the orexin system was sex- and brain region-specific, with males showing higher OX1R and OX2R in the CA1, while females showed higher prepro-orexin but lower OX1R and OX2R in the BLA, compared to same-sex controls. LIMITATIONS: The present study focused on the orexin system in a limited number of brain regions at a single time point. Sex wasn't a statistical factor, as male and female cohorts were run independently. CONCLUSIONS: The diurnal grass rats show similar behavioral responses to BLT as humans, thus could be a good model for further elucidating the neural mechanisms underlying the therapeutic effects of BLT.


Asunto(s)
Trastorno Afectivo Estacional , Animales , Femenino , Masculino , Ritmo Circadiano/fisiología , Murinae/metabolismo , Orexinas/metabolismo , Fototerapia , Trastorno Afectivo Estacional/terapia , Sueño/fisiología , Vigilia
16.
J Neurosci Res ; 101(8): 1305-1323, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37012516

RESUMEN

Orexin-A (OXA) is a hypothalamic neuropeptide implicated in the regulation of wakefulness, appetite, reward processing, muscle tone, motor activity, and other physiological processes. The broad range of systems affected stems from the widespread projections of orexin neurons toward multiple brain regions regulating numerous physiological processes. Orexin neurons integrate nutritional, energetic, and behavioral cues and modulate the functions of target structures. Orexin promotes spontaneous physical activity (SPA), and we recently showed that orexin injected into the ventrolateral preoptic area (VLPO) of the hypothalamus increases behavioral arousal and SPA in rats. However, the specific mechanisms underlying the role of orexin in physical activity are unknown. Here we tested the hypothesis that OXA injected into the VLPO alters the oscillatory activity in the electroencephalogram (EEG) to reflect an increased excitability of the sensorimotor cortex, which may explain the associated increase in SPA. The results showed that OXA increased wakefulness following injections into the VLPO. In addition, OXA altered the power spectrum of the EEG during the awake state by decreasing the power of 5-19 Hz oscillations and increasing the power of >35 Hz oscillations, which are markers of increased sensorimotor excitability. Consistently, we found that OXA induced greater muscle activity. Furthermore, we found a similar change in power spectrum during slow-wave sleep, which suggests that OXA altered the EEG activity in a fundamental way, even in the absence of physical activity. These results support the idea that OXA increases the excitability of the sensorimotor system, which may explain the corresponding increase in awake time, muscle tone, and SPA.


Asunto(s)
Tono Muscular , Área Preóptica , Ratas , Animales , Orexinas/farmacología , Orexinas/metabolismo , Área Preóptica/metabolismo , Sueño/fisiología , Hipotálamo/metabolismo , Vigilia/fisiología
17.
J Neuroendocrinol ; 35(9): e13259, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36994677

RESUMEN

Seeking and ingesting nutrients is an essential cycle of life in all species. In classical neuropsychology these two behaviours are viewed as fundamentally distinct from each other, and known as appetitive and consummatory, respectively. Appetitive behaviour is highly flexible and diverse, but typically involves increased locomotion and spatial exploration. Consummatory behaviour, in contrast, typically requires reduced locomotion. Another long-standing concept is "rest and digest", a hypolocomotive response to calorie intake, thought to facilitate digestion and storage of energy after eating. Here, we note that the classical seek➔ingest➔rest behavioural sequence is not evolutionarily advantageous for all ingested nutrients. Our limited stomach capacity should be invested wisely, rather than spent on the first available nutrient. This is because nutrients are not simply calories: some nutrients are more essential for survival than others. Thus, a key choice that needs to be made soon after ingestion: to eat more and rest, or to terminate eating and search for better food. We offer a perspective on recent work suggesting how nutrient-specific neural responses shape this choice. Specifically, the hypothalamic hypocretin/orexin neurons (HONs) - cells that promote hyperlocomotive explorative behaviours - are rapidly and differentially modulated by different ingested macronutrients. Dietary non-essential (but not essential) amino acids activate HONs, while glucose depresses HONs. This nutrient-specific HON modulation engages distinct reflex arcs, seek➔ingest➔seek and seek➔ingest➔rest, respectively. We propose that these nutri-neural reflexes evolved to facilitate optimal nutrition despite the limitations of our body.


Asunto(s)
Neuropéptidos , Animales , Orexinas , Neuropéptidos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hipotálamo/metabolismo , Conducta Apetitiva
18.
Mol Metab ; 72: 101713, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977433

RESUMEN

OBJECTIVE: Orexin-A (OX-A) is a neuropeptide produced selectively by neurons of the lateral hypothalamus. It exerts powerful control over brain function and physiology by regulating energy homeostasis and complex behaviors linked to arousal. Under conditions of chronic or acute brain leptin signaling deficiency, such as in obesity or short-term food deprivation, respectively, OX-A neurons become hyperactive and promote hyperarousal and food seeking. However, this leptin-dependent mechanism is still mostly unexplored. The endocannabinoid 2-arachidonoyl-glycerol (2-AG) is known to be implicated in food consumption by promoting hyperphagia and obesity, and we and others demonstrated that OX-A is a strong inducer of 2-AG biosynthesis. Here, we investigated the hypothesis that, under acute (6 h fasting in wt mice) or chronic (in ob/ob mice) hypothalamic leptin signaling reduction, OX-A-induced enhancement of 2-AG levels leads to the production of the 2-AG-derived 2-arachidonoyl-sn-glycerol-3-phosphate (2-AGP), a bioactive lipid belonging to the class of lysophosphatidic acids (LPAs), which then regulates hypothalamic synaptic plasticity by disassembling α-MSH anorexigenic inputs via GSK-3ß-mediated Tau phosphorylation, ultimately affecting food intake. METHODS: We combined cell-type-specific morphological (CLEM and confocal microscopy), biochemical, pharmacological, and electrophysiological techniques to dissect the leptin- and OX-A/2-AGP-mediated molecular pathways regulating GSK-3ß-controlled pT231-Tau production at POMC neurons of obese ob/ob and wild-type (wt) lean littermate mice and in an in vitro model of POMC neurons such as mHypoN41 neurons (N41). RESULTS: 2-AGP is overproduced in the hypothalamus of obese leptin-deficient, or lean 6 h food-deprived mice, and promotes food intake by reducing α-MSH-expressing synaptic inputs to OX-A neurons via lysophosphatidic acid type-1 receptor (LPA1-R) activation, and pT231-Tau accumulation in α-MSH projections. This effect is due to the activation of the Pyk2-mediated pTyr216-GSK3ß pathway and contributes to further elevating OX-A release in obesity. Accordingly, we found a strong correlation between OX-A and 2-AGP levels in the serum of obese mice and of human subjects. CONCLUSIONS: Hypothalamic feeding pathways are endowed with 2-AGP-mediated synaptic plasticity according to their inherent functional activities and the necessity to adapt to changes in the nutritional status. These findings reveal a new molecular pathway involved in energy homeostasis regulation, which could be targeted to treat obesity and related disturbances.


Asunto(s)
Endocannabinoides , Leptina , Ratones , Humanos , Animales , Orexinas/metabolismo , Leptina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Endocannabinoides/metabolismo , alfa-MSH/metabolismo , Proopiomelanocortina/metabolismo , Hipotálamo/metabolismo , Obesidad/metabolismo , Lisofosfolípidos/metabolismo , Ratones Endogámicos
19.
J Comp Neurol ; 531(3): 366-389, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36354959

RESUMEN

Employing orexin-A immunohistochemistry, we describe the distribution, morphology, and nuclear parcellation of orexinergic neurons within the hypothalami of an Asiatic lion (Panthera leo subsp. persica), an African lion (Panthera leo subsp. melanochaita), and a Southeast African cheetah (Acinonyx jubatus subsp. jubatus). In all three felids, the clustering of large, bipolar, and multipolar hypothalamic orexinergic neurons primarily follows the pattern observed in other mammals. The orexinergic neurons were found, primarily, to form three distinct clusters-the main, zona incerta, and optic tract clusters. In addition, large orexinergic neurons were observed in the ventromedial supraoptic region of the hypothalamus, where they are not typically observed in other species. As has been observed in cetartiodactyls and the African elephant, a cluster of small, multipolar orexinergic neurons, the parvocellular cluster, was observed in the medial zone of the hypothalamus in all three felids, although this parvocellular cluster has not been reported in other carnivores. In both subspecies of lions, but not the cheetah, potential orexin-immunopositive neurons were observed in the paraventricular hypothalamic nucleus, supraoptic nucleus, the lateral part of the retrochiasmatic area, and the inner layer of the median eminence. The distribution and parcellation of orexinergic neurons in the hypothalami of the three felids studied appear to be more complex than observed in many other mammals and for the two subspecies of lion may be even more complex. These findings are discussed in terms of potential technical concerns, phylogenetic variations of this system, and potentially associated functional aspects of the orexinergic system.


Asunto(s)
Acinonyx , Leones , Animales , Humanos , Filogenia , Hipotálamo , Neuronas , Pueblo Africano
20.
Nutr Neurosci ; 26(11): 1045-1057, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36154638

RESUMEN

Perinatal undernutrition stress predisposes several disorders in adult life, which could be programed using nutraceuticals. However, the effect of perinatal undernutrition stress on orexin peptides, brain lipids, and its amelioration by a potent antioxidant (Astaxanthin) needs exploration. The present study focussed on the effect of perinatal undernutrition stress on brain fatty acid levels, Orexin peptides A and B, and its amelioration by Astaxanthin.Twenty-four male Wistar rats (Rattus norvegicus) were allocated to four groups (n = 6) as Normal, Perinatally Undernourished (UN), Astaxanthin treated (AsX, 12mg/kg), and perinatally Undernourished-but-Astaxanthin treated (UNA), and are allowed to grow for 1, 6 and 12 months. The fatty acid and orexin peptides A & B at different brain parts were measured and compared. Orexin peptides were assessed using an ELISA kit. Fatty acid levels were estimated using HP 5890 gas chromatograph. Data were analyzed by ANOVA followed by Tukey's posthoc test. P < 0.05 was considered significant.The hair cortisol, Orexin-A, and B were significantly increased (p < 0.001) in the UN group compared to normal and were modulated significantly by AsX in the UNA group. Undernutrition stress during the perinatal period altered the lipid profile, Total SFA, Total MUFA, Total n-3 PUFA, Total n-6 PUFA, n-3: n-6 PUFA, which Astaxanthin effectively modulated at 6 and 12 months of postnatal life. There was no difference between DHA and AA ratio. These results indicate that nutritional enrichment with Astaxanthin during the perinatal period positively contributes to adult health. Further, the mechanism of regulation of brain chemistry by Astaxanthin is warranted.


Asunto(s)
Ácidos Grasos Omega-3 , Desnutrición , Embarazo , Femenino , Ratas , Masculino , Animales , Orexinas , Ratas Wistar , Ácidos Grasos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA