Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 329: 118118, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614261

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The clinical efficacy of the Yiqi Kaimi prescription has been confirmed in slow transit constipation. However, the effects and biological mechanism of Yiqi Kaimi prescription are still unclear. AIMS OF THE STUDY: To identify the effects of Yiqi Kaimi prescription on intestinal motility; To reveal the potential key targets and pathways of Yiqi Kaimi prescription for the treatment of slow transit constipation. MATERIALS AND METHODS: The effects of Yiqi Kaimi prescription on slow transit constipation were investigated in a mouse model. The terminal ink propulsion experiment and fecal indocyanine green imaging was used to measure the intestinal transit time. Protein phosphorylation changes in colon tissues treated with Yiqi Kaimi prescription were detected using a Phospho Explorer antibody microarray. Bioinformatic analyses were performed using the Database for Annotation Visualization and Integrated Discovery (DAVID) and the Search Tool for the Retrieval of Interacting Genes (STRING). Western blot analysis and immunohistochemistry confirmed the observed changes in phosphorylation. RESULT: s: Yiqi Kaimi prescription significantly increased the intestinal transit rate (P < 0.05 vs. model) and reduced the time to first discharge of feces containing fecal indocyanine green imaging in mice (P < 0.05 vs. model). The administration of Yiqi Kaimi prescription induced phosphorylation changes in 41 proteins, with 9 upregulated proteins and 32 downregulated proteins. Functional classification of the phosphorylated proteins with DAVID revealed that the critical biological processes included tyrosine protein kinases, positive regulation of calcium-mediated signaling and response to muscle stretch. The phosphorylation of the spleen tyrosine kinase (SYK) at Tyr348 increased 2.19-fold, which was the most significant change. The phosphorylation level of the transcription factor p65 (RELA) at Thr505 was decreased 0.57-fold. SYK was a hub protein in the protein-protein interaction network and SYK and RELA formed the core of the secondary subnetwork. The key protein phosphorylation after treatment with Yiqi Kaimi prescription were verified by Western blot analysis and immunohistochemistry. CONCLUSION: Yiqi Kaimi prescription significantly enhanced intestinal motility. This effect was attributed to alterations in the phosphorylation levels of various target proteins. The observed changes in protein phosphorylation, including SYK and RELA, may serve as crucial factors in the treatment of slow transit constipation.


Asunto(s)
Estreñimiento , Medicamentos Herbarios Chinos , Motilidad Gastrointestinal , Fosforilación , Fosforilación/efectos de los fármacos , Proteínas/metabolismo , Motilidad Gastrointestinal/efectos de los fármacos , Estreñimiento/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Heces/química , Biología Computacional , Animales , Ratones
2.
J Ethnopharmacol ; 330: 118110, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38580189

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Myocardial infarction has likely contributed to the increased prevalence of heart failure(HF).As a result of ventricular remodeling and reduced cardiac function, colonic blood flow decreases, causing mucosal ischemia and hypoxia of the villous structure of the intestinal wall.This damage in gut barrier function increases bowel wall permeability, leading to fluid metabolism disorder,gut microbial dysbiosis, increased gut bacteria translocation into the circulatory system and increased circulating endotoxins, thus promoting a typical inflammatory state.Traditional Chinese Medicine plays a key role in the prevention and treatment of HF.Kidney-tonifying Blood-activating(KTBA) decoction has been proved for clinical treatment of chronic HF.However,the mechanism of KTBA decoction on chronic HF is still unclear. AIMS OF THE STUDY: The effect of KTBA decoction on gut microbiota and metabolites and p38MAPK/p65NF-κB/AQP4 signaling in rat colon was studied to investigate the mechanism that KTBA decoction delays ventricular remodeling and regulates water metabolism disorder in rats with HF after myocardial infarction based on the theory of "Kidney Storing Essence and Conducting Water". MATERIAL AND METHODS: In vivo,a rat model of HF after myocardial infarction was prepared by ligating the left anterior descending coronary artery combined with exhaustive swimming and starvation.The successful modeling rats were randomly divided into five groups:model group, tolvaptan group(gavaged 1.35mg/(kg•D) tolvaptan),KTBA decoction group(gavaged 15.75g/(kg•D) of KTBA decoction),KTBA decoction combined with SB203580(p38MAPK inhibitor) group(gavaged 15.75g/(kg•D) of KTBA decoction and intraperitoneally injected 1.5mg/(kg•D) of SB203580),and KTBA decoction combined with PDTC(p65NF-kB inhibitor) group(gavaged 15.75g/(kg•D) of KTBA decoction and intraperitoneally injected 120mg/(kg•D) of PDTC).The sham-operation group and model group were gavaged equal volume of normal saline.After 4 weeks of intervention with KTBA decoction,the effect of KTBA decoction on the cardiac structure and function of chronic HF model rats was observed by ultrasonic cardiogram.General state and cardiac index in rats were evaluated.Enzyme linked immunosorbent assay(ELISA) was used to measure N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration in rat serum.Hematoxylin and eosin(H&E) staining,and transmission electron microscope(TEM) were used to observe the morphology and ultrastructure of myocardial and colonic tissue,and myocardial fibrosis was measured by Masson's staining.Cardiac E-cadherin level was detected by Western blot.The mRNA expression and protein expression levels of p38MAPK,I-κBα, p65NF-κB,AQP4,Occludin and ZO-1 in colonic tissue were detected by reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR) and immunohistochemistry. Protein expression of p38MAPK, p-p38MAPK,I-κBα,p-I-κBα,p65NF-κB, p-p65NF-κB,AQP4,Occludin and ZO-1 in rat colon was detected using Western blot.Colonic microbiota and serum metabolites were respectively analyzed by amplicon sequencing and liquid chromatography-mass spectrometry.In vitro, CCD-841CoN cell was placed in the ischemic solution under hypoxic conditions (94%N2,5%CO2,and 1%O2) in a 37 °C incubator to establish an ischemia and hypoxia model.The CCD-841CoN cells were divided into 7 groups, namely blank group and model group with normal rat serum plus control siRNA, tolvaptan group with rat serum containing tolvaptan plus control siRNA, KTBA group with rat serum containing KTBA plus control siRNA, KTBA plus p38MAPK siRNA group, KTBA plus p65NF-κB siRNA group,and KTBA plus AQP4siRNA group.After 24h and 48h of intervention with KTBA decoction,RT-qPCR,immunofluorescence and Western blot was used to detect the mRNA expression and protein expression levels of p38MAPK,I-κBα,p65NF-κB,AQP4, Occludin and ZO-1 in CCD-841CoN cells. RESULTS: Compared with the model, KTBA decoction improved the general state, decraesed the serum NT-proBNP level,HW/BW ratio, LVIDd and LVIDs, increased E-cadherin level,EF and FS,reduced number of collagen fibers deposited in the myocardial interstitium,and recovered irregular arrangement of myofibril and swollen or vacuolated mitochondria with broken crista in myocardium.Moreover, KTBA decoction inhibited the expression of p38MAPK,I-κBα,and p65NF-κB and upregulated AQP4, Occludin and ZO-1 in colon tissues and CCD-841CoN cells.Additionally,p38siRNA or SB203580, p65siRNA or PDTC, and AQP4siRNA partially weakened the protective effects of KTBA in vitro and vivo.Notably,The LEfSe analysis results showed that there were six gut biomaker bacteria in model group, including Allobaculum, Bacillales,Turicibacter, Turicibacterales,Turicibacteraceae,and Bacilli. Besides, three gut biomaker bacteria containing Deltaproteobacteria, Desulfovibrionaceae,and Desulfovibrionales were enriched by KTBA treatment in chronic HF model.There were five differential metabolites, including L-Leucine,Pelargonic acid, Capsidiol,beta-Carotene,and L- Erythrulose, which can be regulated back in the same changed metabolic routes by the intervention of KTBA.L-Leucine had the positive correlation with Bacillales, Turicibacterales,Turicibacteraceae,and Turicibacter.L-Leucine significantly impacts Protein digestion and absorption, Mineral absorption,and Central carbon metabolism in cancer regulated by KTBA, which is involved in the expression of MAPK and tight junction in intestinal epithelial cells. CONCLUSIONS: KTBA decoction manipulates the expression of several key proteins in the p38MAPK/p65NF-κB/AQP4 signaling pathway, modulates gut microbiota and metabolites toward a more favorable profile, improves gut barrier function, delays cardiomyocyte hypertrophy and fibrosis,and improves cardiac function.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Insuficiencia Cardíaca , Remodelación Ventricular , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Masculino , Ratas , Acuaporina 4 , Enfermedad Crónica , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Riñón/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Remodelación Ventricular/efectos de los fármacos
3.
PeerJ ; 12: e17039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590700

RESUMEN

Background: Acute pulmonary embolism (APE) is classified as a subset of diseases that are characterized by lung obstruction due to various types of emboli. Current clinical APE treatment using anticoagulants is frequently accompanied by high risk of bleeding complications. Recombinant hirudin (R-hirudin) has been found to have antithrombotic properties. However, the specific impact of R-hirudin on APE remains unknown. Methods: Sprague-Dawley (SD) rats were randomly assigned to five groups, with thrombi injections to establish APE models. Control and APE group rats were subcutaneously injected with equal amounts of dimethyl sulfoxide (DMSO). The APE+R-hirudin low-dose, middle-dose, and high-dose groups received subcutaneous injections of hirudin at doses of 0.25 mg/kg, 0.5 mg/kg, and 1.0 mg/kg, respectively. Each group was subdivided into time points of 2 h, 6 h, 1 d, and 4 d, with five animals per point. Subsequently, all rats were euthanized, and serum and lung tissues were collected. Following the assessment of right ventricular pressure (RVP) and mean pulmonary artery pressure (mPAP), blood gas analysis, enzyme-linked immunosorbnent assay (ELISA), pulmonary artery vascular testing, hematoxylin-eosin (HE) staining, Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, immunohistochemistry, and Western blot experiments were conducted. Results: R-hirudin treatment caused a significant reduction of mPAP, RVP, and Malondialdehyde (MDA) content, as well as H2O2 and myeloperoxidase (MPO) activity, while increasing pressure of oxygen (PaO2) and Superoxide Dismutase (SOD) activity. R-hirudin also decreased wall area ratio and wall thickness to diameter ratio in APE rat pulmonary arteries. Serum levels of endothelin-1 (ET-1) and thromboxaneB2 (TXB2) decreased, while prostaglandin (6-K-PGF1α) and NO levels increased. Moreover, R-hirudin ameliorated histopathological injuries and reduced apoptotic cells and Matrix metalloproteinase-9 (MMP9), vascular cell adhesion molecule-1 (VCAM-1), p-Extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P65/P65 expression in lung tissues. Conclusion: R-hirudin attenuated pulmonary hypertension and thrombosis in APE rats, suggesting its potential as a novel treatment strategy for APE.


Asunto(s)
Hominidae , Hipertensión Pulmonar , Embolia Pulmonar , Trombosis , Ratas , Animales , Hipertensión Pulmonar/tratamiento farmacológico , Ratas Sprague-Dawley , Hirudinas/farmacología , Peróxido de Hidrógeno/uso terapéutico , Embolia Pulmonar/complicaciones , Trombosis/tratamiento farmacológico
4.
Zhongguo Zhen Jiu ; 44(4): 449-454, 2024 Apr 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38621733

RESUMEN

OBJECTIVES: To observe the effects of moxibustion on intestinal barrier function and Toll-like receptor 4 (TLR4)/nuclear factor-κB p65 (NF-κB p65) signaling pathway in obese rats and explore the mechanism of moxibustion in the intervention of obesity. METHODS: Fifty-five Wistar rats of SPF grade were randomly divided into a normal group (10 rats) and a modeling group (45 rats). In the modeling group, the obesity model was established by feeding high-fat diet. Thirty successfully-modeled rats were randomized into a model group, a moxibustion group, and a placebo-control group, with 10 rats in each one. In the moxibustion group, moxibustion was applied at the site 3 cm to 5 cm far from the surface of "Zhongwan" (CV 12), with the temperature maintained at (46±1 ) ℃. In the placebo-control group, moxibustion was applied at the site 8 cm to 10 cm far from "Zhongwan" (CV 12), with the temperature maintained at (38±1) ℃. The intervention was delivered once daily for 8 weeks in the above two groups. The body mass and food intake of the rats were observed before and after intervention in each group. Using ELISA methool, the levels of serum triacylglycerol (TG), total cholesterol (TC) and lipopolysaccharide (LPS) were detected and the insulin resistance index (HOMA-IR) was calculated. HE staining was used to observe the morphology of colon tissue. The mRNA expression of zonula occludens-1 (ZO-1), Occludin, Claudin-1, TLR4 and NF-κB p65 in the colon tissue was detected by quantitative real-time PCR; and the protein expression of ZO-1, Occludin, Claudin-1, TLR4 and NF-κB p65 was detected by Western blot in the rats of each group. RESULTS: Compared with the normal group, the body mass, food intake, the level of HOMA-IR, and the serum levels of TC, TG and LPS were increased in the rats of the model group (P<0.01); those indexes in the moxibustion group were all reduced when compared with the model group and the placebo-control group respectively (P<0.01, P<0.05). Compared with the normal group, a large number of epithelial cells in the mucosa of colon tissue was damaged, shed, and the inflammatory cells were infiltrated obviously in the interstitium in the rats of the model group. When compared with the model group, in the moxibustion group, the damage of the colon tissue was recovered to various degrees and there were few infiltrated inflammatory cells in the interstitium, while, the epithelial injury of the colon tissue was slightly recovered and the infiltrated inflammatory cells in the interstitium were still seen in the placebo-control group. The mRNA and protein expressions of ZO-1, Occludin and Caudin-1 were decreased in the model group compared with those in the normal group (P<0.01). When compared with the model group and the placebo-control group, the mRNA and protein expressions of these indexes were increased in the moxibustion group (P<0.01, P<0.05). In the model group, the mRNA and protein expressions of TLR4 and NF-κB p65 were increased when compared with those in the normal group (P<0.01), and the mRNA and protein expressions of these indexes were reduced in the moxibustion group when compared with those in the model group and the placebo-control group (P<0.01). CONCLUSIONS: Moxibustion can reduce the body mass and food intake, regulate the blood lipid and improve insulin resistance in the rats of obesity. It may be related to alleviating inflammatory response through improving intestinal barrier function and modulating the intestinal TLR4/NF-κB p65 signaling pathway.


Asunto(s)
Resistencia a la Insulina , Moxibustión , Ratas , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Ratas Wistar , Receptor Toll-Like 4/genética , Lipopolisacáridos/metabolismo , Funcion de la Barrera Intestinal , Ocludina/metabolismo , Claudina-1/metabolismo , Transducción de Señal , Obesidad/genética , Obesidad/terapia , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Biomed Pharmacother ; 173: 116379, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452656

RESUMEN

BACKGROUND: Microglia-mediated neuroinflammation is an important pathological feature in many neurological diseases; thus, suppressing microglial activation is considered a possible therapeutic strategy for reducing neuronal damage. Oxyimperatorin (OIMP) is a member of furanocoumarin, isolated from the medicinal herb Glehnia littoralis. However, it is unknown whether OIMP can suppress the neuroinflammation. PURPOSE: To investigate the neuroprotective activity of oxyimperatorin (OIMP) in LPS-induced neuroinflammation in vitro and in vivo models. METHODS: In vitro inflammation-related assays were performed with OIMP in LPS-induced BV-2 microglia. In addition, intraperitoneal injection of LPS-induced microglial activation in the mouse brain was used to validate the anti-neuroinflammatory activity of OIMP. RESULTS: OIMP was found to suppress LPS-induced neuroinflammation in vitro and in vivo. OIMP significantly attenuated LPS-induced the production of free radicals, inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines in BV-2 microglia without causing cytotoxicity. In addition, OIMP could reduce the M1 pro-inflammatory transition in LPS-stimulated BV-2 microglia. The mechanistic study revealed that OIMP inhibited LPS-induced NF-κB p65 phosphorylation and nuclear translocation. However, OIMP did not affect LPS-induced IκB phosphorylation and degradation. In addition, OIMP also was able to reduce LPS-induced microglial activation in mice brain. CONCLUSION: Our findings suggest that OIMP suppresses microglia activation and attenuates the production of pro-inflammatory mediators and cytokines via inhibition of NF-κB p65 signaling.


Asunto(s)
Microglía , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Microglía/metabolismo , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Línea Celular , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Citocinas/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo
6.
J Nat Med ; 78(2): 439-454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351420

RESUMEN

Dihydroartemisinin (DHA), a derivative of artemisinin which is primarily used to treat malaria in clinic, also confers protective effect on lipopolysaccharide-induced nephrotoxicity. While, the activities of DHA in cisplatin (CDDP)-caused nephrotoxicity are elusive. To investigate the role and underlying mechanism of DHA in CDDP-induced nephrotoxicity. Mice were randomly separated into four groups: normal, CDDP, and DHA (25 and 50 mg/kg were orally injected 1 h before CDDP for consecutive 10 days). All mice except the normal were single injected intraperitoneally with CDDP (22 mg/kg) for once on the 7th day. Combined with quantitative proteomics and bioinformatics analysis, the impact of DHA on renal cell apoptosis, oxidative stress, biochemical indexes, and inflammation in mice were investigated. Moreover, a human hepatocellular carcinoma cells xenograft model was established to elucidate the impact of DHA on tumor-related effects of CDDP. DHA reduced the levels of creatinine (CREA) (p < 0.01) and blood urea nitrogen (BUN) (p < 0.01), reversed CDDP-induced oxidative, inflammatory, and apoptosis indexes (p < 0.01). Mechanistically, DHA attenuated CDDP-induced inflammation by inhibiting nuclear factor κB p65 (NFκB p65) expression, and suppressed CDDP-induced renal cell apoptosis by inhibiting p63-mediated endogenous and exogenous apoptosis pathways. Additionally, DHA alone significantly decreased the tumor weight and did not destroy the antitumor effect of CDDP, and did not impact AST and ALT. In conclusion, DHA prevents CDDP-triggered nephrotoxicity via reducing inflammation, oxidative stress, and apoptosis. The mechanisms refer to inhibiting NFκB p65-regulated inflammation and alleviating p63-mediated mitochondrial endogenous and Fas death receptor exogenous apoptosis pathway.


Asunto(s)
Antineoplásicos , Artemisininas , Humanos , Ratones , Animales , Cisplatino/toxicidad , Artemisininas/farmacología , Artemisininas/uso terapéutico , Artemisininas/metabolismo , Riñón/metabolismo , Riñón/patología , Estrés Oxidativo , Inflamación/metabolismo , Apoptosis , Antineoplásicos/toxicidad
7.
J Ethnopharmacol ; 326: 117944, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38382656

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Mey., one of the most used herbs in the world, shows effective treatment in reproductive injury. Recent studies have proven that the processed product, red ginseng, which is more active than ginseng itself. Therefore, it is speculated that its main functional component, rare ginsenosides (heat-transformed saponin, HTS), may be effective in treating premature ovarian failure (POF), but its efficacy has not yet been experimentally confirmed. AIM OF THE STUDY: To evaluate whether HTS could attenuate cyclophosphamide-induced inflammation and oxidative damage in POF model rats and the human granulosa-like KGN cell line and protect granulosa cell proliferation. MATERIAL AND METHODS: HTS were isolated from ginsenosides and high performance liquid chromatography (HPLC) analysis was used to analyze the HTS components. Cyclophosphamide (CP) was used to establish a POF rat model and KGN cell injury model. Reactive oxygen species (ROS) and antioxidant enzyme production was determined using specific assays, while inflammatory cytokine secretion was measured by enzyme-linked immunosorbent assay (ELISA). The proliferative function of granulosa cells was assessed using high-content screening and immunohistochemistry to determine the Ki67 protein level. Protein expression in ovarian tissues and KGN cells was analyzed by Western blotting, quantitative real-time PCR (qRT-PCR) was used to determine the transcriptional changes in ovarian tissues and KGN cells. RESULTS: In CP-treated POF model rats, HTS significantly decreased malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels, increased glutathione oxidase (GSH) levels, and upregulated Ki67 expression in ovarian granulosa cells. In addition, HTS significantly increased cell survival and Ki67 expression levels in CP-treated cells, and superoxide dismutase (SOD) levels were significantly increased. HTS significantly downregulated IL-6, TNF-α, and interleukin-1ß (IL-1ß) mRNA expression and significantly inhibited nuclear factor kappa-B p65 (NF-κB p65) and p38 mitogen activated protein kinase (p38 MAPK) phosphorylation in POF model rats and KGN cells. Moreover, NF-κB p65 and p38 MAPK levels were significantly increased in ovarian granulosa cells. p65 and p38 protein and gene expression was significantly downregulated. CONCLUSION: HTS ameliorated CP-induced POF and human granulosa cell injury, possibly by inhibiting inflammation and oxidative damage mediated by the p38 MAPK/NF-κB p65 signaling pathway.


Asunto(s)
Ginsenósidos , Insuficiencia Ovárica Primaria , Ratas , Humanos , Animales , Femenino , FN-kappa B/metabolismo , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Antígeno Ki-67/metabolismo , Sistema de Señalización de MAP Quinasas , Inflamación/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
J Integr Neurosci ; 23(2): 34, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38419443

RESUMEN

BACKGROUND: Ischemic stroke is the most common form of stroke and the second most common cause of death and incapacity worldwide. Its pathogenesis and treatment have been the focus of considerable research. In traditional Chinese medicine, the root of Mongolian astragalus has been important in the treatment of stroke since ancient times. Astragalus polysaccharide (APS) is a key active ingredient of astragalus and offers therapeutic potential for conditions affecting the neurological system, the heart, cancer, and other disorders. However, it is not yet known how APS works to protect against ischemic stroke. METHODS: Rats were subjected to middle cerebral artery occlusion (MCAO) to imitate localized cerebral ischemia. Each of four experimental groups (normal, sham, MCAO, and MCAO+APS) contained 12 adult male Sprague-Dawley (SD) rats selected randomly from a total of 48 rats. Following successful establishment of the model, rats in the MCAO+APS group received intraperitoneal injection of APS (50 mg/kg) once daily for 14 days, whereas all other groups received no APS. The Bederson nerve function score and the forelimb placement test were used to detect motor and sensory function defects, while Nissl staining was used to investigate pathological defects in the ventroposterior thalamic nucleus (VPN). Immunohistochemical staining and Western blot were used to evaluate the expression of Neurogenic locus notch homolog protein 1 (Notch1), hairy and enhancer of split 1 (Hes1), phospho-nuclear factor-κB p65 (p-NFκB p65), and nuclear factor-κB p65 (NFκB p65) proteins in the VPN on the ischemic side of MCAO rats. RESULTS: APS promoted the recovery of sensory and motor function, enhanced neuronal morphology, increased the number of neurons, and inhibited the expression of Notch1/NFκB signaling pathway proteins in the VPN of rats with cerebral ischemia. CONCLUSION: After cerebral ischemia, APS can alleviate symptoms of secondary damage to the VPN, which may be attributed to the suppression of the Notch1/NFκB pathway.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Masculino , Animales , Ratas Sprague-Dawley , FN-kappa B/metabolismo , Isquemia Encefálica/metabolismo , Neuronas/metabolismo , Transducción de Señal , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Receptor Notch1/metabolismo , Receptor Notch1/uso terapéutico
9.
Zhen Ci Yan Jiu ; 49(1): 37-46, 2024 Jan 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38239137

RESUMEN

OBJECTIVES: To investigate the effects of graphene-based warm uterus acupoint paste on uterine Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear transcription factor-kappa B p65 (NF-κB p65) signaling pathway and Th1/Th2 immune balance in primary dysmenorrhea ( PD ) model rats, so as to reveal its immunological mechanisms of relieving dysmenorrhea. METHODS: Thirty SD female rats were randomly divided into 3 groups:normal group, model group and acupoint paste group, with 10 rats in each group. PD rat model was established by subcutaneous injection of estradiol benzoate for 10 consecutive days. At the same time of modeling, graphene-based warm uterus acupoint paste was applied to the acupoints of "Guanyuan" (CV4), bilateral "Zigong" (EX-CA1) and "Sanyinjiao" (SP6) of rats in the acupoint paste group. The application was continuously applied once daily for 10 d, 5 h each time. On the 11th day, oxytocin was injected intraperitoneally to observe the writhing latency, writhing times within 30 min and writhing score of rats in each group. The spleen and thymus indexes were calculated. The pathological changes of spleen and thymus tissue were observed after HE staining. The contents of serum immunoglobulin (Ig) A, IgG, tumor necrosis factor-α (TNF-α), interleukin (IL)-2, interferon-γ (IFN-γ), IL-4 and IL-10 were detected by ELISA . The protein and mRNA expression levels of TLR4, MyD88 and NF-κB p65 in rat uterine tissue were detected by Western blot and real-time quantitative PCR, respectively. RESULTS: Compared with the normal group, the writhing times and writhing scores within 30 min of rats in the model group were significantly increased(P<0.001), and the rats showed writhing reaction (P<0.01). The spleen index and thymus index were significantly decreased(P<0.01, P<0.05). The spleen and thymus had obvious pathological changes. The contents of IgA, IgG, TNF-α, IL-2 and IFN-γ in serum were significantly increased, while the contents of serum IL-4 and IL-10 were significantly decreased(P<0.001, P<0.01). The expression levels of TLR4, MyD88, NF-κB p65 protein and corresponding mRNA in uterine tissue were significantly increased(P<0.001). Following intervention, compared with the model group, the writhing latency time of rats in the acupoint paste group was prolonged, and the writhing times and writhing scores within 30 min were significantly decreased (P<0.001). The spleen index and thymus index were significantly increased(P<0.01, P<0.05). The pathological changes of spleen and thymus were improved. The contents of serum IgA, IgG, TNF-α, IL-2 and IFN-γ were significantly decreased, while the contents of IL-4 and IL-10 were significantly increased(P<0.001, P<0.05, P<0.01). The expression of TLR4, MyD88, NF-κB p65 protein and the corresponding mRNA levels in uterine tissue were decreased(P<0.001, P<0.01). CONCLUSIONS: Graphene-based warm uterus acupoint paste can regulate the immune balance of Th1/ Th2 by regulating TLR4/ MyD88/ NF-κB p65 signaling pathway, repair the pathological damage of immune tissue, improve immune function, and effectively relieve the pain symptoms of PD rats.


Asunto(s)
Dismenorrea , Grafito , Humanos , Ratas , Femenino , Animales , Ratas Sprague-Dawley , Dismenorrea/genética , Dismenorrea/terapia , FN-kappa B/genética , Factor 88 de Diferenciación Mieloide/genética , Puntos de Acupuntura , Receptor Toll-Like 4/genética , Interleucina-2 , Interleucina-10 , Factor de Necrosis Tumoral alfa , Interleucina-4 , Transducción de Señal , ARN Mensajero , Inmunidad , Inmunoglobulina A , Inmunoglobulina G
10.
J Biomol Struct Dyn ; : 1-29, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287503

RESUMEN

Chronic burn wounds are frequently characterised by a prolonged and dysregulated inflammatory phase that is mediated by over-activation of NF-κB p65. Synthetic wound healing drugs used for treatment of inflammation are primarily associated with several shortcomings which reduce their therapeutic index. In this scenario, phytoconstituents that exhibit multifaceted biological activities including anti-inflammatory effects have emerged as a promising therapeutic alternative. However, identification and isolation of phytoconstituents from medicinal herbs is a cumbersome method that is linked to profound uncertainty. Hence, present study aimed to identify prospective phytoconstituents as inhibitors of RHD of NF-κB p65 by utilizing in silico approach. Virtual screening of 2821 phytoconstituents was performed against protein model. Out of 2821 phytoconstituents, 162 phytoconstituents displayed a higher binding affinity (≤ -8.0 kcal/mol). These 162 phytoconstituents were subjected to ADMET predictions, and 15 of them were found to satisfy Lipinski's rule of five and showed favorable pharmacokinetic properties. Among these 15 phytoconstituents, 5 phytoconstituents with high docking scores i.e. silibinin, bismurrayaquinone A, withafastuosin B, yuccagenin, (+)-catechin 3-gallate were selected for molecular dynamics (MD) simulation analysis. Results of MD simulation indicated that withafastuosin B, (+)-catechin 3-gallate and yuccagenin produced a compact and stable complex with protein without significant variations in conformation. Relative binding energy analysis of best hit molecules indicate that withafastuosin B, and (+)-catechin 3-gallate exhibit high binding affinity with target protein among other lead molecules. Findings of study suggest that these phytoconstituents could serve as promising anti-inflammatory agents for treatment of burn wounds by inhibiting the RHD of NF-κB p65.Communicated by Ramaswamy H. Sarma.

11.
Phytomedicine ; 123: 155217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992492

RESUMEN

BACKGROUND: Owing to the early suffering age and the rising incidence of type 1 diabetes (T1D), the resulting male reproductive dysfunction and fertility decline have become a disturbing reality worldwide, with no effective strategy being available. Icariin (ICA), a flavonoid extracted from Herba Epimedium, has been proved its promising application in improving diabetes-related complications including diabetic nephropathy, endothelial dysfunction and erectile dysfunction. Ensuring the future reproductive health of children and adolescents with T1D is crucial to improve global fertility. However, its roles in the treatment of T1D-induced testicular dysfunction and the potential mechanisms remain elusive. PURPOSE: The purpose of this present study was to investigate whether ICA ameliorates T1D-induced testicular dysfunction as well as its potential mechanisms. METHODS: T1D murine model was established by intraperitoneal injection of STZ with or without treated with ICA for eleven weeks. Morphological, pathological and serological experiments were used to determine the efficacy of ICA on male reproductive function of T1D mice. Western blotting, Immunohistochemistry analysis, qRT-PCR and kit determination were performed to investigated the underlying mechanisms. RESULTS: We found that replenishment of ICA alleviated testicular damage, promoted testosterone production and spermatogenesis, ameliorated apoptosis and blood testis barrier impairment in streptozotocin-induced T1D mice. Functionally, ICA treatment triggered adenosine monophosphate protein kinase (AMPK) activation, which in turn inhibited the nuclear translocation of nuclear factor kappa B p65 (NF-κB p65) to reduce inflammatory responses in the testis and activated nuclear factor erythroid 2-related factor 2(Nrf2), thereby enhancing testicular antioxidant capacity. Further studies revealed that supplementation with the AMPK antagonist Compound C or depletion of Nrf2 weakened the beneficial effects of ICA on testicular dysfunction of T1D mice. CONCLUSION: Collectively, these results demonstrate the feasibility of ICA in the treatment of T1D-induced testicular dysfunction, and reveal the important role of AMPK-mediated Nrf2 activation and NF-κB p65 inhibition in ICA-associated testicular protection during T1D.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Flavonoides , Humanos , Niño , Ratones , Masculino , Animales , Adolescente , FN-kappa B/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico
12.
J Ethnopharmacol ; 321: 117487, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030024

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a life-threatening condition with high morbidity and mortality, underscoring the urgent need for novel treatments. Monochasma savatieri Franch. (LRC) is commonly used clinically to treat wind-heat cold, bronchitis, acute pneumonia and acute gastroenteritis. However, its role in the treatment of ALI and its mechanism of action are still unclear. AIM OF THE STUDY: This study aimed to demonstrate the pharmacological effects and underlying mechanisms of LRC extract, and provide important therapeutic strategies and theoretical basis for ALI. MATERIALS AND METHODS: In this study, a research paradigm of integrated pharmacology combining histopathological analysis, network pharmacology, metabolomics, and biochemical assays was used to elucidate the mechanisms underlaying the effects of LRC extract on LPS-induced ALI in BALB/c mice. RESULTS: The research findings demonstrated that LRC extract significantly alleviated pathological damage in lung tissues and inhibited apoptosis in alveolar epithelial cells, and the main active components were luteolin, isoacteoside, and aucubin. Lung tissue metabolomic and immunohistochemical methods confirmed that LRC extract could restore metabolic disorders in ALI mice by correcting energy metabolism imbalance, activating cholinergic anti-inflammatory pathway (CAP), and inhibiting TLR4/NF-κB signaling pathway. CONCLUSIONS: This study showed that LRC extract inhibited the occurrence and development of ALI inflammation by promoting the synthesis of antioxidant metabolites, balancing energy metabolism, activating CAP and suppressing the α7nAChR-TLR4/NF-κB p65 signaling pathway. In addition, our study provided an innovative research model for exploring the effective ingredients and mechanisms of traditional Chinese medicine. To the best of our knowledge, this is the first report describing the protective effects of LRC extract in LPS-induced ALI mice.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Animales , Ratones , FN-kappa B/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/toxicidad , Transducción de Señal , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & control , Pulmón/patología , Neumonía/patología
13.
Phytomedicine ; 123: 154928, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043386

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) has a poor prognosis because of its high degree of malignancy and the lack of effective treatment options. Cancer-associated fibroblasts (CAFs) comprise the most abundant stromal cells in the tumor microenvironment (TME), leading to functional impairments and facilitating tumor metastasis. Excessive TNF-α further promotes cross-talk between different cells in TME. Therefore, there is an urgent need to develop more effective therapies and potential drugs that target the key factors that promote TNBC metastasis. PURPOSE: The study aimed to evaluate the efficacy of Bruceine D, an active compound derived from the Chinese herb Brucea javanica, in inhibiting metastasis and elucidate the underlying mechanism of action in TNBC. METHODS: In vitro, the clonogenic and the Transwell assays were used to assess the effects of Bruceine D on the proliferation, migration and invasion abilities of co-cultured CAFs and MDA-MB-231 (4T1) cells under TNF-α stimulation. TNF-α, IL-6, CXCL12, TGF-ß1, and MMP9 levels in the supernatant of co-cultured cells were determined using ELISA. Western blotting was utilized to detect the expression levels of proteins related to the Notch1-Jagged1/NF-κB(p65) pathway. In vivo, the anti-tumor growth and anti-metastatic effectiveness of Bruceine D was evaluated by determining tumor weight, number of metastatic lesions, and pathological changes in the tumor and lung/liver tissues. The inhibitory effect of Bruceine D on α-SMA+ CAFs activation and CAF-medicated extracellular matrix remodeling was accessed using immunohistochemistry, immunofluorescence, and Masson and Sirius Red staining. The expression levels of Notch1, Jagged1 and p-NF-κB(p65) proteins in the primary tumors were measured by immunohistochemistry and western blotting. RESULTS: In vitro, Bruceine D significantly inhibited the migration and invasion of co-cultured CAFs and MDA-MB-231 (4T1) cells under TNF-α stimulation, reduced the expression of tumor-promoting and matrix-remodeling cytokines secreted by CAFs, and hindered the mutual activation of Notch1-Jagged1 and NF-κB(p65). In vivo, Bruceine D significantly suppressed tumor growth and the formation of lung and liver metastases by decreasing TNF-α stimulated α-SMA+ CAFs activation, collagen fibers, MMPs production, and inhibited Notch1-Jagged1/NF-κB(p65) signaling in TNBC-bearing mice. CONCLUSION: Bruceine D effectively weakened the "tumor-CAF-inflammation" network by inhibiting the mutual activation of Notch1-Jagged1 and NF-κB(p65) and thereby suppressed TNBC metastasis. This study first explored that Bruceine D disrupted the cross-talk between CAFs and tumor cells under TNF-α stimulation to inhibit the metastasis of TNBC, and highlighted the potential of Bruceine D as therapeutic agent for suppressing tumor metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Cuassinas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
14.
J Inflamm Res ; 16: 4331-4346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37791114

RESUMEN

Purpose: Xianglian Zhixie Tablet (XLZXT), a classical traditional Chinese medicine formulation, is commonly used to treat Ulcerative Colitis (UC) in China. However, the therapeutic mechanisms of XLZXT for UC have yet to be fully understood. This study aimed to investigate the curative benefits of XLZXT and its associated mechanisms for healing UC in mice. Methods: In the present study, the 1% dextran sulfate sodium (DSS) solution was used to establish the UC model in C57BL/6N mice. To investigate the therapeutic effects of XLZXT on DSS-induced UC mice, several parameters were measured, including DAI score, colon length, spleen index, pathological changes in colon tissue, and levels of inflammatory factors in plasma and colon tissue. By investigating the gut microbiota, assessing the levels of intestinal mucosal protein expression, and looking at the proteins involved in the TLR4/MyD88/NF-B p65 signaling pathway, the mechanisms of XLZXT impact on UC were investigated. Mouse feces were examined for patterns of gut microbiota expression using high-throughput sequencing of 16S rRNA. Results: XLZXT effectively alleviated UC symptoms and colon pathological damage in DSS-induced UC mice. It improved body weight loss, stool consistency, and hematochezia, while also repairing colon damage. Moreover, it down-regulated pro-inflammatory cytokines (such as TNF-α, IL-1ß, and IL-6), and up-regulated anti-inflammatory cytokines (such as IL-10). XLZXT also increased the expression of MUC-2, Occludin and ZO-1, while decreasing the expression of NF-κB, MyD88 and TLR4. Additionally, it regulated gut microbiota disorder by increasing the abundance of beneficial bacteria and reducing the adhesion of intestinal harmful bacteria. Conclusion: XLZXT demonstrated therapeutic effects on DSS-induced UC mice. The mechanisms may be associated with repairing the intestinal mucosal barrier, regulating the TLR4/MyD88/NF-κB p65 signaling pathway, and restoring the balance of gut microbiota.

15.
Toxicol Rep ; 11: 355-367, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37868808

RESUMEN

Confronting the profound public health concern of alcohol-induced liver damage calls for inventive therapeutic measures. The social, economic, and clinical ramifications are extensive and demand a comprehensive understanding. This thorough examination uncovers the complex relationship between alcohol intake and liver damage, with a special emphasis on the pivotal roles of the Toll-like receptor 4 (TLR4)/NF-κB p65 and CYP2E1/ROS/Nrf2 signalling networks. Different alcohol consumption patterns, determined by a myriad of factors, have significant implications for liver health, leading to a spectrum of adverse effects. The TLR4/NF-κB p65 pathway, a principal regulator of inflammation and immune responses, significantly contributes to various disease states when its balance is disrupted. Notably, the TLR4/MD-2-TNF-α pathway has been linked to non-alcohol related liver disease, while NF-κB activation is associated with alcohol-induced liver disease (ALD). The p65 subunit of NF-κB, primarily responsible for the release of inflammatory cytokines, hastens the progression of ALD. Breakthrough insights suggest that curcumin, a robust antioxidant and anti-inflammatory compound sourced from turmeric, effectively disrupts the TLR4/NF-κB p65 pathway. This heralds a new approach to managing alcohol-induced liver damage. Initial clinical trials support curcumin's therapeutic potential, highlighting its ability to substantially reduce liver enzyme levels. The narrative surrounding alcohol-related liver injury is gradually becoming more intricate, intertwining complex signalling networks such as TLR4/NF-κB p65 and CYP2E1/ROS/Nrf2. The protective role of curcumin against alcohol-related liver damage marks the dawn of new treatment possibilities. However, the full realisation of this promising therapeutic potential necessitates rigorous future research to definitively understand these complex mechanisms and establish curcumin's effectiveness and safety in managing alcohol-related liver disorders.

16.
Exp Ther Med ; 26(3): 446, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37614435

RESUMEN

As a type of contact dermatitis (CD), irritant CD (ICD) is an acute skin inflammation caused by external irritants, such as soap, water and chemicals. Humulus japonicus (HJ) is a herbal medicine widely distributed in Asian countries and has anti-inflammatory, antimicrobial and antioxidant effects. The current study aimed to investigate the anti-dermatitis effect of HJ on ICD and determine the molecular basis of this effect using 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced dermatitis mice models and lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Mice were orally administered HJ and luteolin, the major compound in HJ, and topically administered TPA on the right ear to induce dermatitis. Topical application of TPA induced ear redness, oedema and increased infiltration of neutrophils and macrophages, which ameliorated following HJ and luteolin administration. The gene expression levels of inflammatory cell migrating chemokines, chemokine ligand 3 (CCL3) and chemokine (C-X-C motif) ligand 2 (CXCL2), and pro-inflammatory cytokine, IL-1ß, were reduced in the ears of HJ- and luteolin-treated mice. HJ and luteolin also inhibited the gene expression of chemokines, CCL3 and CXCL2, and pro-inflammatory cytokines, IL-1ß, IL-6 and TNF-α, in LPS-stimulated RAW264.7 cells. Moreover, HJ and luteolin decreased the expression levels of two key inflammatory enzymes, cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS), and total and active phosphorylation of NF-κB p65. These results suggest that HJ could have a protective effect against ICD by suppressing inflammatory responses; therefore, HJ is a promising therapeutic strategy for ICD treatment.

17.
Artículo en Inglés | MEDLINE | ID: mdl-37441002

RESUMEN

Background: Bungarus multicinctus is one of the most dangerous venomous snakes prone to cardiopulmonary damage with extremely high mortality. In our previous work, we found that glutamine (Gln) and glutamine synthetase (GS) in pig serum were significantly reduced after Bungarus multicinctus bite. In the present study, to explore whether there is a link between the pathogenesis of cardiopulmonary injury and Gln metabolic changes induced by Bungarus multicinctus venom. We investigated the effect of Gln supplementation on the lung and heart function after snakebite. Methods: We supplemented different concentrations of Gln to mice that were envenomated by Bungarus multicinctus to observe the biological behavior, survival rate, hematological and pathological changes. Gln was supplemented immediately or one hour after the venom injection, and then changes in Gln metabolism were analyzed. Subsequently, to further explore the protective mechanism of glutamine on tissue damage, we measured the expression of heat-shock protein70 (HSP70), NF-κB P65, P53/PUMA by western blotting and real-time polymerase in the lung and heart. Results: Gln supplementation delayed the envenoming symptoms, reduced mortality, and alleviated the histopathological changes in the heart and lung of mice bitten by Bungarus multicinctus. Additionally, Gln increased the activity of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and glutaminase (GLS) in serum. It also balanced the transporter SLC7A11 expression in heart and lung tissues. Bungarus multicinctus venom induced the NF-κB nuclear translocation in the lung, while the HO-1 expression was suppressed. At the same time, venom activated the P53/PUMA signaling pathway and the BAX expression in the heart. Gln treatment reversed the above phenomenon and increased HSP70 expression. Conclusion: Gln alleviated the glutamine metabolism disorder and cardiopulmonary damage caused by Bungarus multicinctus venom. It may protect lungs and heart against venom by promoting the expression of HSP70, inhibiting the activation of NF-κB and P53/PUMA, thereby delaying the process of snake venom and reducing mortality. The present results indicate that Gln could be a potential treatment for Bungarus multicinctus bite.

18.
Zhongguo Gu Shang ; 36(6): 519-24, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37366093

RESUMEN

OBJECTIVE: To observe the analgesic effect of Tuina by pressing and kneading the Huantiao (GB30) acupoint on rats with chronic constriction injury (CCI) and to explore the analgesic mechanism of Tuina on sciatica rats. METHODS: Thirty-two SPF male SD rats weighing 180 to 220 g were randomly divided into fore groups:blank group (without any treatment), sham group (only exposed without sciatic nerve ligating), model group (sciatic nerve ligating) and Tuina group (manual intervention after lsciatic nerve ligating). The CCI model was prepared by ligating the right sciatic nerve of the rats, on the third day of modeling, the rats in the Tuina group were given pressing and kneading the Huantiao (GB30) point for 14 days, and the changes of paw withdrawal threshold(PWT), paw withdrawal latency(PWL) were measured before and on the 1st, 3rd, 7th, 10th, 14th and 17th days after modeling. The changes of sciatic functional index(SFI) were measured before and on the 1st and 17th day after modeling. The morphological changes of the sciatic nerve were observed by hematoxylin-eosin(HE) staining;and the differences in NF-κB protein expression in the right dorsal horn of the spinal cord of rats were detected. RESULTS: Following modeling, there was no significant difference in PWT, PWL and SFI between the blank group and the sham group (P>0.05), but the PWT, PWL and SFI of the model group and the Tuina group decreased significantly (P<0.01). After manual intervention, the pain threshold of rats in Tuina group increased. On the 8th day of manual intervention (the 10th day after modeling), PWT in Tuina group increased significantly compared with that in model group (P<0.01). On the 5th day of manual intervention (the 7th day after modeling), the PWL of the massage group was significantly higher than that of the model group (P<0.01). The pain threshold of rats in Tuina group continued to rise with the continuous manipulation intervention. After 14 days of manipulative intervention, the sciatic nerve function index of rats in the Tuina group increased significantly(P<0.01). Compared with the blank group and sham group, the myelinated nerve fibers of sciatic nerve in the model group were disordered and the density of axons and myelin sheath was uneven. Compared with the model group, the nerve fibers of rats in the Tuina group were gradually continuous and the axons and myelin sheath were more uniform than those in the model group. Compared with the blank group and sham group, the expression of NF-κB protein in the right spinal dorsal horn of the model group was significantly increased(P<0.01). Compared with the model group, the expression of NF-κB protein in the right spinal dorsal horn of rats in Tuina group decreased significantly(P<0.01). CONCLUSION: Pressing and kneading the Huantiao (GB30) point restores nerve fiber alignment;and improves the PWT、PWL and SFI in the CCI model by decreasing NF-κB p65 protein expression in the spinal dorsal horn. There fore, Tuina demmstrates an analgesic effect and improves the gait of rats with sciatica.


Asunto(s)
Ciática , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Ciática/terapia , FN-kappa B/metabolismo , Puntos de Acupuntura , Asta Dorsal de la Médula Espinal/metabolismo , Médula Espinal , Masaje
19.
Drug Des Devel Ther ; 17: 1515-1529, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37249927

RESUMEN

Introduction: Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration. OA usually manifests as joint pain, limited mobility, and joint effusion. Currently, the primary OA treatment is non-steroidal anti-inflammatory drugs (NSAIDs). Although they can alleviate the disease's clinical symptoms and signs, the drugs have some side effects. Selenium nanoparticles (SeNPs) may be an alternative to relieve OA symptoms. Materials and Results: We confirmed the anti-inflammatory effect of selenium nanoparticles (SeNPs) in vitro and in vivo experiments for OA disease in this study. In vitro experiments, we found that SeNPs could significantly reduce the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the major inflammatory factors, and had significant anti-inflammatory and anti-arthritic effects. SeNPs can inhibit reactive oxygen species (ROS) production and increased glutathione peroxidase (GPx) activity in interleukin-1beta (IL-1ß)-stimulated cells. Additionally, SeNPs down-regulated matrix metalloproteinase-13 (MMP-13) and thrombospondin motifs 5 (ADAMTS-5) expressions, while up-regulated type II collagen (COL-2) and aggrecan (ACAN) expressions stimulated by IL-1ß. The findings also indicated that SeNPs may exert their effects through suppressing the NF-κB p65 and p38/MAPK pathways. In vivo experiments, the prevention of OA development brought on by SeNPs was demonstrated using a DMM model. Discussion: Our results suggest that SeNPs may be a potential anti-inflammatory agent for treating OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Selenio , Humanos , Transducción de Señal , FN-kappa B/metabolismo , Selenio/farmacología , Selenio/metabolismo , Selenio/uso terapéutico , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Antiinflamatorios/uso terapéutico , Cartílago Articular/metabolismo , Células Cultivadas , Condrocitos , Interleucina-1beta/metabolismo
20.
Phytomedicine ; 116: 154806, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37236046

RESUMEN

BACKGROUND: Alginate oligosaccharide (AOS) has been reported to exert a crucial role in maintaining the intestinal mucosal barrier (IMB) function. The current study aimed at ascertaining the protective effects of AOS on aging-induced IMB dysfunction and to elucidate the underlying molecular mechanisms. METHODS: An aging mouse model and a senescent NCM460 cell model were established using d-galactose. AOS was administered to aging mice and senescent cells, and IMB permeability, inflammatory response and tight junction proteins were assessed. In silico analysis was conducted to identify factors regulated by AOS. Using gain- and loss-of-function approaches, we evaluated the roles of FGF1, TLR4 and NF-κB p65 in the aging-induced IMB dysfunction and NCM460 cell senescence. RESULTS: AOS protected the IMB function of aging mice and NCM460 cells by reducing permeability and increasing tight junction proteins. In addition, AOS up-regulated FGF1, which blocked the TLR4/NF-κB p65 pathway, and identified as the mechanism responsible for the protective effect of AOS. CONCLUSION: AOS blocks the TLR4/NF-κB p65 pathway via inducing FGF1, ultimately reducing the risk of IMB dysfunction in aging mice. This study highlights the potential of AOS as a protective agent against aging-induced IMB disorder and provides insight into the underlying molecular mechanisms.


Asunto(s)
Enfermedades Gastrointestinales , Enfermedades Intestinales , Ratones , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Factor 1 de Crecimiento de Fibroblastos , Alginatos/farmacología , Proteínas de Uniones Estrechas/metabolismo , Oligosacáridos/farmacología , Envejecimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA