Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Tradit Complement Med ; 12(3): 287-301, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35493312

RESUMEN

Background and aim: Metabolic syndrome (MetS) is a complex disease of physiological imbalances interrelated to abnormal metabolic conditions, such as abdominal obesity, type II diabetes, dyslipidemia and hypertension. In the present pilot study, we investigated the nutraceutical bitter melon (Momordica charantia L) -intake induced transcriptome and metabolome changes and the converging metabolic signaling networks underpinning its inhibitory effects against MetS-associated risk factors. Experimental procedure: Metabolic effects of lyophilized bitter melon juice (BMJ) extract (oral gavage 200 mg/kg/body weight-daily for 40 days) intake were evaluated in diet-induced obese C57BL/6J male mice [fed-high fat diet (HFD), 60 kcal% fat]. Changes in a) serum levels of biochemical parameters, b) gene expression in the hepatic transcriptome (microarray analysis using Affymetrix Mouse Exon 1.0 ST arrays), and c) metabolite abundance levels in lipid-phase plasma [liquid chromatography mass spectrometry (LC-MS)-based metabolomics] after BMJ intervention were assessed. Results and conclusion: BMJ-mediated changes showed a positive trend towards enhanced glucose homeostasis, vitamin D metabolism and suppression of glycerophospholipid metabolism. In the liver, nuclear peroxisome proliferator-activated receptor (PPAR) and circadian rhythm signaling, as well as bile acid biosynthesis and glycogen metabolism targets were modulated by BMJ (p < 0.05). Thus, our in-depth transcriptomics and metabolomics analysis suggests that BMJ-intake lowers susceptibility to the onset of high-fat diet associated MetS risk factors partly through modulation of PPAR signaling and its downstream targets in circadian rhythm processes to prevent excessive lipogenesis, maintain glucose homeostasis and modify immune responses signaling.

2.
Br J Nutr ; 121(11): 1235-1246, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30975228

RESUMEN

EPA and DHA are important components of cell membranes. Since humans have limited ability for EPA and DHA synthesis, these must be obtained from the diet, primarily from oily fish. Dietary EPA and DHA intakes are constrained by the size of fish stocks and by food choice. Seed oil from transgenic plants that synthesise EPA and DHA represents a potential alternative source of these fatty acids, but this has not been tested in humans. We hypothesised that incorporation of EPA and DHA into blood lipids from transgenic Camelina sativa seed oil (CSO) is equivalent to that from fish oil. Healthy men and women (18-30 years or 50-65 years) consumed 450 mg EPA + DHA from either CSO or commercial blended fish oil (BFO) in test meals in a double-blind, postprandial cross-over trial. There were no significant differences between test oils or sexes in EPA and DHA incorporation into plasma TAG, phosphatidylcholine or NEFA over 8 h. There were no significant differences between test oils, age groups or sexes in postprandial VLDL, LDL or HDL sizes or concentrations. There were no significant differences between test oils in postprandial plasma TNFα, IL 6 or 10, or soluble intercellular cell adhesion molecule-1 concentrations in younger participants. These findings show that incorporation into blood lipids of EPA and DHA consumed as CSO was equivalent to BFO and that such transgenic plant oils are a suitable dietary source of EPA and DHA in humans.


Asunto(s)
Camellia , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Aceites de Pescado/administración & dosificación , Aceites de Plantas/administración & dosificación , Adolescente , Adulto , Anciano , Colesterol/sangre , Estudios Cruzados , Método Doble Ciego , Ácidos Grasos no Esterificados/sangre , Femenino , Aceites de Pescado/química , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Fosfatidilcolinas/sangre , Aceites de Plantas/química , Plantas Modificadas Genéticamente/química , Periodo Posprandial/efectos de los fármacos , Semillas/química , Adulto Joven
3.
Br J Nutr ; 121(1): 65-73, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30378505

RESUMEN

This study quantified the fatty acid profile with emphasis on the stereo-specifically numbered (sn) 2 positional distribution in TAG and the composition of main phospholipids at different lactation stages. Colostrum milk (n 70), transitional milk (n 96) and mature milk (n 82) were obtained longitudinally from healthy lactating women in Shanghai. During lactation, total fatty acid content increased, with SFA dominating in fatty acid profile. A high ratio of n-6:n-3 PUFA was observed as 11:1 over lactation due to the abundance of linoleic acid in Chinese human milk. As the main SFA, palmitic acid showed absolute sn-2 selectivity, while oleic acid, linoleic acid and α-linolenic acid, the main unsaturated fatty acids, were primarily esterified at the sn-1 and sn-3 positions. Nervonic acid and C22 PUFA including DHA were more enriched in colostrum with an sn-2 positional preference. A total of three dominant phospholipids (phosphatidylethanolamine (PE), phosphatidylcholine (PC) and sphingomyelin (SM)) were analysed in the collected samples, and each showed a decline in amount over lactation. PC was the dominant compound followed by SM and PE. With prolonged breast-feeding time, percentage of PE in total phospholipids remained constant, but PC decreased, and SM increased. Results from this study indicated a lipid profile different from Western reports and may aid the development of future infant formula more suitable for Chinese babies.


Asunto(s)
Calostro/química , Ácidos Grasos/análisis , Leche Humana/química , Fosfolípidos/análisis , Adulto , Pueblo Asiatico , China , Ácidos Docosahexaenoicos/análisis , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-6/análisis , Femenino , Humanos , Lactancia/fisiología , Ácido Linoleico/análisis , Ácido Oléico/análisis , Ácido Palmítico/análisis , Factores de Tiempo , Ácido alfa-Linolénico/análisis
4.
Br J Nutr ; 120(6): 628-644, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30058990

RESUMEN

Dietary phosphoglycerides and n-3 long-chain PUFA (LC-PUFA) play important functions in the development of pikeperch (Sander lucioperca) larvae. This study aimed to determine optimal dietary levels of soyabean lecithin (SBL)-derived phospholipids (PL) in starter feeds for pikeperch larvae 10-30 d post-hatch (DPH) and examine performance and ontogeny by additional supplementation of n-3 LC-PUFA in the form of Algatrium DHA 70 (glyceride product; 660-700 mg/g DHA; EPA 60-75 mg/g). In total, six isoproteic and isoenergetic extruded diets were formulated with increasing levels of PL (3·7, 8·3 or 14·5 % wet weight (w.w.), respectively); however, three of the diets were supplemented with three levels of Algatrium DHA 70 (0·6, 2·0 or 3·4 %, respectively). Liver proteomic analyses of larvae at 30 DPH were included for effects of PL and primarily DHA on performance, physiological expression and interactions in larval proteins. In addition, bone anomalies, digestive enzymatic activity, candidate gene expression and skeleton morphogenesis were examined. Results confirmed the importance of dietary PL levels of at least 8·2 % w.w., and an additional beneficiary effect of supplementation with DHA plus EPA. Thus, combined supplementation of SBL (up to 14·51 % w.w. PL) and n-3 LC-PUFA (1·004 % DM DHA and 0·169 % DM EPA) in the form of TAG resulted in highest growth and lowest incidence of anomalies, improved digestive enzyme activity and had differential effect on liver proteomics. The results denote that essential fatty acids can be supplemented as TAG to have beneficial effects in pikeperch larvae development.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Ácidos Grasos Omega-3/farmacología , Larva/efectos de los fármacos , Percas/crecimiento & desarrollo , Fosfolípidos/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Huesos/efectos de los fármacos , Digestión , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Alimentos Formulados , Larva/crecimiento & desarrollo , Lecitinas/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas/metabolismo , Glycine max/química , Triglicéridos/farmacología
5.
Br J Nutr ; 119(3): 271-279, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29316994

RESUMEN

DHA is an important component of neural lipids accumulating in neural tissue during development. Inadequate DHA in gestation may compromise infant development, but it is unknown whether there are lasting effects. We sought to determine whether the observed effects of fetal DHA inadequacy on infant development persist into early childhood. This follow-up study assessed children (5-6 years) whose mothers received 400 mg/d DHA or a placebo during pregnancy. Child neurodevelopment was assessed with several age-appropriate tests including the Kaufman Assessment Battery for Children. A risk-reduction model was used whereby the odds that a child from the maternal placebo group would fail to achieve a test score in the top quartile was calculated. The association of maternal DHA intake and status in gestation with child test scores, as well as with child DHA intake and status, was also determined. No differences were detected in children (n 98) from the maternal placebo and DHA groups achieving a high neurodevelopment test score (P>0·05). However, maternal DHA status was positively related to child performance on some tests including language and short-term memory. Furthermore, child DHA intake and status were related to the mother's intake and status in gestation. The neurodevelopment effects of fetal DHA inadequacy may have been lost or masked by other variables in the children. Although we provide evidence that maternal DHA status is related to child cognitive performance, the association of maternal and child DHA intake and status limits the interpretation of whether DHA before or after birth is important.


Asunto(s)
Encéfalo/embriología , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/deficiencia , Desarrollo Fetal/efectos de los fármacos , Atención Prenatal , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Niño , Preescolar , Cognición/efectos de los fármacos , Suplementos Dietéticos , Método Doble Ciego , Femenino , Estudios de Seguimiento , Humanos , Lenguaje , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Estado Nutricional , Placebos , Embarazo
6.
Br J Nutr ; 119(1): 12-21, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29227215

RESUMEN

This study aimed to determine the effects of supplementing the diet of adult Nile tilapia Oreochromis niloticus with phosphatidylcholine (PC) on growth performance, body composition, fatty acid composition and gene expression. Genetically Improved Farmed Tilapia fish with an initial body weight of 83·1 (sd 2·9) g were divided into six groups. Each group was hand-fed a semi-purified diet containing 1·7 (control diet), 4·0, 6·5, 11·5, 21·3 or 41·0 g PC/kg diet for 68 d. Supplemental PC improved the feed efficiency rate, which was highest in the 11·5 g PC/kg diet. Weight gain and specific growth rate were unaffected. Dietary PC increased PC content in the liver and decreased crude fat content in the liver, viscera and body. SFA and MUFA increased and PUFA decreased in muscle with increasing dietary PC. Cytoplasmic phospholipase A 2 and secreted phospholipase A 2 mRNA expression were up-regulated in the brain and heart in PC-supplemented fish. PC reduced fatty acid synthase mRNA expression in the liver and visceral tissue but increased expression in muscle. Hormone-sensitive lipase and lipoprotein lipase expression increased in the liver with increasing dietary PC. Growth hormone mRNA expression was reduced in the brain and insulin-like growth factor-1 mRNA expression in liver reduced with PC above 6·5 g/kg. Our results demonstrate that dietary supplementation with PC improves feed efficiency and reduces liver fat in adult Nile tilapia, without increasing weight gain, representing a novel dietary approach to reduce feed requirements and improve the health of Nile tilapia.


Asunto(s)
Cíclidos/genética , Suplementos Dietéticos , Lecitinas/metabolismo , Fosfatidilcolinas/metabolismo , Alimentación Animal , Animales , Composición Corporal , Encéfalo/metabolismo , Caseínas/química , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/química , Gelatina/química , Perfilación de la Expresión Génica , Hormona del Crecimiento/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Metabolismo de los Lípidos , Lípidos/química , Lipoproteína Lipasa/metabolismo , Masculino , Músculos/metabolismo , Miocardio/metabolismo , ARN Mensajero/metabolismo , Glycine max/química , Esterol Esterasa/metabolismo
7.
Nat Prod Res ; 31(5): 578-582, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27312999

RESUMEN

Epidemiological studies have shown that the consumption of whole grains can reduce risk for metabolic disorders. We recently showed that chronic supplementation with wheat alkylresorcinols (ARs) prevents glucose intolerance and insulin resistance with hepatic lipid accumulation induced in mice by a high-fat high-sucrose diet (HFHSD). This study examines the effects of ARs on the micellar solubility of cholesterol in vitro, as well as the effects of transient AR supplementation on faecal lipid excretion and plasma lipid levels in mice. We found that ARs formed bile micelles with taurocholate independently of phospholipids, and dose-dependently decreased the micellar solubility of cholesterol in a biliary micelle model. Transient AR supplementation with HFHSD increased faecal cholesterol and triglyceride contents and decreased plasma cholesterol concentrations. These suggest that one underlying mechanism through which ARs suppress diet-induced obesity is by interfering with the micellar cholesterol solubilisation in the digestive tract, which subsequently decreases cholesterol absorption.


Asunto(s)
Colesterol/química , Resorcinoles/farmacología , Triticum/química , Animales , Colesterol/metabolismo , Suplementos Dietéticos , Ratones , Micelas , Solubilidad , Triglicéridos/metabolismo
8.
Br J Nutr ; 116(5): 788-97, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27424661

RESUMEN

Dietary supplementation is an effective means to improve EPA and DHA status. However, it is unclear whether lipid structure affects EPA+DHA bioavailability. We determined the effect of consuming different EPA and DHA lipid structures on their concentrations in blood during the postprandial period and during dietary supplementation compared with unmodified fish oil TAG (uTAG). In a postprandial cross-over study, healthy men (n 9) consumed in random order test meals containing 1·1 g EPA+0·37 g DHA as either uTAG, re-esterified TAG, free fatty acids (FFA) or ethyl esters (EE). In a parallel design supplementation study, healthy men and women (n 10/sex per supplement) consumed one supplement type for 12 weeks. Fatty acid composition was determined by GC. EPA incorporation over 6 h into TAG or phosphatidylcholine (PC) did not differ between lipid structures. EPA enrichment in NEFA was lower from EE than from uTAG (P=0·01). Plasma TAG, PC or NEFA DHA incorporation did not differ between lipid structures. Lipid structure did not affect TAG or NEFA EPA incorporation and PC or NEFA DHA incorporation following dietary supplementation. Plasma TAG peak DHA incorporation was greater (P=0·02) and time to peak shorter (P=0·02) from FFA than from uTAG in men. In both studies, the order of EPA and DHA incorporation was PC>TAG>NEFA. In conclusion, EPA and DHA lipid structure may not be an important consideration in dietary interventions.


Asunto(s)
Ácidos Docosahexaenoicos/sangre , Ácido Eicosapentaenoico/sangre , Lípidos/sangre , Lípidos/química , Adulto , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/metabolismo , Femenino , Humanos , Metabolismo de los Lípidos , Masculino , Adulto Joven
9.
Br J Nutr ; 116(1): 35-44, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27138530

RESUMEN

High-producing dairy cows enter a period of negative energy balance during the first weeks of lactation. Energy intake is usually sufficient to cover the increase in energy requirements for fetal growth during the period before calving, but meeting the demand for energy is often difficult during the early stages of lactation. A catabolic state predominates during the transition period, leading to the mobilisation of energy reserves (NEFA and amino acids) that are utilised mainly by the liver and muscle. Increased uptake of mobilised NEFA by the liver, combined with the limited capacity of hepatocytes to either oxidise fatty acids for energy or to incorporate esterified fatty acids into VLDL results in fatty liver syndrome and ketosis. This metabolic disturbance can affect the general health, and it causes economic losses. Different nutritional strategies have been used to restrict negative effects associated with the energy challenge in transition cows. The provision of choline in the form of rumen-protected choline (RPC) can potentially improve liver function by increasing VLDL exportation from the liver. RPC increases gene expression of microsomal TAG transfer protein and APOB100 that are required for VLDL synthesis and secretion. Studies with RPC have looked at gene expression, metabolic hormones, metabolite profiles, milk production and postpartum reproduction. A reduction in liver fat and enhanced milk production has been observed with RPC supplementation. However, the effects of RPC on health and reproduction are equivocal, which could reflect the lack of sufficient dose-response studies.


Asunto(s)
Bovinos/fisiología , Colina/farmacología , Lactancia/fisiología , Hígado/efectos de los fármacos , Rumen/metabolismo , Animales , Colina/administración & dosificación , Femenino , Embarazo
10.
BBA Clin ; 4: 7-13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26925376

RESUMEN

BACKGROUND: Caloric restriction and n-3 polyunsaturated fatty acid (PUFA) supplementation protect from some of the metabolic complications. The aim of this study was to assess the influence of a low calorie diet with or without n-3 PUFA supplementation on glucose dependent insulinotropic polypeptide (GIP) output and insulin sensitivity markers in obese subjects. METHODS: Obese, non-diabetic subjects (BMI 30-40 kg/m(2)) and aged 25-65 yr. were put on low calorie diet (1200-1500 kcal/day) supplemented with either 1.8 g/day n-3 PUFA (DHA/EPA, 5:1) (n = 24) or placebo capsules (n = 24) for three months in a randomized placebo controlled trial. Insulin resistance markers and GIP levels were analysed from samples obtained at fasting and during an oral glucose tolerance test (OGTT). RESULTS: Caloric restriction with n-3 PUFA led to a decrease of insulin resistance index (HOMA-IR) and a significant reduction of insulin output as well as decreased GIP secretion during the OGTT. These effects were not seen with caloric restriction alone. Changes in GIP output were inversely associated with changes in red blood cell EPA content whereas fasting GIP level positively correlated with HOMA-IR index. Blood triglyceride level was lowered by caloric restriction with a greater effect when n-3 PUFA were included and correlated positively with fasting GIP level. CONCLUSIONS: Three months of caloric restriction with DHA + EPA supplementation exerts beneficial effects on insulin resistance, GIP and triglycerides. GENERAL SIGNIFICANCE: Combining caloric restriction and n-3 PUFA improves insulin sensitivity, which may be related to a decrease of GIP levels.

11.
Mol Metab ; 3(5): 565-80, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25061561

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) results from increased hepatic lipid accumulation and steatosis, and is closely linked to liver one-carbon (C1) metabolism. We assessed in C57BL6/N mice whether NAFLD induced by a high-fat (HF) diet over 8 weeks can be reversed by additional 4 weeks of a dietary methyl-donor supplementation (MDS). MDS in the obese mice failed to reverse NAFLD, but prevented the progression of hepatic steatosis associated with major changes in key hepatic C1-metabolites, e.g. S-adenosyl-methionine and S-adenosyl-homocysteine. Increased phosphorylation of AMPK-α together with enhanced ß-HAD activity suggested an increased flux through fatty acid oxidation pathways. This was supported by concomitantly decreased hepatic free fatty acid and acyl-carnitines levels. Although HF diet changed the hepatic phospholipid pattern, MDS did not. Our findings suggest that dietary methyl-donors activate AMPK, a key enzyme in fatty acid ß-oxidation control, that mediates increased fatty acid utilization and thereby prevents further hepatic lipid accumulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA