Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
ACS Appl Bio Mater ; 6(11): 4703-4713, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37865928

RESUMEN

The utilization of guided tissue regeneration membranes is a significant approach for enhancing bone tissue growth in areas with bone defects. Biodegradable magnesium alloys are increasingly being used as guided tissue regeneration membranes due to their outstanding osteogenic properties. However, the degradation rates of magnesium alloy bone implants documented in the literature tend to be rapid. Moreover, many studies focus only on the initial 3-month period post-implantation, limiting their applicability and impeding clinical adoption. Furthermore, scant attention has been given to the interplay between the degradation of magnesium alloy implants and the adjacent tissues. To address these gaps, this study employs a well-studied magnesium-aluminum (Mg-Al) alloy membrane with a slow degradation rate. This membrane is implanted into rat skull bone defects and monitored over an extended period of up to 48 weeks. Observations are conducted at various intervals (2, 4, 8, 12, 24, and 48 weeks) following the implantation. Assessment of degradation behavior and tissue regeneration response is carried out using histological sections, micro-CT scans, and scanning electron microscopy (SEM). The findings reveal that the magnesium alloy membranes demonstrate remarkable biocompatibility and osteogenic capability over the entire observation duration. Specifically, the Mg-Al alloy membranes sustain their structural integrity for 8 weeks. Notably, their osteogenic ability is further enhanced as a corrosion product layer forms during the later stages of implantation. Additionally, our in vitro experiments employing extracts from the magnesium alloy display a significant osteogenic effect, accompanied by a notable increase in the expression of osteogenic-related genes. Collectively, these results strongly indicate the substantial potential of Mg-Al alloy membranes in the context of guided tissue regeneration.


Asunto(s)
Aleaciones , Magnesio , Ratas , Animales , Aleaciones/farmacología , Aleaciones/química , Magnesio/farmacología , Magnesio/química , Aluminio/farmacología , Regeneración Ósea , Osteogénesis
2.
J Sci Food Agric ; 102(14): 6643-6649, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35603586

RESUMEN

BACKGROUND: Adequate calcium intake is necessary to prevent osteoporosis, which poses significant public health challenges. The natural bioactive peptide calcium chelates have been regarded as superior calcium supplements. Microalgae peptides are regarded as potential candidates for protection from bone loss in osteoporosis. This study aimed to prepare microalgae calcium-chelating peptides from four microalgae proteins and assess their osteogenic activities in osteoporosis-like zebrafish. RESULTS: After in vitro gastrointestinal digestion, 4.42% Chlorella pyrenoidosa protein, 2.74% Nannochloropsis oceanica protein, 6.07% Arthospira platensis protein and 10.47% Dunaliella salina protein were retained. The calcium-chelating capacities of four microalgae protein hydrolysates (MPHs) ranged from 14.10 ± 7.16% to 34.11 ± 9.34%. CaCl2 addition increased the maximum absorption peaks, absorption intensities and particle sizes of MPHs. Calcium-chelating MPHs showed stronger osteogenic activities than MPHs in the osteoporosis-like zebrafish model, with significantly increased mineralized tissue area and integrated optical density. CONCLUSION: Microalgae proteins have favorable digestibilities. Among the four MPHs, Nannochloropsis oceanica protein hydrolysates showed the highest calcium-chelating capacity, which might be due to its high degree of hydrolysis after in vitro digestion and high content of Ser, Tyr, Thr, Asp and Glu. The absorption intensities and particle sizes of MPHs both increased after calcium addition. MPH treatment could reverse dexamethasone-induced osteoporosis of zebrafish, and MPHs-Ca chelates showed higher osteogenic activities in osteoporosis-like phenotype zebrafish. © 2022 Society of Chemical Industry.


Asunto(s)
Chlorella , Microalgas , Osteoporosis , Estramenopilos , Animales , Calcio/metabolismo , Cloruro de Calcio/metabolismo , Chlorella/metabolismo , Dexametasona/metabolismo , Microalgas/química , Péptidos/química , Hidrolisados de Proteína/química , Proteínas/metabolismo , Estramenopilos/metabolismo , Pez Cebra/metabolismo
3.
J Biomater Sci Polym Ed ; 33(10): 1269-1288, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35235492

RESUMEN

A strategy to develop a multifunctional sodium alginate personalized scaffold with enhanced mechanical stability, osteogenesis activity and excellent anti-inflammatory activity by cryogenic 3 D printing combined with subsequent crosslinking with Sr2+ is proposed in this study. The ink for 3 D printing was prepared by dispersing modified PLLA droplets containing ibuprofen into sodium alginate aqueous solution using lecithin as stabilizer. The results showed that the drug-loaded microspheres formed from the low-temperature solidifying of the modified PLLA droplets were homogeneously dispersed in sodium alginate substrate, and the scaffold displayed a sustained drug release performance toward ibuprofen which endowed the scaffold with persistent anti-inflammatory effects. In vitro cell culture indicated that the lecithin not only acted as the stabilizer, but also stimulated the proliferation and mineralization of osteoblastic cells on the scaffold. Sr2+-crosslinking improved the mechanical properties and osteogenic activity of the scaffold.


Asunto(s)
Alginatos , Ibuprofeno , Alginatos/química , Ibuprofeno/química , Lecitinas/farmacología , Microesferas , Osteogénesis , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
4.
J Biomater Sci Polym Ed ; 32(12): 1598-1617, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33977873

RESUMEN

Polylactic acid (PLA) nanofibrous scaffolds have received extensive attention in the field of tissue engineering due to their excellent degradability, biocompatibility and the biomimetic extracellular matrix (ECM) topographies. However, the cell affinity and osteogenic activity of PLA scaffolds is not satisfactory because of their intrinsic hydrophobicity, the absence of cell recognition sites and the nucleation sites of the in vivo biomineralization. Furthermore, effective anti-inflammatory activity for the in vivo scaffold could not be ignored, so a strategy to develop a multifunctional PLLA (poly-L-lactic acid) nanofibrous scaffold with improved hydrophilicity, osteoinductivity, excellent near-infrared photothermal-responsive drug release capacity and anti-inflammatory activity via incorporating sodium alginate microspheres decorated with strontium and ibuprofen-loaded black phosphorus (BP + IBU@SA microspheres) into aminated modified PLLA nanofiber network is proposed in this study. Scanning electron microscopy (SEM) observation showed that the BP + IBU@SA microspheres were homogeneously dispersed into the modified PLLA matrix with uniform nanofiber structure and the chemical composition of the as-prepared scaffolds was confirmed by X-ray diffraction analysis (XRD) and elemental mapping. The photothermal property of the scaffolds was assessed under near-infrared (NIR) light irradiation, the results manifested that the entrapment of BP nanosheets endowed PLLA nanofibrous scaffold with significantly high photothermal conversion efficiency and optical cycle stability. Meanwhile, the scaffold also displayed an excellent photothermal-responsive intelligent drug release performance toward Sr2+ and ibuprofen. Moreover, the in vitro studies revealed that the as-developed scaffolds possessed a good biocompatibility for cell adhesion and proliferation and an improved bioactivity to induce apatite formation. All these results indicated the potential of the fabricated scaffolds in tissue engineering applications.


Asunto(s)
Nanofibras , Ingeniería de Tejidos , Alginatos , Microesferas , Fósforo , Poliésteres , Estroncio , Andamios del Tejido
5.
Carbohydr Polym ; 259: 117553, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33674023

RESUMEN

Achyranthes bidentata is a species of flowering plant that is mainly distributed in China. The A. bidentata rhizome is a famous traditional Chinese medicine that has been widely used to treat lumbago, arthritis, and bone hyperplasia. In this work, A. bidentata rhizome was isolated and purified to obtain a pectic polysaccharide (ABPB-4). Chemical and spectral analyses showed that ABPB-4 had a main chain of →4)-α-d-GalpA-(1→ and →2,4)-α-l-Rhap-(1→, and the branch chains included →4)-ß-d-Galp-(1→, →6)-ß-d-Galp-(1→, →3,6)-ß-d-Galp-(1→, →5)-α-l-Araf-(1→ and →3,5)-α-l-Araf-(1→, and it was terminated with α-l-Araf-(1→ and ß-d-Galp-(1→. At concentrations of 0.01, 0.02, and 0.04 µmol/L, ABPB-4 significantly promotes the proliferation, differentiation, and mineralization of MC3T3-E1 cells in vitro, and it appreciably enhances the mRNA expression levels of osteogenic-related genes in these cells. Overall, the results reported herein indicate that ABPB-4 has outstanding osteogenic activity, and that it may be used as an anti-osteoporosis agent in the future.


Asunto(s)
Achyranthes/metabolismo , Polisacáridos/química , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Peso Molecular , Osteogénesis/efectos de los fármacos , Polisacáridos/análisis , Polisacáridos/farmacología , Rizoma/metabolismo , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo
6.
Arch Oral Biol ; 96: 46-51, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30172945

RESUMEN

OBJECTIVE: Remodeling of alveolar bone is controlled by osteoclast-mediated bone resorption and osteoblast-induced bone formation. LPS of Porphyromonas gingivalis, a major causative agent of periodontitis, produces proinflammatory cytokines in host immune cells, which thereby triggers osteoclastogenesis and leads to alveolar bone resorption. We investigated the anti-periodontitis potential of Platycarya strobilacea leaf extract (PLE), which is used as a traditional medicine in Asian countries. DESIGN: TNF-α levels in cell culture media were measured using a commercially available enzyme-linked immunosorbent assay kit. Osteoclast differentiation was observed by tartrate-resistant acid phosphatase staining, and the expression levels of osteoclastogenic genes were measured by quantitative real-time PCR. Bone-resorbing activity was confirmed by the resorption pit formation, gelatin zymographic, and the cathepsin K activity assays. Osteogenic differentiation was confirmed with an ALP activity assay and alizarin red S staining. RESULTS: PLE treatment inhibited the production of TNF-α in P. gingivalis LPS-stimulated RAW264.7 macrophages. In bone marrow-derived macrophages serving as osteoclast precursors, PLE treatment blocked RANKL-induced osteoclastogenesis and gene expression levels of the osteoclastogenic transcription factor NFATc1, DC-STAMP for osteoclast fusion, and cathepsin K for osteoclast activity. In addition, PLE treatment reduced the formation of resorption pits and the secretion of MMP 9 and cathepsin K from the differentiated osteoclasts. Furthermore, PLE treatment induced osteogenesis by increasing ALP activity and calcium content in preosteoblastic cells. CONCLUSION: PLE inhibits P. gingivalis LPS-induced TNF-α production and bone resorption and induces bone formation. PLE may be a beneficial agent to promote oral health by inhibiting periodontitis-induced alveolar bone loss.


Asunto(s)
Pérdida de Hueso Alveolar/prevención & control , Juglandaceae/clasificación , Extractos Vegetales/farmacología , Hojas de la Planta , Porphyromonas gingivalis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Pérdida de Hueso Alveolar/microbiología , Animales , Diferenciación Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Lipopolisacáridos/farmacología , Masculino , Ratones , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Nanomedicine ; 14(5): 1719-1731, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29665441

RESUMEN

Hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) structures (MNRs) with different nanorod diameters of about 30, 70 and 150 nm were coated on titanium, to investigate the effect of nanorod diameter on osteogenesis and the involved mechanism. Compared to micropore/nanogranule-patterned Sr1-HA coating (MNG), MNRs gave rise to dramatically enhanced in vitro mesenchymal stem cell functions including osteogenic differentiation in the absence of osteogenic supplements and in vivo osseointegration related to the nanorod diameter with about 70 nm displaying the best effects. MNRs activated the cellular Wnt/ß-catenin pathway by increasing the expression of Wnt3a and LRP6 and decreasing the expression of Wnt/ß-catenin pathway antagonists (sFRP1, sFRP2, Dkk1 and Dkk2). The exogenous Wnt3a significantly enhanced the ß-catenin signaling activation and cell differentiation on MNG, and the exogenous Dkk1 attenuated the enhancing effect of MNRs on them. The data demonstrate that MNRs favor osseointegration via a Wnt/ß-catenin pathway.


Asunto(s)
Materiales Biocompatibles Revestidos/administración & dosificación , Células Madre Mesenquimatosas/citología , Nanotubos/química , Oseointegración , Osteogénesis , Vía de Señalización Wnt , Animales , Células Cultivadas , Materiales Biocompatibles Revestidos/química , Durapatita/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Conejos , Propiedades de Superficie , Titanio/química
8.
Eur J Med Chem ; 121: 747-757, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27429255

RESUMEN

Smoothened (Smo) is the signal transducer of the Hedgehog (Hh) pathway and its stimulation is considered a potential powerful tool in regenerative medicine to treat severe tissue injuries. Starting from GSA-10, a recently reported Hh activator acting on Smo, we have designed and synthesized a new class of quinolone-based compounds. Modification and decoration of three different portions of the original scaffold led to compounds able to induce differentiation of multipotent mesenchymal cells into osteoblasts. The submicromolar activity of several of these new quinolones (0.4-0.9 µM) is comparable to or better than that of SAG and purmorphamine, two reference Smo agonists. Structure-activity relationships allow identification of several molecular determinants important for the activity of these compounds.


Asunto(s)
Diseño de Fármacos , Osteogénesis/efectos de los fármacos , Quinolonas/química , Quinolonas/farmacología , Animales , Técnicas de Química Sintética , Evaluación Preclínica de Medicamentos , Proteínas Hedgehog/metabolismo , Ratones , Modelos Moleculares , Células 3T3 NIH , Quinolonas/síntesis química , Relación Estructura-Actividad
9.
Acta Biomater ; 10(10): 4456-64, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24998774

RESUMEN

Several attempts have been made in the past to fabricate hybrid materials that display the complementary properties of the polyester polycaprolactone (PCL) and the polysaccharide chitosan (CHS) for application in the field of bone regeneration and tissue engineering. However, such composites generally have no osteogenic activity per se. Here we report the synthesis of a chitosan-graft-polycaprolactone (CHS-g-PCL) and its subsequent characterization, including crystallinity, chemical structure and thermal stability. Upon surface-functionalization of CHS-g-PCL with osteogenic biosilica via the surface-immobilized enzyme silicatein, protein adsorption, surface morphology and wettability were assessed. Finally, the cultivation of osteoblastic SaOS-2 cells on the surface-functionalized CHS-g-PCL was followed by analyses of cell viability, mineral deposition and alkaline phosphatase activity. These characterizations revealed a composite that combines the versatile properties of CHS-g-PCL with the osteogenic activity of the silicatein/biosilica coating and, hence, represents an innovative alternative to conventionally used CHS/PCL composites for biomedical applications, where stable bone-material interfaces are required.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Quitosano , Materiales Biocompatibles Revestidos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Poliésteres , Dióxido de Silicio , Fosfatasa Alcalina/metabolismo , Línea Celular Tumoral , Quitosano/química , Quitosano/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Humanos , Osteoblastos/citología , Poliésteres/química , Poliésteres/farmacología , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA