Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Res ; 238(Pt 2): 117202, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769832

RESUMEN

Due to their widespread application in water purification, there is a significant interest in synthesising nanoscale photocatalysts. Nanophotocatalysts are primarily manufactured through chemical methods, which can lead to side effects like pollution, high-energy usage, and even health issues. To address these issues, "green synthesis" was developed, which involves using plant extracts as reductants or capping agents rather than industrial chemical agents. Green fabrication has the benefits of costs less, pollution reduction, environmental protection and human health safety, compared to the traditional methods. This article summarises recent advances in the environmentally friendly synthesis of various nanophotocatalysts employed in the degradation of azo dyes. This study compiles critical findings on natural and artificial methods to achieve the goal. Green synthesis is constrained by the time and place of production and issues with low purity and poor yield, reflecting the complexity of plants' geographical and seasonal distributions and their compositions. However, green photocatalyst synthesis provides additional growth opportunities and potential uses.


Asunto(s)
Compuestos Azo , Extractos Vegetales , Humanos , Extractos Vegetales/química , Colorantes/química
2.
Chemosphere ; 341: 140043, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37660787

RESUMEN

Due to the disorderly discharge in modern production and daily life of people, emerging contaminants(ECs) began to appear in landscape water, and have become a key public concern. Because of the unique characteristics of landscape water, it is difficult to efficiently remove ECs either by natural purification or by traditional large-scale sewage treatment facilities. The ideal purification method is to remove them while maintaining a beautiful environment. Possessing the feature of low-density, floating photocatalysts could harvest sufficient light on the surface of the water for photocatalytic degradation, which may be an important supplement for ECs treatment in landscape water. This paper gave a review related to floating photocatalysts and proposed an idea of combining floating photocatalysts to construct bionic photocatalytic materials for contaminative landscape water treatment. Six types of common floating substrates and corresponding applications for floating photocatalysts were concluded in this paper, and the main problem leading to the low efficiency of photocatalysts and three corresponding three improvement strategies were discussed. Besides, the modification mechanisms of photocatalysts were discussed thoroughly. On this basis, the engineering application prospects of bionic photocatalytic materials were proposed to remove ECs in landscape water.


Asunto(s)
Suplementos Dietéticos , Contaminación de Medicamentos , Humanos , Aguas del Alcantarillado , Contaminación del Agua
3.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500279

RESUMEN

In this study, cerium oxide nanorods (CeO2-NRs) were synthesized by using the phytochemicals present in the Dalbergia sissoo extract. The physiochemical characteristics of the as-prepared CeO2-NRs were investigated by using ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD). The SEM and UV-VIS analyses revealed that the acquired nanomaterials possessed a rod-like morphology while the XRD results further confirmed that the synthesized NRs exhibited a cubic crystal lattice system. The antioxidant capacity of the synthesized CeO2-NRs was investigated by using several in vitro biochemical assays. It was observed that the synthesized NRs exhibited better antioxidant potential in comparison to the industrial antioxidant of the butylated hydroxyanisole (BHA) in 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The biochemical assays, including lipid peroxidation (LPO), total antioxidant capacity (TAC), and catalase activity (CAT), were also performed in the human lymphocytes incubated with the CeO2-NRs to investigate the impact of the NRs on these oxidative biomarkers. Enhanced reductive capabilities were observed in all the assays, revealing that the NRs possess excellent antioxidant properties. Moreover, the cytotoxic potential of the CeO2-NRs was also investigated with the MTT assay. The CeO2-NRs were found to effectively kill off the cancerous cells (MCF-7 human breast cancer cell line), further indicating that the synthesized NRs exhibit anticancer potential as well. One of the major applications studied for the prepared CeO2-NRs was performing the statistical optimization of the photocatalytic degradation reaction of the methyl orange (MO) dye. The reaction was optimized by using the technique of response surface methodology (RSM). This advanced approach facilitates the development of the predictive model on the basis of central composite design (CCD) for this degradation reaction. The maximum degradation of 99.31% was achieved at the experimental optimized conditions, which corresponded rather well with the predicted percentage degradation values of 99.58%. These results indicate that the developed predictive model can effectively explain the performed experimental reaction. To conclude, the CeO2-NRs exhibited excellent results for multiple applications.


Asunto(s)
Cerio , Dalbergia , Humanos , Antioxidantes/farmacología , Difracción de Rayos X , Cerio/farmacología , Cerio/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
4.
J Colloid Interface Sci ; 628(Pt A): 717-725, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35944302

RESUMEN

Most biochemical reactions that occur in living organisms are catalyzed by a series of enzymes and proceed in a tightly controlled manner. The development of artificial enzyme cascades that resemble multienzyme complexes in nature is of current interest due to their potential in various applications. In this study, a nanozyme based on photoswitchable carbon-dot liposomes (CDsomes) was developed for use in programmable catalytic cascade reactions. These CDsomes prepared from triolein are amphiphilic and self-assemble into liposome-like structures in an aqueous environment. CDsomes feature excitation-dependent photoluminescence and, notably, can undergo reversible switching between a fluorescent on-state and nonfluorescent off-state under different wavelengths of light irradiation. This switching ability enables the CDsomes to exert photocatalytic oxidase- and peroxidase-like activities in their on- (bright) and off- (dark) states, respectively, resulting in the conversion of oxygen molecules into hydrogen peroxide (H2O2), followed by the generation of active hydroxyl radicals (OH). The two steps of oxygen activation can be precisely controlled in a sequential manner by photoirradiation at different wavelengths. Catalytic reversibility also enables the CDsomes to produce sufficient reactive oxygen species (ROS) to effectively kill tumor cells. Our results reveal that CDsomes is a promising photo-cycling nanozyme for precise tumor phototherapy through regulated programmable cascade reactions.


Asunto(s)
Peróxido de Hidrógeno , Liposomas , Carbono , Catálisis , Complejos Multienzimáticos/química , Oxidorreductasas , Oxígeno , Peroxidasas , Especies Reactivas de Oxígeno , Trioleína
5.
J Hazard Mater ; 423(Pt B): 127090, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34537646

RESUMEN

In this study, spinel CuCo2O4 (CCO) with a hierarchical hollow sphere morphology was encapsulated in V2O5-decorated ultra-wrinkled graphitic carbon-nitride (VO-UCN) for the first time via a facile glycerol-assisted solvothermal method in the interest of developing a novel high-efficiency double Z-type nano-photocatalyst (denoted as VO-UCN@CCO). The remarkable physicochemical features of the as-prepared nano-photocatalysts were verified using diverse characterization techniques including TGA, XRD, FT-IR, FE-SEM, TEM, BET, UV-vis DRS, PL, EIS, and transient photocurrent techniques. Herein, VO-UCN@CCO nanocomposite was employed for the photodisintegration of levofloxacin (LVOF) antibiotic under visible-light irradiation and the impact of certain operative reaction system variables was explored in an effort to optimize the photocatalytic capability. The 40% loading of CCO in VO-UCN@CCO nanocomposite was found to display maximum photocatalytic performance (about 95%) for LVOF photodecomposition, which was 9.3, 6.6, and 13.8 times greater when compared with pristine VO, UCN, and CCO, respectively. A high capability was observed for as-prepared photocatalyst during reusability tests and near 90% degradation efficiency was obtained in the sixth run. The complete mineralization of LVOF was achieved by the VO-UCN@CCO photocatalyst process after 300 min of reaction. An excellent synergy factor towards the degradation of LVOF was obtained for VO-UCN@CCO compared to each of its components alone. This peculiar design is envisaged to provide new inspirations for ameliorating the photocatalytic decontamination of tenacious and non-biodegradable species present in real wastewater.


Asunto(s)
Levofloxacino , Nanocompuestos , Óxido de Aluminio , Catálisis , Grafito , Óxido de Magnesio , Compuestos de Nitrógeno , Fotólisis , Espectroscopía Infrarroja por Transformada de Fourier
6.
J Colloid Interface Sci ; 606(Pt 2): 1715-1728, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34500170

RESUMEN

The major challenges of clean energy and environmental pollution have resulted in the development of photocatalysis technologies for energy conversion and the degradation of refractory pollutants. Herein, a novel CdSe/Se/BiOBr hydrangea-like photocatalyst was used to produce hydrogen peroxide (H2O2) and degrade ciprofloxacin (CIP). The Z-scheme heterojunction structure of the photocatalyst and the doping of selenium (Se) led to the efficient separation of electron-hole pairs and charge transfer. The optimized sample of 2 wt% CdSe/Se/BiOBr produced 142.15 mg·L-1 rate of H2O2, which was much higher than that produced by pure BiOBr (89.4 mg·L-1) or CdSe/Se (10.9 mg·L-1). Additionally, almost 100 % of CIP was degraded within 30 min, with a first order rate constant of nearly 5.35 times that of pure BiOBr and 81.44 times that of pure CdSe/Se. The excellent removal efficiency of CIP from natural water matrices confirmed that the composites are promising for the removal of contaminants from natural waterways. Based on trapping experiments, electron spin resonance spectra (ESR) spectroscopy, and density functional theory (DFT) calculations, the photocatalytic mechanisms of H2O2 and CIP degradation by the Z-scheme CdSe/Se/BiOBr composites were proposed. Overall, the dual-functional CdSe/Se/BiOBr composite could potentially be applied for photocatalytic production of H2O2 and treatment of organic pollutants in water.


Asunto(s)
Compuestos de Cadmio , Compuestos de Selenio , Selenio , Bismuto , Catálisis , Ciprofloxacina , Peróxido de Hidrógeno
7.
Chemosphere ; 273: 129723, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33524745

RESUMEN

Over the past decades, inspired by the outstanding properties of clay minerals such as abundance, low-cost, environmental benignity, high stability, and regularly arranged silica-alumina framework, researchers put much efforts on the interface assembly and surface modification of natural minerals with bare photocatalysts, i.e. TiO2, g-C3N4, ZnO, MoS2, etc. The clay-based hybrid photocatalysts have resulted in a rich database for their tailor-designed microstructures, characterizations, and environmental-related applications. Therefore, in this study, we took a brief introduction of three representative minerals, i.e. kaolinite, montmorillonite and rectorite, and discussed their basic merits in photocatalysis applications. After that, we summarized the recent advances in construction of stable visible-light driven photocatalysts based on these minerals. The structure-activity relationships between the properties of clay types, pore structure, distribution/dispersion and light absorption, carrier separation efficiency as well as redox performance were illustrated in detail. Such representative information would provide theoretical basis and scientific support for the application of clay based photocatalysts. Finally, we pointed out the major challenges and future directions at the end of this review. Undoubtedly, control and preparation of novel photocatalysts based on clays will continue to witness many breakthroughs in the arena of solar-driven technologies.


Asunto(s)
Caolín , Minerales , Óxido de Aluminio , Bentonita , Arcilla
8.
Chemosphere ; 221: 392-402, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30641380

RESUMEN

Toxic substances such as heavy metals or persistent organic pollutants raise global environmental concerns. Thus, diverse water decontamination approaches using nano-adsorbents and/or photocatalysts based on nanotechnology are being developed. Particularly, many studies have examined the removal of organic and inorganic contaminants with novel graphene-based nano spinel ferrites (GNSFs) as potential cost-effective alternatives to traditionally used materials, owing to their enhanced physical and chemical properties. The introduction of magnetic spinel ferrites into 2-D graphene-family nanomaterials to form GNSFs brings various benefits such as inhibited particle agglomeration, enhanced active surface area, and easier magnetic separation for reuse, making the GNSFs highly efficient and eco-friendly materials. Here, we present a short review on the state-of-the-art progresses on developments of GNSFs, as well as their potential application for removing several recalcitrant contaminants including organic dyes, antibiotics, and heavy metal ions. Particularly, the mechanisms involved in the adsorptive and photocatalytic degradation are thoroughly reviewed, and the reusability of the GNSFs is also highlighted. This review concludes that the GNSFs hold great potential in remediating contaminated aquatic environments. Further studies are needed for their practical and large-scale applications.


Asunto(s)
Compuestos Férricos/química , Grafito/química , Contaminantes Químicos del Agua/aislamiento & purificación , Óxido de Aluminio , Óxido de Magnesio , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
9.
J Photochem Photobiol B ; 183: 201-221, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29727834

RESUMEN

In the age of technology, nanoparticles have proven to be one of the essential needs for development. These nanoparticles have the potential to be used for a wide variety of applications, thereby, development in improving the quality of nanoparticles, to make them more application specific, is still under research. In this regard, an important point to note is that the procedures employed in synthesizing nanoparticles require to be cost-effective and less-steps involved and have an additional advantage, i.e. they should be eco-friendly. This means that the synthesis procedure needs avoiding the use of harmful chemicals, and negligible generation of any noxious by-products. The green synthesis (biosynthesis) method employs simple procedures, easily available raw materials and ambiance for the synthesis process, where the precursors used are safe, with minute possibility for the production of harmful by-products. Considering these advantages, the current review includes a brief description on the various chemical and physical synthesis method of zinc oxide (ZnO) nanoparticles with emphasis on the biosynthesis of ZnO nanoparticles using plant extracts (and briefly microbes), the phytochemicals present in the plant extracts, the plausible mechanisms involved in the formation of ZnO nanoparticles and applications of the as-synthesized ZnO nanoparticles as photocatalysts and microbial inhibitors.


Asunto(s)
Antiinfecciosos/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Sustancias Reductoras/química , Óxido de Zinc/química , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Catálisis , Fabaceae/química , Fabaceae/metabolismo , Tecnología Química Verde , Rayos Láser , Rutaceae/química , Rutaceae/metabolismo
10.
ChemSusChem ; 10(22): 4624-4631, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-28834335

RESUMEN

A highly efficient visible-light-driven photocatalyst is urgently necessary for photocatalytic hydrogen generation through water splitting. Herein, ZnIn2 S4 hierarchical architectures assembled as ultrathin nanosheets were synthesized by a facile one-pot polyol approach. Subsequently, the two-dimensional-network-like MoSe2 was successfully hybridized with ZnIn2 S4 by taking advantage of their analogous intrinsic layered morphologies. The noble-metal-free ZnIn2 S4 /MoSe2 heterostructures show enhanced photocatalytic H2 evolution compared to pure ZnIn2 S4 . It is noteworthy that the optimum nanocomposite of ZnIn2 S4 /2 % MoSe2 photocatalyst displays a high H2 generation rate of 2228 µmol g-1 h-1 and an apparent quantum yield (AQY) of 21.39 % at 420 nm. This study presents an unprecedented ZnIn2 S4 /MoSe2 metal-sulfide-metal-selenide hybrid system for H2 evolution. Importantly, the present efficient hybridization strategy reveals the potential of hierarchical nanoarchitectures for a multitude of energy storage and solar energy conversion applications.


Asunto(s)
Hidrógeno/química , Luz , Procesos Fotoquímicos , Catálisis , Molibdeno , Selenio , Energía Solar , Sulfuros , Compuestos de Zinc
11.
Environ Sci Pollut Res Int ; 23(22): 22340-22364, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27566154

RESUMEN

Various human activities like mining and extraction of mineral oils have been used for the modernization of society and well-beings. However, the by-products such as petrochemical wastes generated from such industries are carcinogenic and toxic, which had increased environmental pollution and risks to human health several folds. Various methods such as physical, chemical and biological methods have been used to degrade these pollutants from wastewater. Advance oxidation processes (AOPs) are evolving techniques for efficient sequestration of chemically stable and less biodegradable organic pollutants. In the present review, photocatalytic degradation of petrochemical wastes containing monoaromatic and poly-aromatic hydrocarbons has been studied using various heterogeneous photocatalysts (such as TiO2, ZnO and CdS. The present article seeks to offer a scientific and technical overview of the current trend in the use of the photocatalyst for remediation and degradation of petrochemical waste depending upon the recent advances in photodegradation of petrochemical research using bibliometric analysis. We further outlined the effect of various heterogeneous catalysts and their ecotoxicity, various degradation pathways of petrochemical wastes, the key regulatory parameters and the reactors used. A critical analysis of the available literature revealed that TiO2 is widely reported in the degradation processes along with other semiconductors/nanomaterials in visible and UV light irradiation. Further, various degradation studies have been carried out at laboratory scale in the presence of UV light. However, further elaborative research is needed for successful application of the laboratory scale techniques to pilot-scale operation and to develop environmental friendly catalysts which support the sustainable treatment technology with the "zero concept" of industrial wastewater. Nevertheless, there is a need to develop more effective methods which consume less energy and are more efficient in pilot scale for the demineralization of pollutant.


Asunto(s)
Industria del Petróleo y Gas , Petróleo/análisis , Fotólisis , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Catálisis , Oxidación-Reducción , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA