Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Intervalo de año de publicación
1.
Methods Mol Biol ; 2788: 19-37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656506

RESUMEN

Metabolites are intermediate products formed during metabolism. Metabolites play different roles, including providing energy, supporting structure, transmitting signals, catalyzing reactions, enhancing defense, and interacting with other species. Plant metabolomics research aims to detect precisely all metabolites found within tissues of plants through GC-MS. This chapter primarily focuses on extracting metabolites using chemicals such as methanol, chloroform, ribitol, MSTFA, and TMCS. The metabolic analysis method is frequently used according to the specific kind of sample or matrix being investigated and the analysis objective. Chromatography (LC, GC, and CE) with mass spectrometry and NMR spectroscopy is used in modern metabolomics to analyze metabolites from plant samples. The most frequently used method for metabolites analysis is the GC-MS. It is a powerful technique that combines gas chromatography's separation capabilities with mass spectrometry, offering detailed information, including structural identification of each metabolite. This chapter contains an easy-to-follow guide to extract plant-based metabolites. The current protocol provides all the information needed for extracting metabolites from a plant, precautions, and troubleshooting.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Plantas , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Plantas/metabolismo , Plantas/química , Metaboloma , Extractos Vegetales/química , Extractos Vegetales/análisis
2.
Foods ; 12(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37959076

RESUMEN

Vacuum impregnation (VI) stands as a diffusion-driven food processing method that has found recent application within the food industry, particularly for the cold formulation of fortified food products. Pulsed electric field (PEF) treatment can affect the food structure, influencing therefore the mass transfer phenomena during the further processing. Thus, the study aimed at investigating the effect of PEF treatment on selected physicochemical properties of vacuum-impregnated apples. Apple slices were vacuum impregnated with aloe vera juice solution with or PEF treatment at different intensities (125, 212.5 or 300 V/cm). The PEF was applied as a pretreatment-applied before the VI process as well as posttreatment-applied after the VI process. The VI process with aloe vera juice resulted in a sample weight increase of over 24% as well as structural changes, partial cell viability loss and color alteration. In addition, the decrease of bioactive compounds was observed, while antioxidant activity remained at a similar level as in raw material. PEF treatment adversely affected vacuum impregnation efficiency, causing microstructural changes and cell viability loss. Additionally, chemical composition modifications were evident through thermogravimetric analysis (TGA) and Fourier Infrared Spectroscopy (FTIR) analyses. Tissue hardness decreased significantly due to structural damage and caused high leakage from plant tissue, which resulted in hindering saturation with aloe vera juice during the VI process. Additionally, reduced bioactive substance content after PEF treatment was observed and the VI process did not restore apple samples of the bioactive compounds from aloe vera juice.

3.
Front Plant Sci ; 14: 1242584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636107

RESUMEN

Cannabis sativa L. (hemp) has a global distribution and social impact, and it is widely used as a medicinal plant, food ingredient, and textile fiber. Its roots have received less attention than other parts, especially the inflorescence, leaves, and shoots. Triterpenoids, including friedelin and epifriedelanol, have been found in hemp roots, and their anti-inflammatory effects have been reported. In this study, the potential enhancement of triterpenoid accumulation in the roots of C. sativa by elicitation was examined. Hairy roots were successfully established, and they contained 2.02-fold higher triterpenoid levels than natural roots. Furthermore, hairy roots treated with 75 µM salicylic acid had 1.95-fold higher friedelin levels (0.963 mg/g DW) and 1.4-fold higher epifriedelanol levels (0.685 mg/g DW) than untreated hairy roots. These results suggested that the elucidation of hairy root cultures using an optimized elicitor could represent an alternative strategy to produce the valuable triterpenoids friedelin and epifriedelanol.

4.
Plants (Basel) ; 12(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375991

RESUMEN

Inula crithmoides L. (golden samphire) is an edible aromatic halophyte species with confirmed nutritional and medicinal properties attributed to the presence of important metabolites, including proteins, carotenoids, vitamins, and minerals. Therefore, this study aimed at establishing a micropropagation protocol for golden samphire that can serve as a nursery approach to its standardized commercial cultivation. For that purpose, a complete regeneration protocol was developed by improving shoot multiplication from nodal explants, rooting, and acclimatization methodologies. The treatment with BAP alone induced the maximum shoot formation (7-7.8 shoots/explant), while IAA treatment increased the shoot height (9.26-9.5 cm). Furthermore, the treatment that coupled best shoot multiplication (7.8 shoots/explant) and highest shoot height (7.58 cm) was MS medium supplemented with 0.25 mg/L BAP. Moreover, all shoots produced roots (100% rooting), and multiplication treatments did not exert significant effect on root length (7.8-9.7 cm/plantlet). Moreover, by the end of the rooting phase, plantlets cultivated with 0.25 mg/L BAP had the highest shoot number (4.2 shoots/plantlet), and plantlets from 0.6 mg/L IAA + 1 mg/L BAP presented the highest shoot height (14.2 cm) similar to control plantlets (14.0 cm). The survival up to the ex-vitro acclimatization stage was increased from 9.8% (control) to 83.3%, when plants were treated with a paraffin solution. Nevertheless, the in vitro multiplication of golden samphire is a promising way for its rapid propagation and can be used as a nursery method, contributing to the development of this species as an alternative food and medicinal crop.

5.
Environ Monit Assess ; 195(6): 769, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37249675

RESUMEN

Phosphogypsum (PG) is a by-product of phosphorus fertilizer that is typically stacked near production sites. Phosphogypsum contains trace elements and naturally occurring radioactive materials which may be hazardous to the surrounding environment. Phosphogypsum stack reclamation typically involves placing a soil cap and seeding grass to create a barrier for reducing environmental impacts; using woody species is uncommon. This study used three soil treatments with grass and woody species to determine whether mixing PG with soil affects soil chemical properties, and metal and radionuclide concentrations in tissue. None of the elements in soil was above Canadian guidelines for industrial land use. Aluminum, beryllium, chromium, copper, iron, magnesium, manganese, nickel, and vanadium were significantly higher in both study and reference sites than in pure PG; cadmium, calcium, fluoride, and strontium were significantly higher in pure PG. There was a poor correlation between soil and plant concentrations for most elements indicating trace elements were not in a bioavailable form. Trace elemental concentrations in plant tissue generally differed significantly with vegetation type but not within similar species. Trace elements and isotopes in PG were not high enough to affect plant growth. Among the isotopes, 222Ra emissions differed significantly with vegetation covers; activity of 226Ra in pure PG was above Canadian guidelines, but lower in vegetation tissue. This study suggests 15 cm soil mixed with PG can be used for PG stack revegetation when fast-growing Salix and Populus species are used in reclamation.


Asunto(s)
Oligoelementos , Oligoelementos/análisis , Suelo/química , Monitoreo del Ambiente , Canadá , Fósforo/análisis , Sulfato de Calcio/análisis , Plantas , Poaceae
6.
Plant Physiol Biochem ; 198: 107671, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37028241

RESUMEN

The use of nanoscale fertilizers to boost crop output has increased in recent years. Nanoparticles (NPs) can stimulate the biosynthesis of bioactive compounds in plants. It is the first report on biosynthesized manganese oxide nanoparticles (MnO-NPs) that mediate in-vitro callus induction of Moringa oleifera. To achieve better biocompatibility the leaf extract of Syzygium cumini was used to synthesize MnO-NPs. Scanning electron microscope SEM revealed spherical shaped morphology of MnO-NPs with an average diameter of 36 ± 0.3 nm. Energy-dispersive X-ray spectroscopy (EDX) depicted the formation of pure MnO-NPs. X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) authenticate the crystalline structure. UV-visible absorption spectroscopy depicted the activity of MnO-NPs under visible light. The biosynthesized MnO-NPs were concentration-dependent and revealed promising results in callus induction of Moringa oleifera. It was found that MnO-NPs enhance callus production of Moringa oleifera and keep the callus infection free by providing an optimum environment for rapid growth and development. Therefore MnO-NPs synthesized through the green process can be utilized in tissue culture studies. This study concludes that MnO is one of the essential plant nutrients that have tailored nutritive properties at a nano scale.


Asunto(s)
Nanopartículas del Metal , Moringa oleifera , Nanopartículas , Moringa oleifera/química , Nanopartículas del Metal/química , Óxidos , Compuestos de Manganeso , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química , Antibacterianos/farmacología
7.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1186-1193, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005802

RESUMEN

Chinese medicinal resources are the cornerstone of the sustainable development of traditional Chinese medicine industry. However, due to the fecundity of species, over-exploitation, and limitations of artificial cultivation, some medicinal plants are depleted and even endangered. Tissue culture, a breakthrough technology in the breeding of traditional Chinese medicinal materials, is not limited by time and space, and can allow the production on an annual basis, which plays an important role in the protection of Chinese medicinal resources. The present study reviewed the applications of tissue culture of medicinal plants in the field of Chinese medicinal resources, including rapid propagation of medicinal plant seedlings, breeding of novel high-yield and high-quality cultivars, construction of a genetic transformation system, and production of secondary metabolites. Meanwhile, the current challenges and suggestions for the future development of this field were also proposed.


Asunto(s)
Plantas Medicinales , Desarrollo Sostenible , Plantas Medicinales/genética , Fitomejoramiento , Medicina Tradicional China , Tecnología
8.
Plants (Basel) ; 12(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37050131

RESUMEN

At present, most precious compounds are still obtained by plant cultivation such as ginsenosides, glycyrrhizic acid, and paclitaxel, which cannot be easily obtained by artificial synthesis. Plant tissue culture technology is the most commonly used biotechnology tool, which can be used for a variety of studies such as the production of natural compounds, functional gene research, plant micropropagation, plant breeding, and crop improvement. Tissue culture material is a basic and important part of this issue. The formation of different plant tissues and natural products is affected by growth conditions and endogenous substances. The accumulation of secondary metabolites are affected by plant tissue type, culture method, and environmental stress. Multi-domain technologies are developing rapidly, and they have made outstanding contributions to the application of plant tissue culture. The modes of action have their own characteristics, covering the whole process of plant tissue from the induction, culture, and production of natural secondary metabolites. This paper reviews the induction mechanism of different plant tissues and the application of multi-domain technologies such as artificial intelligence, biosensors, bioreactors, multi-omics monitoring, and nanomaterials in plant tissue culture and the production of secondary metabolites. This will help to improve the tissue culture technology of medicinal plants and increase the availability and the yield of natural metabolites.

9.
BMC Plant Biol ; 23(1): 33, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36642714

RESUMEN

BACKGROUND: Codonopsis pilosula (Franch.) Nannf. is a medicinal plant traditionally used in China, Korea, and Japan to treat many diseases including poor gastrointestinal function, low immunity, gastric ulcers, and chronic gastritis. The increasing therapeutic and preventive use of C. pilosula has subsequently led to depletion of the natural populations of this species thus necessitating propagation of this important medicinal plant. Here, we developed an efficient and effective in vitro propagation protocol for C. pilosula using apical shoot segments. We tested various plant tissue culture media for the growth of C. pilosula and evaluated the effects of plant growth regulators on the shoot proliferation and rooting of regenerated C. pilosula plants. Furthermore, the tissues (roots and shoots) of maternal and in vitro-regenerated C. pilosula plants were subjected to Fourier-transform near-infrared (FT-NIR) spectrometry, Gas chromatography-mass spectrometry (GC-MS), and their total flavonoids, phenolics, and antioxidant capacity were determined and compared. RESULTS: Full-strength Murashige and Skoog (MS) medium augmented with vitamins and benzylaminopurine (1.5 mg·L-1) regenerated the highest shoot number (12 ± 0.46) per explant. MS medium augmented with indole-3-acetic acid (1.0 mg·L-1) produced the highest root number (9 ± 0.89) and maximum root length (20.88 ± 1.48 mm) from regenerated C. pilosula shoots. The survival rate of in vitro-regenerated C. pilosula plants was 94.00% after acclimatization. The maternal and in vitro-regenerated C. pilosula plant tissues showed similar FT-NIR spectra, total phenolics, total flavonoids, phytochemical composition, and antioxidant activity. Randomly amplified polymorphic DNA (RAPD) test confirmed the genetic fidelity of regenerated C. pilosula plants. CONCLUSIONS: The proposed in vitro propagation protocol may be useful for the rapid mass multiplication and production of high quality C. pilosula as well as for germplasm preservation to ensure sustainable supply amidst the ever-increasing demand.


Asunto(s)
Codonopsis , Plantas Medicinales , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Codonopsis/genética , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Medicinales/genética , Fitoquímicos
10.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674916

RESUMEN

Plants are the main source of bioactive compounds that can be used for the formulation of cosmetic products. Plant extracts have numerous proven health benefits, among which are anti-ageing and skin-care properties. However, with the increased demand for plant-derived cosmetic products, there is a crucial prerequisite for establishing alternative approaches to conventional methods to ensure sufficient biomass for sustainable production. Plant tissue culture techniques, such as in vitro root cultures, micropropagation, or callogenesis, offer the possibility to produce considerable amounts of bioactive compounds independent of external factors that may influence their production. This production can also be significantly increased with the implementation of other biotechnological approaches such as elicitation, metabolic engineering, precursor and/or nutrient feeding, immobilization, and permeabilization. This work aimed to evaluate the potential of biotechnological tools for producing bioactive compounds, with a focus on bioactive compounds with anti-ageing properties, which can be used for the development of green-label cosmeceutical products. In addition, some examples demonstrating the use of plant tissue culture techniques to produce high-value bioactive ingredients for cosmeceutical applications are also addressed, showing the importance of these tools and approaches for the sustainable production of plant-derived cosmetic products.


Asunto(s)
Antioxidantes , Cosmecéuticos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cosmecéuticos/metabolismo , Plantas/metabolismo , Biotecnología/métodos
11.
Artículo en Chino | WPRIM | ID: wpr-970589

RESUMEN

Chinese medicinal resources are the cornerstone of the sustainable development of traditional Chinese medicine industry. However, due to the fecundity of species, over-exploitation, and limitations of artificial cultivation, some medicinal plants are depleted and even endangered. Tissue culture, a breakthrough technology in the breeding of traditional Chinese medicinal materials, is not limited by time and space, and can allow the production on an annual basis, which plays an important role in the protection of Chinese medicinal resources. The present study reviewed the applications of tissue culture of medicinal plants in the field of Chinese medicinal resources, including rapid propagation of medicinal plant seedlings, breeding of novel high-yield and high-quality cultivars, construction of a genetic transformation system, and production of secondary metabolites. Meanwhile, the current challenges and suggestions for the future development of this field were also proposed.


Asunto(s)
Desarrollo Sostenible , Plantas Medicinales/genética , Fitomejoramiento , Medicina Tradicional China , Tecnología
12.
Plants (Basel) ; 11(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36365268

RESUMEN

Carpesium divaricatum Sieb. & Zucc. is a plant species rich in terpenoids of anti-inflammatory and cytotoxic activity, especially germacranolides of potential medicinal value. The present study describes in vitro multiplication of C. divaricatum, analysis of active constituents in the multiple shoots, and assessment of cytotoxic activities of extracts prepared from in vitro- and field-grown plants. The plant extracts were evaluated for cytotoxicity using two melanoma cell lines (HTB140 and A375); human keratinocytes (HaCaT); two colon cancer cell lines (Caco2 and HT29); human hepatocellular carcinoma cells (HepG2); two lines of prostate cancer cells (DU145 and PC3) and prostate epithelial cells (PNT2). Chemical compositions of the assayed extracts were analyzed by HPLC/DAD, in reference to isolated compounds. Maximum of 4.07 ± 1.61 shoots regenerated from a nodal explant of C. divaricatum, cultivated in a liquid MS medium supplemented with thidiazuron (1 µM). In vitro grown shoots and plantlets of C. divaricatum accumulated terpenoids that are known as active constituents of the intact plant. Cytotoxic activity of the extracts prepared from the in vitro cultured plants was like that demonstrated by the extracts prepared from field-grown plants and seemed to be more selective than cytotoxicities of the individual germacranolides.

13.
Genes (Basel) ; 13(11)2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36421789

RESUMEN

The in vitro culture technique can be used for micropropagation of medicinal plants as well as for creating genotypes with an improved profile of phytochemical compounds. For this purpose, somaclonal variability may be used for the induction of genetic diversity among regenerants. The paper presents a protocol for obtaining Scutellaria baicalensis regenerants by indirect organogenesis and the assessment of their genetic variability with the use of start codon-targeted markers. The most intense process of indirect shoot organogenesis was observed on Murashige and Skoog medium supplemented with kinetin and 6-Benzylaminopurine (0.5 mg × dm-3 each)-7.4 shoot per explant on average. The callogenesis process occurred on the medium supplemented with TDZ, while the medium supplemented with GA3 allowed for direct shoot organogenesis and was used for the micropropagation of regenerants. In the analysis of plantlets obtained by indirect organogenesis, 11 ScoT markers generated a total of 130 amplicons, 45 of which were polymorphic. This analysis showed genetic diversity of regenerants in relation to the donor plant as well as within them, with mean similarity among the analyzed genotypes at the level of 0.90. This study confirms that the use of in vitro cultures allows for the possibility to generate genetic variability in Scutellaria baicalensis, which can be effectively revealed with the use of the SCoT marker.


Asunto(s)
Plantas Medicinales , Scutellaria baicalensis , Scutellaria baicalensis/genética , Plantas Medicinales/genética , Codón Iniciador , Biomarcadores , Variación Genética/genética
14.
Front Plant Sci ; 13: 960306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110351

RESUMEN

Polygonum maritimum L. (sea knotgrass) belongs to a genus commonly used in folk medicine to treat inflammation-related disorders. In vitro pharmacological studies have confirmed these properties that were ascribed to bioactive flavonoids, such as myricetin and quercetin glycosides. Therefore, this study aimed at establishing a micropropagation procedure for sea knotgrass for obtaining standardized materials for its potential commercial cultivation. For that, a complete plant regeneration protocol was developed by improving shoot multiplication from nodal explants, rooting and acclimatization procedures, followed by the assessment of the phenolic profile of the in vitro-produced plants. The combination of 3 mg/L 6-benzylaminopurine (BA) + 0.1 mg/L indole-3-acetic acid (IAA) induced the maximum shoot formation (10.3), which was significantly increased from the first to the second cycle (18.3). The best rooting capacity was observed on shoots derived from the control medium (100%), followed by 2 mg/L kinetin (KIN) (97%) and 3 mg/L BA + 0.1 mg/L IAA (90%); however, the shoot number at the end of the rooting phase was higher on shoots derived from 3 mg/L BA + 0.1 mg/L IAA (6.16). The plant growth regulators used in the multiplication phase influenced survival in the acclimatization process, and plants derived from the control medium had the highest survival percentage (63.1%). Acetone extracts made from aerial organs of micropropagated sea knotgrass showed a predominance of the flavonoid myricetin-3-O-rhamnoside (8.135 mg/g). Overall, the halophyte sea knotgrass was successfully micropropagated showing its potential as a medicinal crop for the extraction of bioactive molecules.

15.
Methods Mol Biol ; 2469: 129-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35508835

RESUMEN

Agrobacterium rhizogenes is the bacterial agent that causes hairy root disease in dicots and is purposefully engineered for the development of transgenic hairy root cultures. Due to their genetic and metabolic stability, hairy root cultures offer advantages as a tissue culture system for investigating the function of transgenes and as a production platform for specialized metabolites or proteins. The process for generating hairy root cultures involves first infecting the explant with A. rhizogenes, excising and eliminating A. rhizogenes from the emerging hairy roots, selecting for transgenic hairy roots on plates containing the selective agent, confirming genomic integration of transgenes by PCR, and finally adapting the hairy roots in liquid media. Here we provide a detailed protocol for developing and maintaining transgenic hairy root cultures of our medicinal plant of interest, Catharanthus roseus.


Asunto(s)
Catharanthus , Agrobacterium/genética , Catharanthus/genética , Catharanthus/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transformación Genética
16.
Environ Sci Pollut Res Int ; 29(33): 50166-50176, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35224698

RESUMEN

Phosphogypsum is a by-product of the phosphorus fertilizer production process and is typically stacked at the production sites. These stacks can potentially pose environmental hazards, which can be substantially reduced through reclamation by capping with soil and revegetation upon decommissioning. We conducted a study on a phosphogypsum stack using five soil capping depths (8, 15, 30, 46, 91 cm), an uncapped treatment, and five vegetation treatments (monocultures of four grass species Agrostis stolonifera L., Festuca ovina L., Deschampsia caespitosa (L.) Beauv., Agropyron trachycaulum (Link) Malte ex H.F. Lewis and one mix of the four species with Trifolium hybridum L.) to assess plant growth, health, rooting characteristics, and trace element uptake. Cobalt and nickel concentrations in plant tissue from plots with ≥ 15 cm soil capping were within ranges found at reference sites, whereas fluorine was three times elevated. Vegetation cover was significantly greater on capped than uncapped plots, being greatest for Agropyron trachycaulum (26%) and Festuca ovina (26%). Capping depths ≥ 15 cm had greater cover, biomass, and healthy plants than the 8 cm cover. Soil water content was similar in the 15-46 cm capping depth, with the lowest in the 91-cm caps. Fluorine, cobalt, and nickel were elevated in select plant tissue samples on the research plots relative to references, and cap depth affected tissue fluorine and cobalt concentrations but not nickel. Concentrations of these trace elements were lower than maximum tolerable levels for animal consumption. From this 5-year study, Agropyron trachycaulum and Festuca ovina and a soil cover depth of ≥ 15 cm are recommended for reclamation of phosphogypsum stacks.


Asunto(s)
Festuca , Contaminantes del Suelo , Animales , Sulfato de Calcio , Cobalto , Flúor , Fósforo , Plantas , Suelo , Contaminantes del Suelo/análisis
17.
Food Chem ; 367: 130724, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34352691

RESUMEN

For the first time, electromembrane extraction (EME) combined LC-MS/MS was applied to extract and determine α-solanine and α-chaconine in different potato tissues using NPOE containing 20% (v/v) DEHP as supported liquid membrane (SLM). Under the optimal conditions, the proposed EME-LC-MS/MS method was evaluated using spiked fresh potato peel sample. The linear range for α-solanine and α-chaconine was 5-1000 ng mL-1 (R2 > 0.9991), with LOD and LOQ of 1.2-1.5 ng mL-1 and 4.1-5.2 ng mL-1, respectively. Repeatability for α-solanine and α-chaconine at three concentration levels was satisfactory (<4.9%), and recoveries ranged from 73% to 106%. Finally, the EME-LC-MS/MS method has been successfully employed to determine α-solanine and α-chaconine in sprouted potato peel and tuber samples, indicating that EME exhibited high selectivity and efficient sample clean-up capability. Consequently, EME showed great potential for extraction and purification of toxic and bioactive basic compounds from complex plant tissues.


Asunto(s)
Solanina , Solanum tuberosum , Cromatografía Liquida , Espectrometría de Masas en Tándem
18.
Braz. j. biol ; 82: 1-7, 2022. tab, graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468482

RESUMEN

Plants that produce secondary metabolites with allelopathic activity or phytotoxicity can be biotechnologically important, serving as sources of allelochemicals, and thus contributing to the agroindustrial sector. Vismia japurensis (Hypericaceae) is an Amazonian species that grows in clumps called vismiais, from which most other plants are absent. Accordingly, the objective of this study was to identify possible phytotoxicity effects of hexane and methanol extracts of Vismia japurensis leaves and branches in vivo and from seedlings grown in vitro on Lactuca sativa. In addition, fresh and dry leaves were assayed by the sandwich method in order to determine their ability to release allelochemicals. The hexanic extract from in vitro seedlings reduced germination by 10%, while the methanol extract produced a 16% reduction in germination speed. Root growth of Lactuca sativa was inhibited by 64.7% when subjected to hexane leaf extract, by 39.3% under the influence of hexane branch extract, and by 96.09% for in vitro seedling hexanic extract. When analysed by thin layer chromatography and 1H nuclear magnetic resonance, extracts showed evidence of terpenes, anthraquinones and flavonoids, with greater intensity of signals in the aromatic region of in vitro seedling hexanic extract. Clearly, Vismia japurensis has a high biotechnological potential in terms of the production of substances of low polarity with capacity to interfere in plant development.


Plantas que produzem metabólitos secundários com atividade alelopática ou fitotóxica podem ser biotecnologicamente importantes, servindo como fontes de aleloquímicos e, assim, contribuindo para o setor agroindustrial. Vismia japurensis (Hypericaceae) é uma espécie amazônica que cresce em grupos, formando vismiais. Assim, o objetivo deste estudo foi identificar possíveis efeitos fitotóxicos de extratos hexânicos e metanólicos de folhas e ramos de Vismia japurensis in vivo e de plântulas cultivadas in vitro sobre Lactuca sativa. Além disso, folhas frescas e secas foram analisadas pelo método sanduíche, a fim de determinar sua capacidade de liberação de aleloquímicos. O extrato hexânico de plântulas in vitro reduziu a germinação em 10% e o extrato metanólico promoveu uma redução de 16% na velocidade de germinação. O crescimento radicular de Lactuca sativa foi inibido em 64,7% quando submetido ao extrato hexânico das folhas, em 39,3% sob influência do extrato hexânico dos galhos e em 96,09% para o extrato de hexânico das plântulas in vitro. Quando analisados por cromatografia em camada delgada e ressonância magnética nuclear de 1H, os extratos mostraram evidências de terpenos, antraquinonas e flavonoides, com maior intensidade de sinais na região aromática do extrato hexânico das plântulas in vitro. Assim, Vismia japurensis possui elevado potencial biotecnológico em termos de produção de substâncias de baixa polaridade com capacidade de interferência no desenvolvimento de plantas.


Asunto(s)
Lactuca/efectos de los fármacos , Antraquinonas , Clusiaceae/química , Clusiaceae/toxicidad , Terpenos , Técnicas In Vitro
19.
Braz. j. biol ; 822022.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468669

RESUMEN

Abstract Plants that produce secondary metabolites with allelopathic activity or phytotoxicity can be biotechnologically important, serving as sources of allelochemicals, and thus contributing to the agroindustrial sector. Vismia japurensis (Hypericaceae) is an Amazonian species that grows in clumps called vismiais, from which most other plants are absent. Accordingly, the objective of this study was to identify possible phytotoxicity effects of hexane and methanol extracts of Vismia japurensis leaves and branches in vivo and from seedlings grown in vitro on Lactuca sativa. In addition, fresh and dry leaves were assayed by the sandwich method in order to determine their ability to release allelochemicals. The hexanic extract from in vitro seedlings reduced germination by 10%, while the methanol extract produced a 16% reduction in germination speed. Root growth of Lactuca sativa was inhibited by 64.7% when subjected to hexane leaf extract, by 39.3% under the influence of hexane branch extract, and by 96.09% for in vitro seedling hexanic extract. When analysed by thin layer chromatography and 1H nuclear magnetic resonance, extracts showed evidence of terpenes, anthraquinones and flavonoids, with greater intensity of signals in the aromatic region of in vitro seedling hexanic extract. Clearly, Vismia japurensis has a high biotechnological potential in terms of the production of substances of low polarity with capacity to interfere in plant development.


Resumo Plantas que produzem metabólitos secundários com atividade alelopática ou fitotóxica podem ser biotecnologicamente importantes, servindo como fontes de aleloquímicos e, assim, contribuindo para o setor agroindustrial. Vismia japurensis (Hypericaceae) é uma espécie amazônica que cresce em grupos, formando vismiais. Assim, o objetivo deste estudo foi identificar possíveis efeitos fitotóxicos de extratos hexânicos e metanólicos de folhas e ramos de Vismia japurensis in vivo e de plântulas cultivadas in vitro sobre Lactuca sativa. Além disso, folhas frescas e secas foram analisadas pelo método sanduíche, a fim de determinar sua capacidade de liberação de aleloquímicos. O extrato hexânico de plântulas in vitro reduziu a germinação em 10% e o extrato metanólico promoveu uma redução de 16% na velocidade de germinação. O crescimento radicular de Lactuca sativa foi inibido em 64,7% quando submetido ao extrato hexânico das folhas, em 39,3% sob influência do extrato hexânico dos galhos e em 96,09% para o extrato de hexânico das plântulas in vitro. Quando analisados por cromatografia em camada delgada e ressonância magnética nuclear de 1H, os extratos mostraram evidências de terpenos, antraquinonas e flavonoides, com maior intensidade de sinais na região aromática do extrato hexânico das plântulas in vitro. Assim, Vismia japurensis possui elevado potencial biotecnológico em termos de produção de substâncias de baixa polaridade com capacidade de interferência no desenvolvimento de plantas.

20.
Braz. j. biol ; 82: e235475, 2022. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1249240

RESUMEN

Plants that produce secondary metabolites with allelopathic activity or phytotoxicity can be biotechnologically important, serving as sources of allelochemicals, and thus contributing to the agroindustrial sector. Vismia japurensis (Hypericaceae) is an Amazonian species that grows in clumps called vismiais, from which most other plants are absent. Accordingly, the objective of this study was to identify possible phytotoxicity effects of hexane and methanol extracts of Vismia japurensis leaves and branches in vivo and from seedlings grown in vitro on Lactuca sativa. In addition, fresh and dry leaves were assayed by the sandwich method in order to determine their ability to release allelochemicals. The hexanic extract from in vitro seedlings reduced germination by 10%, while the methanol extract produced a 16% reduction in germination speed. Root growth of Lactuca sativa was inhibited by 64.7% when subjected to hexane leaf extract, by 39.3% under the influence of hexane branch extract, and by 96.09% for in vitro seedling hexanic extract. When analysed by thin layer chromatography and 1H nuclear magnetic resonance, extracts showed evidence of terpenes, anthraquinones and flavonoids, with greater intensity of signals in the aromatic region of in vitro seedling hexanic extract. Clearly, Vismia japurensis has a high biotechnological potential in terms of the production of substances of low polarity with capacity to interfere in plant development.


Plantas que produzem metabólitos secundários com atividade alelopática ou fitotóxica podem ser biotecnologicamente importantes, servindo como fontes de aleloquímicos e, assim, contribuindo para o setor agroindustrial. Vismia japurensis (Hypericaceae) é uma espécie amazônica que cresce em grupos, formando vismiais. Assim, o objetivo deste estudo foi identificar possíveis efeitos fitotóxicos de extratos hexânicos e metanólicos de folhas e ramos de Vismia japurensis in vivo e de plântulas cultivadas in vitro sobre Lactuca sativa. Além disso, folhas frescas e secas foram analisadas pelo método sanduíche, a fim de determinar sua capacidade de liberação de aleloquímicos. O extrato hexânico de plântulas in vitro reduziu a germinação em 10% e o extrato metanólico promoveu uma redução de 16% na velocidade de germinação. O crescimento radicular de Lactuca sativa foi inibido em 64,7% quando submetido ao extrato hexânico das folhas, em 39,3% sob influência do extrato hexânico dos galhos e em 96,09% para o extrato de hexânico das plântulas in vitro. Quando analisados por cromatografia em camada delgada e ressonância magnética nuclear de 1H, os extratos mostraram evidências de terpenos, antraquinonas e flavonoides, com maior intensidade de sinais na região aromática do extrato hexânico das plântulas in vitro. Assim, Vismia japurensis possui elevado potencial biotecnológico em termos de produção de substâncias de baixa polaridade com capacidade de interferência no desenvolvimento de plantas.


Asunto(s)
Germinación , Clusiaceae , Extractos Vegetales/toxicidad , Hojas de la Planta , Plantones , Alelopatía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA