Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Tissue Cell ; 88: 102371, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593570

RESUMEN

BACKGROUND: Paeonol is a representative active ingredient of the traditional Chinese medicinal herbs Cortex Moutan, which has a well-established cardioprotective effect on ischemic heart disease. However, there is little evidence of the protective effect of paeonol, and its pharmacological mechanism is also unclear. This study aims to explore the protective effect and mechanism of Paeonol on myocardial infarction rat and hypoxic H9c2 cells. METHODS: Myocardial ischemia/reperfusion (I/R) was induced by occlusion of the left anterior descending coronary artery for 1 h followed by 3 h of reperfusion, and then gavage with Paeonol for 7 days. H9c2 cells were applied for the in vitro experiments and hypoxia/reoxygenation (H/R) model was established. CKIP-1 expression was evaluated by qPCR and western blot. The expression of genes involved in apoptosis, inflammation and ion channel was measured by western blot. The currents levels of Nav1.5 and Kir2.1 were measured by whole-cell patch-clamp recording. RESULTS: CKIP-1 expression was decreased in H/R-induced H9c2 cells, which was inversely increased after Paeonol treatment. Paeonol treatment could increase the viability of H/R-induced H9c2 cells and diminish the apoptosis and inflammation of H/R-induced H9c2 cells, while si-CKIP-1 treatment inhibited the phenomena. Moreover, the currents levels of Nav1.5 and Kir2.1 were reduced in H/R-induced H9c2 cells, which were inhibited after Paeonol treatment. Intragastric Paeonol can reduce the ventricular arrhythmias in rats with myocardial infarction. CONCLUSIONS: The protective effects of Paeonol on myocardial infarction rats and hypoxic H9c2 cells were achieved by up-regulating CKIP-1.


Asunto(s)
Acetofenonas , Hipoxia de la Célula , Regulación hacia Arriba , Acetofenonas/farmacología , Animales , Ratas , Regulación hacia Arriba/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Canales Iónicos/metabolismo , Canales Iónicos/genética , Apoptosis/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Ratas Sprague-Dawley
2.
J Ethnopharmacol ; 329: 118147, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574779

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic steatohepatitis (NASH) is a common metabolic liver injury disease that is closely associated with obesity and metabolic disorders. Paeonol, an active ingredient found in Moutan Cortex, a traditional Chinese medicine which exhibits significant therapeutic effect on liver protection, has shown promising effects in treating liver diseases, particularly NASH. However, the specific intervention mechanism of paeonol on NASH is still unknown. AIM OF THE STUDY: Our objective is to elucidate the pharmacological mechanism of paeonol in intervening NASH at the in vivo level, focusing on the impact on intestinal flora, tryptophan-related targeted metabolome, and related Aryl hydrocarbon receptor (AhR) pathways. MATERIALS AND METHODS: Here, we explored the intervention effect of paeonol on NASH by utilizing the NASH mouse model. The Illumina highthroughput sequencing technology was preformed to determine the differences of gut microbiota of model and paeonol treatment group. The concentration of Indoleacetic acid is determined by ELISA. The intervention effect of NASH mouse and AhR/NLRP3/Caspase-1 metabolic pathway is analyzed by HE staining, oil red O staining, Immunohistochemistry, Immunofluorescence, Western blot and qRT-PCR assays. Fecal microbiota transplantation experiment also was performed to verify the intervention effect of paeonol on NASH by affecting gut microbiota. RESULTS: Firstly, we discovered that paeonol effectively reduced liver pathology and blood lipid levels in NASH mice, thereby intervening in the progression of NASH. Subsequently, through 16S meta-analysis, we identified that paeonol can effectively regulate the composition of intestinal flora in NASH mice, transforming it to resemble that of normal mice. Specifically, paeonol decreased the abundance of certain Gram-negative tryptophan-metabolizing bacteria. Moreover, we discovered that paeonol significantly increased the levels of metabolites Indoleacetic acid, subsequently enhancing the expression of AhR-related pathway proteins. This led to the inhibition of the NOD-like receptor protein 3 (NLRP3) inflammasome production and inflammation generation in NASH. Lastly, we verified the efficacy of paeonol in intervening NASH by conducting fecal microbiota transplantation experiments, which confirmed its role in promoting the AhR/NLRP3/cysteinyl aspartate specific proteinase (Caspase-1) pathway. CONCLUSIONS: Our findings suggest that paeonol can increase the production of Indoleacetic acid by regulating the gut flora, and promote the AhR/NLRP3/Caspase-1 metabolic pathway to intervene NASH.


Asunto(s)
Acetofenonas , Caspasa 1 , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad del Hígado Graso no Alcohólico , Receptores de Hidrocarburo de Aril , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Acetofenonas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Caspasa 1/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Transducción de Señal/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos
3.
J Ethnopharmacol ; 327: 118063, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38493906

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Moutan cortex (MC), the root bark of Paeonia suffruticosa Anderws (Paeoniaceae), has been historically employed in traditional herbal medicine for addressing women's ailments by replenishing kidney Yin. AIM OF THE STUDY: We aimed to explore if paeonol, an active constituent of MC, could ameliorate neuropsychiatric symptoms, such as anxiety, depression, and cognitive impairments, associated with post-menopausal syndrome (PMS) in an ovariectomized (OVX) mouse model. MATERIALS AND METHODS: The experimental design comprised 6 groups, including a sham group, OVX group, paeonol administration groups (3, 10 or 30 mg/kg, p.o.), and an estradiol (E2)-treated positive control group. Behavioral tests including the open field, novel object recognition, Y-maze, elevated plus-maze, splash, and forced swimming tests were conducted. In addition, we investigated the effets of paeonol on the phosphorylated levels of phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), as well as on the expression levels of G protein-coupled receptor (GPR30) and brain-derived neurotrophic factor (BDNF) in the prefrontal cortex and hippocampus. RESULTS: Paeonol treatment (10 and 30 mg/kg, p.o.) effectively reversed the cognitive decline in OVX mice, measured by the novel object recognition and Y-maze tests, similar to that in the positive control group. Additionally, it alleviated anxiety- and depressive-like behaviors, as evaluated by the elevated plus-maze test, splash test, and forced swimming test. Paeonol restored GPR30 expression levels in the prefrontal cortex and hippocampus, mirroring the effects of E2 administration. Furthermore, it reversed the reduced expression levels of the PI3K-Akt-mTOR signaling pathway in the prefrontal cortex and hippocampus and increased BDNF expression in the hippocampus of OVX mice. CONCLUSION: This research suggests that paeonol would be beneficial for alleviating PMS-associated cognitive impairment, anxiety and depression.


Asunto(s)
Acetofenonas , Factor Neurotrófico Derivado del Encéfalo , Posmenopausia , Ratones , Humanos , Femenino , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hipocampo , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos/metabolismo
4.
Molecules ; 29(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38338367

RESUMEN

Moutan Cortex (MC) is a traditional Chinese medicine that contains abundant medicinal components, such as paeonol, paeoniflorin, etc. Paeonol is the main active component of MC. In this study, paeonol was extracted from MC through an ultrasound-assisted extraction process, which is based on single-factor experiments and response surface methodology (RSM). Subsequently, eight macroporous resins of different properties were used to purify paeonol from MC. The main components of the purified extract were identified by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS/MS). The results indicate the optimal parameters are as follows: liquid-to-material ratio 21:1 mL/g, ethanol concentration 62%, ultrasonic time 31 min, ultrasonic temperature 36 °C, ultrasonic power 420 W. Under these extraction conditions, the actual yield of paeonol was 14.01 mg/g. Among the eight tested macroporous resins, HPD-300 macroporous resin was verified to possess the highest adsorption and desorption qualities. The content of paeonol increased from 6.93% (crude extract) to 41.40% (purified extract) after the HPD-300 macroporous resin treatment. A total of five major phenolic compounds and two principal monoterpene glycosides were characterized by comparison with reference compounds. These findings will make a contribution to the isolation and utilization of the active components from MC.


Asunto(s)
Acetofenonas , Medicamentos Herbarios Chinos , Paeonia , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química
5.
Phytomedicine ; 126: 155447, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394732

RESUMEN

BACKGROUD: High comorbidity rates have been reported in patients with atherosclerosis and osteoporosis, posing a serious risk to the health and well-being of elderly patients. To improve and update clinical practice regarding the joint treatment of these two diseases, the common mechanisms of atherosclerosis and osteoporosis need to be clarified. MicroRNAs (miRNAs), are importance molecules in the pathogenesis of human diseases, including in cardiovascular and orthopedic fields. They have garnered interest as potential targets for novel therapeutic strategies. However, the key miRNAs involved in atherosclerosis and osteoporosis and their precise regulation mechanisms remain unknown. Paeonol (Pae), an active ingredient in Cortex Moutan, has shown promising results in improving both lipid and bone metabolic abnormalities. However, it is uncertain whether this agent can exert a cotherapeutic effect on atherosclerosis and osteoporosis. OBJECTIVE: This study aimed to screen important shared miRNAs in atherosclerotic and osteoporotic complications, and explore the mechanism of the protective effects of Pae against atherosclerosis and osteoporosis in high-fat diet (HFD)-fed ApoE-/- mice. METHODS: An experimental atherosclerosis and osteoporosis model was established in 40-week-old HFD ApoE-/- mice. Various techniques such as Oil Red O staining, HE staining and micro-CT were used to confirm the co-occurrence of these two diseases and efficacy of Pae in addition to the associated biochemical changes. Bioinformatics was used to screen key miRNAs in the atherosclerosis and osteoporosis model, and gene involvement was assessed through serum analyses, qRT-PCR, and western blot. To investigate the effect of Pae on the modulation of the miR let-7g/HMGA2/CEBPß pathway, Raw 264.7 cells were cocultured with bone marrow mesenchymal stem cells (BMSCs) and treated with an miR let-7g mimic/inhibitor. RESULTS: miR let-7g identified using bioinformatics was assessed to evaluate its participation in atherosclerosis-osteoporosis. Experimental analysis showed reduced miR let-7g levels in the atherosclerosis-osteoporosis mice model. Moreover, miR let-7g was required for BMSC - Raw 264.7 cell crosstalk, thereby promoting foam cell formation and adipocyte differentiation. Treatment with Pae significantly reduced plaque accumulation and foam cell number in the aorta while increasing bone density and improving trabecular bone microarchitecture in HFD ApoE-/- mice. Pae also increased the level of miR let-7g in the bloodstream of model mice. In vitro studies, Pae enhanced miR let-7g expression in BMSCs, thereby suppressing the HMGA2/CEBPß pathway to prevent the formation of foam cells and differentiation of adipocytes induced by oxidized low-density lipoprotein (ox-LDL). CONCLUSION: The study results suggested that miR let-7g participates in atherosclerosis -osteoporosis regulation and that Pae acts as a potential therapeutic agent for preventing atherosclerosis-osteoporosis through regulatory effects on the miR let-7g/HMGA2/CEBPß pathway to hinder foam cell formation and adipocyte differentiation.


Asunto(s)
Acetofenonas , Adipogénesis , Aterosclerosis , Células Espumosas , MicroARNs , Osteoporosis , Animales , Ratones , Acetofenonas/farmacología , Acetofenonas/uso terapéutico , Apolipoproteínas E/genética , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Diferenciación Celular , MicroARNs/genética , MicroARNs/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Adipogénesis/genética
6.
Phytother Res ; 38(2): 470-488, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37872838

RESUMEN

Cerebrovascular diseases involve neuronal damage, resulting in degenerative neuropathy and posing a serious threat to human health. The discovery of effective drug components from natural plants and the study of their mechanism are a research idea different from chemical synthetic medicines. Paeonol is the main active component of traditional Chinese medicine Paeonia lactiflora Pall. It widely exists in many medicinal plants and has pharmacological effects such as anti-atherosclerosis, antiplatelet aggregation, anti-oxidation, and anti-inflammatory, which keeps generally used in the treatment of cardiovascular and cerebrovascular diseases. Based on the therapeutic effects of Paeonol for cardiovascular and cerebrovascular diseases, this article reviewed the pharmacological effects of Paeonol in Alzheimer's disease, Parkinson's disease, stroke, epilepsy, diabetes encephalopathy, and other neurological diseases, providing a reference for the research of the mechanism of Paeonol in central nervous system diseases.


Asunto(s)
Trastornos Cerebrovasculares , Paeonia , Humanos , Sistema Nervioso Central , Antiinflamatorios , Acetofenonas/farmacología , Acetofenonas/uso terapéutico , Trastornos Cerebrovasculares/tratamiento farmacológico
7.
Brain Res Bull ; 205: 110830, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38036272

RESUMEN

Premenstrual dysphoric disorder (PMDD) is a periodic psychiatric disorder with high prevalence in women of childbearing age, seriously affecting patients' work and life. Currently, the international first-line drugs for PMDD have low efficiency and increased side effects. Paeonol, a major component of the traditional Chinese medicine Cortex Moutan, has been applied in treating PMDD in China with satisfactory results, but the therapeutic mechanism is not fully understood. This study aims to evaluate the therapeutic effects and pharmacological mechanisms of paeonol on the main psychiatric symptoms and hippocampal damage in PMDD. We established a premenstrual irritability rat model by the resident-intruder paradigm and performed elevated plus maze and social interactions. And we employed the HE and Nissl staining techniques to observe the therapeutic effect of paeonol on hippocampal damage in PMDD rats. Subsequently, Elisa, qRT-PCR Array, Western Blotting, and cell models were utilized to elucidate the underlying molecular mechanisms through which paeonol intervenes in treating PMDD. In this study, we demonstrated the therapeutic effects of paeonol on irritability, anxiety, and social withdrawal behaviors in rats. In addition, we found that paeonol significantly reduced the serum corticosterone (CORT) level, improved hippocampal morphological structure and neuron number, and reduced hippocampal neuron apoptosis in PMDD rats. Paeonol reduced GRM5, GABBR2, ß-arrestin2, and GRK3 expression levels in hippocampal brain regions of PMDD rats and activated the cAMP/PKA signaling pathway. Inhibitor cell experiments showed that paeonol specifically ameliorated hippocampal injury by modulating the ß-arrestin2/PDE4-cAMP/PKA signaling pathway. The present study demonstrates, for the first time, that paeonol exerts a therapeutic effect on periodic psychotic symptoms and hippocampal injury in PMDD through inhibiting GRM5/GABBR2/ß-arrestin2 and activating cAMP-PKA signaling pathway. These findings enhance our understanding of the pharmacological mechanism underlying paeonol and provide a solid scientific foundation for its future clinical application.


Asunto(s)
Trastorno Disfórico Premenstrual , Animales , Femenino , Ratas , Acetofenonas , Ansiedad , Hipocampo/metabolismo , Trastorno Disfórico Premenstrual/diagnóstico , Trastorno Disfórico Premenstrual/epidemiología , Trastorno Disfórico Premenstrual/psicología , Receptores de GABA-B/metabolismo
8.
Chin J Nat Med ; 21(10): 759-774, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37879794

RESUMEN

Gut microbiota dysbiosis is an avenue for the promotion of atherosclerosis (AS) and this effect is mediated partly via the circulating microbial metabolites. More microbial metabolites related to AS vascular inflammation, and the mechanisms involved need to be clarified urgently. Paeonol (Pae) is an active compound isolated from Paeonia suffruticoas Andr. with anti-AS inflammation effect. However, considering the low oral bioavailability of Pae, it is worth exploring the mechanism by which Pae reduces the harmful metabolites of the gut microbiota to alleviate AS. In this study, ApoE-/- mice were fed a high-fat diet (HFD) to establish an AS model. AS mice were administrated with Pae (200 or 400 mg·kg-1) by oral gavage and fecal microbiota transplantation (FMT) was conducted. 16S rDNA sequencing was performed to investigate the composition of the gut microbiota, while metabolomics analysis was used to identify the metabolites in serum and cecal contents. The results indicated that Pae significantly improved AS by regulating gut microbiota composition and microbiota metabolic profile in AS mice. We also identified α-hydroxyisobutyric acid (HIBA) as a harmful microbial metabolite reduced by Pae. HIBA supplementation in drinking water promoted AS inflammation in AS mice. Furthermore, vascular endothelial cells (VECs) were cultured and stimulated by HIBA. We verified that HIBA stimulation increased intracellular ROS levels, thereby inducing VEC inflammation via the TXNIP/NLRP3 pathway. In sum, Pae reduces the production of the microbial metabolite HIBA, thus alleviating the ROS/TXNIP/NLRP3 pathway-mediated endothelial inflammation in AS. Our study innovatively confirms the mechanism by which Pae reduces the harmful metabolites of gut microbiota to alleviate AS and proposes HIBA as a potential biomarker for AS clinical judgment.


Asunto(s)
Aterosclerosis , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Aterosclerosis/tratamiento farmacológico , Dieta Alta en Grasa , Células Endoteliales , Inflamación/tratamiento farmacológico , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Especies Reactivas de Oxígeno
9.
Phytomedicine ; 120: 155056, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37703619

RESUMEN

BACKGROUND: Increasing evidence suggests that repairing the damaged intestinal epithelial barrier and restoring its function is the key to solving the problem of prolonged ulcerative colitis. Previous studies have shown that paeonol (pae) can alleviate colitis by down-regulating inflammatory pathways. In addition, pae also has a certain effect on regulating intestinal flora. However, it remains unclear whether pae can play a role in repairing the intestinal barrier and whether there is a relationship between the therapeutic effect and the gut microbiota. PURPOSES: The aim of this study is to investigate the effect of pae on intestinal barrier repair in UC mice and how the gut microbiota plays a part in it. STUDY DESIGN AND METHODS: The therapeutic effect of pae was evaluated in a 3% DSS-induced UC mouse model. The role of pae in repairing the intestinal barrier was evaluated by detecting colonic cupped cells by Alcian blue staining, the expression of colonic epithelial tight junction protein by immunofluorescence and western blot, and the proportion of IL-22+ILC3 cells in the lamina propria lymphocytes by flow cytometry. Subsequently, 16S rRNA sequencing was used to observe the changes in intestinal flora, GC-MS was used to detect the level of SCFAs, and qPCR was used to identify the abundance of Clostridium butyricum in the intestine to evaluate the effect of pae on the gut microbiota. The antibiotic-mediated depletion of the gut flora was then used to verify that pae depends on C. butyricum to play a healing role. Finally, non-targeted metabolomics was employed to investigate the potential pathways of pae regulating C. butyricum. RESULTS: Pae could improve intestinal microecological imbalance and promote the production of short-chain fatty acids (SCFAs). Most importantly, we identified C. butyricum as a key bacterium responsible for the intestinal barrier repair effect of pae in UC mice. Eradication of intestinal flora by antibiotics abolished the repair of the intestinal barrier and the promotion of SCFAs production by pae, while C. butyricum colonization could restore the therapeutic effects of pae in UC mice, which further confirmed that C. butyricum was indeed the "driver bacterium" of pae in UC treatment. Untargeted metabolomics showed that pae regulated some amino acid metabolism and 2-Oxocarboxylic acid metabolism in C. butyricum. CONCLUSIONS: Our study showed that the restoration of the impaired intestinal barrier by pae to alleviate colitis is associated with increased C. butyricum and SCFAs production, which may be a promising strategy for the treatment of UC.


Asunto(s)
Clostridium butyricum , Colitis Ulcerosa , Colitis , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , ARN Ribosómico 16S , Antibacterianos , Ácidos Grasos Volátiles
10.
Chin J Physiol ; 66(4): 248-256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635484

RESUMEN

Aberrant glycolytic reprogramming is involved in lung cancer progression by promoting the proliferation of non-small cell lung cancer cells. Paeonol, as a traditional Chinese medicine, plays a critical role in multiple cancer cell proliferation and inflammation. Acyl-CoA dehydrogenase (ACADM) is involved in the development of metabolic diseases. N6-methyladenosine (m6A) modification is important for the regulation of messenger RNA stability, splicing, and translation. Here, we investigated whether paeonol regulates the proliferation and glycolytic reprogramming via ACADM with m6A modification in A549 cells (human non-small cell lung cancer cells). Cell counting kit 8, 5-Bromo-2-deoxyuridine, 5-ethynyl-2'-deoxyuridine (EdU) incorporation, flow cytometry analysis, western blotting and seahorse XFe24 extracellular flux analyzer assays showed that paeonol had a significant inhibitory effect against A549 cell proliferation and glycolysis. Mechanistically, ACADM was a functional target of paeonol. We also showed that the m6A reader YTH domain containing 1 plays an important role in m6A-modified ACADM expression, which is negatively regulated by paeonol, and is involved in A549 cell proliferation and glycolytic reprogramming. These results indicated the central function of paeonol in regulating A549 cell glycolytic reprogramming and proliferation via m6A modification of ACADM.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Acil-CoA Deshidrogenasa , Células A549 , Proliferación Celular , Glucólisis
11.
Drug Des Devel Ther ; 17: 2193-2208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37525853

RESUMEN

Cardiovascular disease (CVD) is one of the leading causes of death in the world. Paeonol(Pae) is a phenolic component extracted from peony bark, peony root and Xu Changqing. Studies have shown that Pae can protect cardiomyocytes by inhibiting oxidative stress, promoting mitochondrial fusion, regulating mitochondrial autophagy and inhibiting inflammation. In addition, Pae improves ventricular remodeling by inhibiting myocardial apoptosis, hypertrophy and fibrosis. Pae also has a good protective effect on blood vessels by inhibiting vascular inflammation, reducing the expression of adhesion molecules, inhibiting vascular proliferation, and inhibiting oxidative stress and endoplasmic reticulum stress(ERS). Pae also has the effect of anti-endothelial cell senescence, promoting thrombus recanalization and vasodilating. In conclusion, the molecular targets of Pae are very complex, and the relationship between different targets and signaling pathways cannot be clearly explained, which requires us to use systems biology methods to further study specific molecular targets of Pae. It has to be mentioned that the bioavailability of Pae is poor, and some nanotechnology-assisted drug delivery systems improve the therapeutic effect of Pae. We reviewed the protective mechanism of paeonol on the cardiovascular system, hoping to provide help for drug development in the treatment of CVD.


Asunto(s)
Enfermedades Cardiovasculares , Medicamentos Herbarios Chinos , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Acetofenonas/farmacología , Acetofenonas/uso terapéutico , Inflamación
12.
Biomed Pharmacother ; 165: 115277, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544285

RESUMEN

Paeonol (PAE) is a natural phenolic monomer isolated from the root bark of Paeonia suffruticosa that has been widely used in the clinical treatment of some inflammatory-related diseases and cardiovascular diseases. Much preclinical evidence has demonstrated that PAE not only exhibits a broad spectrum of anticancer effects by inhibiting cell proliferation, invasion and migration and inducing cell apoptosis and cycle arrest through multiple molecular pathways, but also shows excellent performance in improving cancer drug sensitivity, reversing chemoresistance and reducing the toxic side effects of anticancer drugs. However, studies indicate that PAE has the characteristics of poor stability, low bioavailability and short half-life, which makes the effective dose of PAE in many cancers usually high and greatly limits its clinical translation. Fortunately, nanomaterials and derivatives are being developed to ameliorate PAE's shortcomings. This review aims to systematically cover the anticancer advances of PAE in pharmacology, pharmacokinetics, nano delivery systems and derivatives, to provide researchers with the latest and comprehensive information, and to point out the limitations of current studies and areas that need to be strengthened in future studies. We believe this work will be beneficial for further exploration and repurposing of this natural compound as a new clinical anticancer drug.


Asunto(s)
Antineoplásicos , Neoplasias , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Acetofenonas/farmacología , Acetofenonas/uso terapéutico , Neoplasias/tratamiento farmacológico
13.
Front Pharmacol ; 14: 1194861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408762

RESUMEN

Cancer represents one of the leading causes of mortality worldwide. Conventional clinical treatments include radiation therapy, chemotherapy, immunotherapy, and targeted therapy. However, these treatments have inherent limitations, such as multidrug resistance and the induction of short- and long-term multiple organ damage, ultimately leading to a significant decrease in cancer survivors' quality of life and life expectancy. Paeonol, a nature active compound derived from the root bark of the medicinal plant Paeonia suffruticosa, exhibits various pharmacological activities. Extensive research has demonstrated that paeonol exhibits substantial anticancer effects in various cancer, both in vitro and in vivo. Its underlying mechanisms involve the induction of apoptosis, the inhibition of cell proliferation, invasion and migration, angiogenesis, cell cycle arrest, autophagy, regulating tumor immunity and enhanced radiosensitivity, as well as the modulation of multiple signaling pathways, such as the PI3K/AKT and NF-κB signaling pathways. Additionally, paeonol can prevent adverse effects on the heart, liver, and kidneys induced by anticancer therapy. Despite numerous studies exploring paeonol's therapeutic potential in cancer, no specific reviews have been conducted. Therefore, this review provides a systematic summary and analysis of paeonol's anticancer effects, prevention of side effects, and the underlying mechanisms involved. This review aims to establish a theoretical basis for the adjunctive strategy of paeonol in cancer treatment, ultimately improving the survival rate and enhancing the quality of life for cancer patients.

14.
J Ethnopharmacol ; 314: 116627, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37164258

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cynanchum paniculatum (Bunge) Kitag. ex H. Hara (Asclepiadaceae) have been traditionally used in East Asia as analgesic or antiviral agents. Interestingly, some Chinese and Korean traditional medicinal books reported that the use of C. paniculatum in the treatment of psychotic symptoms, such as hallucinations and delusions. AIM OF THE STUDY: In this study, we aimed to investigate whether C. paniculatum could improve sensorimotor gating disruption in mice with MK-801-induced schizophrenia-like behaviors. We also aimed to identify the active component of C. paniculatum that could potentially serve as a treatment for schizophrenia and found that paeonol, the major constituent compound of C. paniculatum, showed potential as a treatment for schizophrenia. MATERIALS AND METHODS: To assess the effect of paeonol on mice with MK-801-induced schizophrenia-like behaviors, we carried out a series of behavioral tests related with symptoms of schizophrenia. In addition, we utilized Western blotting and ELISA techniques to investigate the antipsychotic actions of paeonol. RESULT: C. paniculatum extract (100 or 300 mg/kg) and paenol (10 or 30 mg/kg) significantly reversed MK-801-induced prepulse deficits in acoustic startle response test. In addition, paeonol (10 or 30 mg/kg) attenuated social novelty preference and novel object recognition memory on MK-801-induced schizophrenia-like behaviour in mice. Furthermore, the phosphorylation levels of PI3K, Akt, GSK3ß and NF-κB, as well as related pro-inflammatory cytokine, such as IL-1ß and TNF-α, were significantly reversed by the administration of paeonol (10 or 30 mg/kg) in the prefrontal cortex of MK-801-treated mice. CONCLUSIONS: Collectively, these data show that paeonol can potentially be used as an agent for treating sensorimotor gating deficits, negative symptoms, and cognitive deficits, such as those observed in schizophrenia with few adverse effects.


Asunto(s)
Cynanchum , Esquizofrenia , Animales , Ratones , FN-kappa B/metabolismo , Maleato de Dizocilpina , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas , Reflejo de Sobresalto , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Glucógeno Sintasa Quinasa 3 beta
15.
Phytomedicine ; 109: 154593, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610113

RESUMEN

BACKGROUND: Paeonol (Pae) is one of the active ingredients from components of Guizhi Fuling Capsule, a traditional Chinese medicine widely used for the treatment of women's diseases, which exhibits various biological and pharmacological activities. PURPOSE: The objective of this study was to investigate the molecular mechanism underlying the role of Pae in protecting against endometrial hyperplasia (EH). METHODS: CCK-8 assay was performed to detect the effect of Pae on cell proliferation. Hematoxylin and eosin (H&E) staining was performed to evaluate uterine tissue structure. A network pharmacology study was performed to search the disease targets. Single-cell transcriptome analysis was performed with uterine tissues from 3 healthy donors and 3 EH patients on 10X Genomics platform. Changes in lipid peroxidation were detected by the MDA reaction. IHC assay, Western blot, immunofluorescence and RT-qPCR were used to study the effects of estradiol and Pae on the expression levels of GPX4, PI3K, AKT, p-PI3K, p-AKT in mice. RESULTS: Pae treatment resulted in a decrease in cell viability of endometrial epithelial cells. Loss of uterus weight and morphology changes were observed in mice. In addition, Fe iron concentration and MDA levels increased, while the expression of GPX4, p-PI3K and p-AKT diminished. CONCLUSIONS: Pae exhibited obvious alleviative activity in estradiol-induced mice via PI3K/AKT signaling pathway-regulated ferroptosis.


Asunto(s)
Hiperplasia Endometrial , Ferroptosis , Humanos , Ratones , Femenino , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hiperplasia Endometrial/inducido químicamente , Hiperplasia Endometrial/tratamiento farmacológico , Estradiol
16.
Molecules ; 28(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36677710

RESUMEN

Endometriosis is a common gynecological illness in women of reproductive age that significantly decreases life quality and fertility. Paeonol has been shown to play an important part in endometriosis treatments. Understanding the mechanism is critical for treating endometriosis. In this study, autologous transplantation combined with a 28 day ice water bath was used to create a rat model of endometriosis with cold clotting and blood stagnation. The levels of estradiol and progesterone in plasma were detected by ELISA, and the pathological changes of ectopic endometrial tissue were examined by H&E staining, which proved the efficacy of paeonol. For metabolomic analysis of plasma samples, UPLC-Q/TOF-MS was combined with multivariate statistical analysis to identify the influence of paeonol on small molecule metabolites relevant to endometriosis. Finally, the key targets were screened using a combination of network pharmacology and molecular docking approaches. The results showed that the pathological indexes of rats were improved and returned to normal levels after treatment with paeonol, which was the basis for confirming the efficacy of paeonol. Metabolomics results identified 13 potential biomarkers, and paeonol callbacks 7 of them, involving six metabolic pathways. Finally, four key genes were found for paeonol therapy of endometriosis, and the results of molecular docking revealed a significant interaction between paeonol and the four key genes. This study was successful in establishing a rat model of endometriosis with cold coagulation and blood stagnation. GCH1, RPL8, PKLR, and MAOA were the key targets of paeonol in the treatment of endometriosis. It is also demonstrated that metabolomic techniques give the potential and environment for comprehensively understanding drug onset processes.


Asunto(s)
Medicamentos Herbarios Chinos , Endometriosis , Humanos , Ratas , Femenino , Animales , Endometriosis/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Metabolómica/métodos , Acetofenonas/análisis , Medicamentos Herbarios Chinos/farmacología , Cromatografía Líquida de Alta Presión/métodos
17.
Andrology ; 11(2): 344-357, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35678254

RESUMEN

BACKGROUND: The management of diabetes mellitus-induced erectile dysfunction (DMED) is progressively becoming tricky due to the surge in the number of patients and the poor efficiency of phosphodiesterase type 5 inhibitors in DMED. Paeonol (Pae), as a traditional Chinese medicine, has been more and more widely used in the treatment of diabetic complications. However, whether Pae could be a potential therapeutic drug of DMED needs to be further evaluated. OBJECTIVES: To investigate the pharmacological effect and possible mechanism of Pae in the treatment of DMED. METHODS: Intraperitoneal streptozotocin injection and an apomorphine test were used to construct the model of DMED. Seventeen DMED rats were divided into two groups: DMED group (n = 8) and DMED+Pae group (Pae; 100 mg/kg/d; oral administration; n = 9). In addition, there were still 10 normal age-matched male rats as control group. Four weeks later, the cavernous nerve electric stimulation was carried out to measure the erectile response. Moreover, the corpus cavernosum smooth muscle cells (CCSMCs) were primarily isolated and exposed to high glucose (HG) stimulation, Pae treatment and glycyrrhizin (GL; the selective inhibitor of HMGB1). After an incubation for 1 week, the CCSMCs were harvested for detection. RESULTS: The impairment of erectile function was observed in DMED rats compared with control samples, accompanied by the upregulation of HMGB1/RAGE/NF-κB Pathway. The lower nitric oxide and cGMP level and the higher level of inflammation, fibrosis, and apoptosis were also observed in DMED rats. It showed contrast that Pae treatment could improve the erectile function, as well as histologic alteration and related molecular changes. In addition, Pae could downregulate the HMGB1/RAGE/NF-κB pathway to regulate the apoptosis and inflammation levels of CCSMCs in high-glucose conditions, which is similar to the results of GL treatment. CONCLUSION: Pae alleviated ED in DMED rats, likely by inhibiting HMGB1/RAGE/NF-κB Pathway, inflammatory, apoptosis, and fibrotic activity, and moderating endothelial dysfunction. Our study provide evidence for a potential new therapy for DMED.


Asunto(s)
Diabetes Mellitus Experimental , Disfunción Eréctil , Proteína HMGB1 , Humanos , Masculino , Ratas , Animales , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/etiología , FN-kappa B , Ratas Sprague-Dawley , Proteína HMGB1/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Inflamación/complicaciones , Glucosa
18.
Plants (Basel) ; 11(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36501418

RESUMEN

The aim of this review is to perform a systematic review of scientific papers and an in-depth analysis of the latest research related to Paeonia × suffruticosa Andrews as a valuable plant species, important in pharmacy and cosmetology. P. × suffruticosa bark root-Moutan cortex is a medicinal raw material formerly known from traditional Chinese medicine (TCM) but less common in official European medicine. It was introduced for the first time in the European Pharmacopoeia Supplement 9.4 in 2018. In this work, the numerous possible applications of this raw material were depicted based on modern professional pharmacological studies documenting its very valuable medicinal values, including antioxidant, cytoprotective, anti-cancer, anti-inflammatory, cardioprotective, anti-atherosclerotic, anti-diabetic and hepatoprotective activities. The scientific studies indicated that the profile of raw material activity is mainly due to paeonol, paeoniflorin and 1,2,3,4,6-penta-O-galloyl-ß-D-glucopyranose. Moreover, the significance of this plant (its different organs) in the production of cosmetics was underlined. P. × suffruticosa finds increasing application in cosmetology due to research on its chronic dermatitis, anti-aging and brightening effects. Furthermore, some biotechnological research has been described aimed at developing effective in vitro micropropagation protocols for P. × suffruticosa.

19.
Front Pharmacol ; 13: 950337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991897

RESUMEN

The morbidity and mortality of atherosclerotic cardiovascular disease (ASCVD) is increasing year by year. Cortex Moutan is a traditional Chinese medicinal herb that has been widely used for thousands of years to treat a wide variety of diseases in Eastern countries due to its heat-clearing and detoxifying effects. Paeonol is a bioactive monomer extracted from Cortex Moutan, which has anti-atherosclerotic effects. In this article, we reviewed the pharmacological effects of paeonol against experimental atherosclerosis, as well as its protective effects on vascular endothelial cells, smooth muscle cells, macrophages, platelets, and other important cell types. The pleiotropic effects of paeonol in atherosclerosis suggest that it can be a promising therapeutic agent for atherosclerosis and its complications. Large-scale randomized clinical trials are warranted to elucidate whether paeonol are effective in patients with ASCVD.

20.
Front Cell Infect Microbiol ; 12: 884793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669114

RESUMEN

Fungal populations are commonly found in natural environments and present enormous health care challenges, due to increased resistance to antifungal agents. Paeonol exhibits antifungal activities; nevertheless, the antifungal and antibiofilm activities of paeonol against Candida albicans and Cryptococcus neoformans remain largely unexplored. Here, we aimed to evaluate the antifungal and antibiofilm activities of paeonol against C. albicans and/or C. neoformans (i.e., against mono- or dual-species). The minimum inhibitory concentrations (MICs) of paeonol for mono-species comprising C. albicans or C. neoformans were 250 µg ml-1, whereas the MIC values of paeonol for dual-species were 500 µg ml-1. Paeonol disrupted cell membrane integrity and increased the influx of gatifloxacin into cells of mono- and dual-species cells, indicating an antifungal mode of action. Moreover, paeonol at 8 times the MIC damaged mono- and dual-species cells within C. albicans and C. neoformans biofilms, as it did planktonic cells. In particular, at 4 and 8 mg ml-1, paeonol efficiently dispersed preformed 48-h biofilms formed by mono- and dual-species cells, respectively. Paeonol inhibited effectively the yeast-to-hyphal-form transition of C. albicans and impaired capsule and melanin production of C. neoformans. The addition of 10 MIC paeonol to the medium did not shorten the lifespan of C. elegans, and 2 MIC paeonol could effectively protect the growth of C. albicans and C. neoformans-infected C. elegans. Furthermore, RNA sequencing was employed to examine the transcript profiling of C. albicans and C. neoformans biofilm cells in response to 1/2 MIC paeonol. RNA sequencing data revealed that paeonol treatment impaired biofilm formation of C. albicans by presumably downregulating the expression level of initial filamentation, adhesion, and growth-related genes, as well as biofilm biosynthesis genes, whereas paeonol inhibited biofilm formation of C. neoformans by presumably upregulating the expression level of ergosterol biosynthesis-related genes. Together, the findings of this study indicate that paeonol can be explored as a candidate antifungal agent for combating serious single and mixed infections caused by C. albicans and C. neoformans.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Acetofenonas , Animales , Antifúngicos/farmacología , Biopelículas , Caenorhabditis elegans , Candida albicans , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA