Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.023
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Mol Nutr Food Res ; 68(8): e2300643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600887

RESUMEN

SCOPE: Polyphenols are the major active substances in red jujube fruit, and their anti-inflammatory and antioxidant activities suggest their potential utility in the prevention of ulcerative colitis (UC). METHODS AND RESULTS: In this study, the effect of polyphenol extracts from red jujube (Ziziphus jujuba Mill. "Junzao") (PERJ) on the dextron sulfate sodium (DSS)-induced UC mice is investigated. The result shows that PERJ effectively improves clinical symptoms, including food and water intake, the disease activity insex (DAI) and spleen index, and routine blood levels, and alleviates the shortening of the colon, in mice with DSS-induced UC. Meanwhile, PERJ remarkably decreases the expression of proinflammatory factors. Moreover, PERJ repairs intestinal barrier damage by increasing the expression level of mucin 2 and mucin 3, and the result is also confirmed in the histological assessment. Besides, the expression levels of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and mitogen-activated protein kinase cascade (MAPKs) signaling pathway-related proteins are inhibited by the PERJ administration. Finally, 16S rRNA sequencing analyses reveal that PERJ reverses intestinal microbiota dysbiosis by enhancing the abundance of Firmicutes and decreasing that of Proteobacteria and Bacteroidetes. CONCLUSION: PERJ probably inhibits the development of UC by suppressing the NLRP3 and MAPKs signaling pathways and regulating gut microbiota homeostasis, and can be considered as a potential resource for preventing UC.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Sistema de Señalización de MAP Quinasas , Extractos Vegetales , Ziziphus , Animales , Masculino , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Homeostasis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Extractos Vegetales/farmacología , Polifenoles/farmacología , Ziziphus/química
2.
Fitoterapia ; 175: 105953, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588905

RESUMEN

Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.


Asunto(s)
Antocianinas , Inflamación , Intestinos , Animales , Humanos , Antocianinas/administración & dosificación , Inflamación/tratamiento farmacológico , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Proteínas de Uniones Estrechas/metabolismo , Dieta a Base de Plantas
3.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612933

RESUMEN

Tannins, present in numerous plants, exhibit a binding affinity for proteins. In this study, we aimed to exploit this property to reduce the concentration of allergenic egg white proteins. Tannins were extracted, using hot water, from the lyophilized powder of underutilized resources, such as chestnut inner skin (CIS), young persimmon fruit (YPF), and bayberry leaves (BBLs). These extracts were then incorporated into an egg white solution (EWS) to generate an egg white gel (EWG). Allergen reduction efficacy was assessed using electrophoresis and ELISA. Our findings revealed a substantial reduction in allergenic proteins across all EWGs containing a 50% tannin extract. Notably, CIS and BBL exhibited exceptional efficacy in reducing low allergen levels. The addition of tannin extract resulted in an increase in the total polyphenol content of the EWG, with the order of effectiveness being CIS > YPF > BBL. Minimal color alteration was observed in the BBL-infused EWG compared to the other sources. Additionally, the introduction of tannin extract heightened the hardness stress, with BBL demonstrating the most significant effect, followed by CIS and YPF. In conclusion, incorporating tannin extract during EWG preparation was found to decrease the concentration of allergenic proteins while enhancing antioxidant properties and hardness stress, with BBL being particularly effective in preventing color changes in EWG.


Asunto(s)
Diospyros , Taninos , Alérgenos , Piel , Geles , Extractos Vegetales
4.
Cells ; 13(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474351

RESUMEN

Staphylococcus aureus, a bacterium found on human skin, produces toxins and various virulence factors that can lead to skin infections such as atopic dermatitis. These toxins and virulence factors are carried in membrane vesicles (MVs), composed of the bacterium's own cell membranes, and are expected to reach host target cells in a concentrated form, inducing inflammation. This study investigated the effects of two polyphenols, (-)-epigallocatechin gallate (EGCG) and nobiletin (NOL), on the expression of S. aureus virulence factors and the inflammation induced by MVs. The study found that EGCG alone decreased the production of Staphylococcal Enterotoxin A (SEA), while both EGCG and NOL reduced biofilm formation and the expression of virulence factor-related genes. When S. aureus was cultured in a broth supplemented with these polyphenols, the resulting MVs showed a reduction in SEA content and several cargo proteins. These MVs also exhibited decreased levels of inflammation-related gene expression in immortalized human keratinocytes. These results suggest that EGCG and NOL are expected to inhibit inflammation in the skin by altering the properties of MVs derived from S. aureus.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Polifenoles/farmacología , Infecciones Estafilocócicas/metabolismo , Inflamación , Factores de Virulencia/metabolismo
5.
Molecules ; 29(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474695

RESUMEN

Marine mangrove vegetation has been traditionally employed in folk medicine to address various ailments. Notably, Rhizophora apiculata Blume has exhibited noteworthy properties, demonstrating efficacy against cancer, viruses, and bacteria. The enzyme fatty acid synthase (FAS) plays a pivotal role in de novo fatty acid synthesis, making it a promising target for combating colon cancer. Our study focused on evaluating the FAS inhibitory effects of both the crude extract and three isolated compounds from R. apiculata. The n-butanol fraction of R. apiculata extract (BFR) demonstrated a significant inhibition of FAS, with an IC50 value of 93.0 µg/mL. For inhibition via lyoniresinol-3α-O-ß-rhamnopyranoside (LR), the corresponding IC50 value was 20.1 µg/mL (35.5 µM). LR competitively inhibited the FAS reaction with acetyl-CoA, noncompetitively with malonyl-CoA, and in a mixed manner with NADPH. Our results also suggest that both BFR and LR reversibly bind to the KR domain of FAS, hindering the reduction of saturated acyl groups in fatty acid synthesis. Furthermore, BFR and LR displayed time-dependent inhibition for FAS, with kobs values of 0.0045 min-1 and 0.026 min-1, respectively. LR also exhibited time-dependent inhibition on the KR domain, with a kobs value of 0.019 min-1. In human colon cancer cells, LR demonstrated the ability to reduce viability and inhibit intracellular FAS activity. Notably, the effects of LR on human colon cancer cells could be reversed with the end product of FAS-catalyzed chemical reactions, affirming the specificity of LR on FAS. These findings underscore the potential of BFR and LR as potent FAS inhibitors, presenting novel avenues for the treatment of human colon cancer.


Asunto(s)
Neoplasias del Colon , Rhizophoraceae , Humanos , Polifenoles , Ácido Graso Sintasas/metabolismo , Ácidos Grasos
6.
Antioxidants (Basel) ; 13(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38539838

RESUMEN

Obesity and metabolic dysfunction have been shown to be associated with overproduction of reactive oxygen species (ROS) in the gastrointestinal (GI) tract, which contributes to dysbiosis or imbalances in the gut microbiota. Recently, the reversal of dysbiosis has been observed as a result of dietary supplementation with antioxidative compounds including polyphenols. Likewise, dietary polyphenols have been associated with scavenging of GI ROS, leading to the hypothesis that radical scavenging in the GI tract is a potential mechanism for the reversal of dysbiosis. The objective of this study was to investigate the relationship between GI ROS, dietary antioxidants and beneficial gut bacterium Akkermansia muciniphila. The results of this study demonstrated A. muciniphila to be a discriminant microorganism between lean (n = 7) and obese (n = 7) mice. The relative abundance of A. muciniphila was also found to have a significant negative correlation with extracellular ROS in the GI tract as measured using fluorescent probe hydroindocyanine green. The ability of the dietary antioxidants ascorbic acid, ß-carotene and grape polyphenols to scavenge GI ROS was evaluated in tandem with their ability to support A. muciniphila bloom in lean mice (n = 20). While the relationship between GI ROS and relative abundance of A. muciniphila was conserved in lean mice, only grape polyphenols stimulated the bloom of A. muciniphila. Analysis of fecal antioxidant capacity and differences in the bioavailability of the antioxidants of interest suggested that the poor bioavailability of grape polyphenols contributes to their superior radical scavenging activity and support of A. muciniphila in comparison to the other compounds tested. These findings demonstrate the utility of the GI redox environment as a modifiable therapeutic target in the treatment of chronic inflammatory diseases like metabolic syndrome.

7.
Molecules ; 29(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542965

RESUMEN

In Asian regions, areca nuts are tropical fruits that are extensively consumed. The areca nut contains a lot of polyphenols and its safety is unknown. In this research, we investigated the effects of lipopolysaccharides (LPS) and areca nut polyphenols (ANP) on normal RAW264.7 cells. The results showed that LPS stimulated adverse effects in normal cells by affecting cytokine production. The GO analysis results mainly affected DNA repair, cell division, and enzyme activities. In the KEGG analysis results, the NOD-like receptor signaling pathway, which is related to NF-κB, MAPK, and the pro-inflammatory cytokines, is the most significant. In the protein-protein interaction network (PPI) results, significant sub-networks in all three groups were shown to be related to cytokine-cytokine receptor interaction. Collectively, our findings showed a comprehensive understanding of LPS-induced toxicity and the protective effects of ANP by RNA sequencing.


Asunto(s)
Areca , Lipopolisacáridos , Animales , Ratones , Lipopolisacáridos/efectos adversos , Extractos Vegetales/farmacología , Nueces , Citocinas , Células RAW 264.7 , Polifenoles/farmacología
8.
Molecules ; 29(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542970

RESUMEN

Currently, little is known about the characteristics of polyphenol oxidase from wheat bran, which is closely linked to the browning of wheat product. The wheat PPO was purified by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange column, and Superdex G-75 chromatography column. Purified wheat PPO activity was 11.05-fold higher, its specific activity was 1365.12 U/mg, and its yield was 8.46%. SDS-PAGE showed that the molecular weight of wheat PPO was approximately 21 kDa. Its optimal pH and temperature were 6.5 and 35 °C for catechol as substrate, respectively. Twelve phenolic substrates from wheat and green tea were used for analyzing the substrate specificity. Wheat PPO showed the highest affinity to catechol due to its maximum Vmax (517.55 U·mL-1·min-1) and low Km (6.36 mM) values. Docking analysis revealed strong affinities between catechol, gallic acid, EGCG, and EC with binding energies of -5.28 kcal/mol, -4.65 kcal/mol, -4.21 kcal/mol, and -5.62 kcal/mol, respectively, for PPO. Sodium sulfite, ascorbic acid, and sodium bisulfite dramatically inhibited wheat PPO activity. Cu2+ and Ca2+ at 10 mM were considered potent activators and inhibitors for wheat PPO, respectively. This report provides a theoretical basis for controlling the enzymatic browning of wheat products fortified with green tea.


Asunto(s)
Catecol Oxidasa , Fibras de la Dieta , Catecol Oxidasa/química , Fibras de la Dieta/análisis , Concentración de Iones de Hidrógeno , Cinética , Proteínas de Plantas/metabolismo , Catecoles/análisis , Especificidad por Sustrato ,
9.
Bioresour Technol ; 398: 130503, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442847

RESUMEN

Targeted regulation of composting to convert organic matter into humic acid (HA) holds significant importance in compost quality. Owing to its low carbon content, chicken manure compost often requires carbon supplements to promote the humification progress. The addition of lignite can increase HA content through biotic pathways, however, its structure was not explored. The Parallel factor analysis revealed that lignite can significantly increase the complexity of highly humified components. The lignite addition improved phenol oxidase activity, particularly laccase, during the thermophilic and cooling phases. The abundance and transformation functions of core bacteria also indicated that lignite addition can influence the activity of microbial transformation of HA components. The structural equation model further confirmed that lignite addition had a direct and indirect impact on enhancing the complexity of HA components through core bacteria and phenol oxidase. Therefore, lignite addition can improve HA structure complexity during composting through biotic pathways.


Asunto(s)
Compostaje , Sustancias Húmicas , Animales , Sustancias Húmicas/análisis , Suelo , Estiércol , Pollos , Carbón Mineral , Monofenol Monooxigenasa , Carbono
10.
Talanta ; 272: 125842, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428131

RESUMEN

A novel sensor array was developed based on the enzyme/nanozyme hybridization for the identification of tea polyphenols (TPs) and Chinese teas. The enzyme/nanozyme with polyphenol oxidase activity can catalyze the reaction between TPs and 4-aminoantipyrine (4-AAP) to produce differences in color, and the sensor array was thus constructed to accurately identify TPs mixed in different species, concentrations, or ratios. In addition, a machine learning based dual output model was further used to effectively predict the classes and concentrations of unknown samples. Therefore, the qualitative and quantitative detection of TPs can be realized continuously and quickly. Furthermore, the sensor array combining the machine learning based dual output model was also utilized for the identification of Chinese teas. The method can distinguish the six teas series in China, and then precisely differentiate the more specific tea varieties. This study provides an efficient and facile strategy for the identification of teas and tea products.


Asunto(s)
Camellia sinensis , Polifenoles , Polifenoles/análisis , , Catecol Oxidasa , Aprendizaje Automático
11.
Mol Neurobiol ; 61(10): 7732-7750, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38427213

RESUMEN

Inflammation in the nervous system is one of the key features of many neurodegenerative diseases. It is increasingly being identified as a critical pathophysiological primitive mechanism associated with chronic neurodegenerative diseases following traumatic brain injury (TBI). Phytochemicals have a wide range of clinical properties due to their antioxidant and anti-inflammatory effects. Currently, there are few drugs available for the treatment of neurodegenerative diseases other than symptomatic relief. Numerous studies have shown that plant-derived compounds, in particular polyphenols, protect against various neurodegenerative diseases and are safe for consumption. Polyphenols exert protective effects on TBI via restoration of nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR4), and Nod-like receptor family proteins (NLRPs) pathways. In addition, these phytochemicals and their derivatives upregulate the phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/AKT) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, which have critical functions in modulating TBI symptoms. There is supporting evidence that medicinal plants and phytochemicals are protective in different TBI models, though future clinical trials are needed to clarify the precise mechanisms and functions of different polyphenolic compounds in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Fármacos Neuroprotectores , Fitoquímicos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Animales , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Polifenoles/farmacología , Polifenoles/uso terapéutico
12.
Plant Physiol Biochem ; 209: 108533, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520967

RESUMEN

Selenium (Se) toxicity is an emerging contaminant of global concern. It is known to cause oxidative stress, affecting plant growth and yield. Plantago ovata, a major cash crop known for its medicinal properties, is often cultivated in Se-contaminated soil. Thus, the aim of this study was to evaluate the use of methyl jasmonate (MeJA) seed priming technique to mitigate Se-induced phytotoxicity. The results demonstrated that Se stress inhibited P. ovata growth, biomass and lowered chlorophyll content in a dose-dependent manner. Treatment with 1 µM MeJA enhanced the antioxidant defence system via ROS signalling and upregulated key enzymes of phenylpropanoid pathway, PAL (1.9 times) and CHI (5.4 times) in comparison to control. Caffeic acid, Vanillic acid, Chlorogenic acid, Coumaric acid and Luteoloside were the most abundant polyphenols. Enzymatic antioxidants involved in ROS scavenging, such as CAT (up to 1.3 times) and GPOX (up to 1.4 times) were raised, while SOD (by 0.6 times) was reduced. There was an upregulation of growth-inducible hormones, IAA (up to 2.1 fold) and GA (up to 1.5 fold) whereas, the stress-responsive hormones ABA (by 0.6 fold) and SA (by 0.5 fold) were downregulated. The alleviation of Se toxicity was also evident from the decrease in H2O2 and MDA contents under MeJA treatment. These findings suggest that MeJA can effectively improve Se tolerance and nutraceutical value in P. ovata by modulating the phytohormone regulatory network, redox homeostasis and elicits accumulation of polyphenols. Therefore, MeJA seed priming could be an efficient way to enhance stress resilience and sustainable crop production.


Asunto(s)
Acetatos , Ciclopentanos , Oxilipinas , Plantago , Selenio , Selenio/farmacología , Selenio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantago/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Polifenoles/metabolismo , Hormonas/metabolismo
13.
Food Chem ; 447: 138918, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38484543

RESUMEN

In this study, it was found that the enhancement in the viability of Lactobacillus plantarum under gastrointestinal conditions by encapsulating them within novel C-Phycocyanin-pectin based hydrogels (from 5.7 to 7.1 log/CFU). The hardness, the strength and the stability of the hydrogels increased when the protein concentration was increased. In addition, the addition of resveratrol (RES), and tannic acid (TA) could improve the hardness (from 595.4 to 608.3 and 637.0 g) and WHC (from 93.9 to 94.2 and 94.8 %) of the hydrogels. The addition of gallic acid (GA) enhanced the hardness (675.0 g) of the hydrogels, but the WHC (86.2 %) was decreased. During simulated gastrointestinal conditions and refrigerated storage, the addition of TA enhanced the viable bacteria counts (from 6.8 and 8.0 to 7.5 and 8.5 log/CFU) of Lactobacillus plantarum. Furthermore, TA and GA are completely encased by the protein-pectin gel as an amorphous state, while RA is only partially encased.


Asunto(s)
Lactobacillus plantarum , Probióticos , Lactobacillus plantarum/metabolismo , Pectinas/metabolismo , Hidrogeles/metabolismo , Ficocianina , Polifenoles/metabolismo , Probióticos/metabolismo
14.
Phytother Res ; 38(6): 2597-2618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479376

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global coronavirus disease 2019 (COVID-19) pandemic since 2019. Immunopathogenesis and thromboembolic events are central to its pathogenesis. Quercetin exhibits several beneficial activities against COVID-19, including antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antithrombotic effects. Although several reviews have been published, these reviews are incomplete from the viewpoint of translational medicine. The authors comprehensively evaluated the evidence of quercetin against COVID-19, both basically and clinically, to apply quercetin and/or its derivatives in the future. The authors searched the PubMed, Embase, and the Cochrane Library databases without any restrictions. The search terms included COVID-19, SARS-CoV-2, quercetin, antiviral, anti-inflammatory, immunomodulatory, thrombosis, embolism, oxidative, and microbiota. The references of relevant articles were also reviewed. All authors independently screened and reviewed the quality of each included manuscript. The Cochrane Risk of Bias Tool, version 2 (RoB 2) was used to assess the quality of the included randomized controlled trials (RCTs). All selected studies were discussed monthly. The effectiveness of quercetin against COVID-19 is not solid due to methodological flaws in the clinical trials. High-quality studies are also required for quercetin-containing traditional Chinese medicines. The low bioavailability and highly variable pharmacokinetics of quercetin hinder its clinical applications. Its positive impact on immunomodulation through reverting dysbiosis of gut microbiota still lacks robust evidence. Quercetin against COVID-19 does not have tough clinical evidence. Strategies to improve its bioavailability and/or to develop its effective derivatives are needed. Well-designed RCTs are also crucial to confirm their effectiveness in the future.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Quercetina , SARS-CoV-2 , Quercetina/farmacología , Quercetina/uso terapéutico , Humanos , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Antivirales/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
15.
Nutrients ; 16(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337729

RESUMEN

BACKGROUND: There has been an increasing global prevalence of depression and other psychiatric diseases in recent years. Perceived stress has been proven to be associated with psychiatric and somatic symptoms. Some animal and human studies have suggested that consuming foods abundant in lignans and phytosterols may be associated with lower levels of stress, depression, and anxiety. Still, the evidence is not yet strong enough to draw firm conclusions. Thus, we investigated the association between dietary intake of these phytochemicals and the level of stress experienced by adult individuals. METHODS: Diet was assessed using self-reported 7-day dietary records. The intakes of lignans and phytosterols were estimated using databases with their content in various food products. The Perceived Stress Scale (PSS) was implemented to measure the level of perceived stress. A logistic regression analysis was used to test for associations. RESULTS: The odds of elevated PSS were negatively associated with dietary intake of total phytosterols, stigmasterol, and ß-sitosterol, with evidence of a decreasing trend across tertiles of phytochemicals. The analysis for doubling the intake reinforced the aforementioned relationships and found protective effects against PSS for total lignans, pinoresinol, and campesterol. CONCLUSIONS: Habitual inclusion of lignans and phytosterols in the diet may play a role in psychological health. To address the global outbreak of depression and other mental health issues triggered by stress, it is important to take a holistic approach. There is a need to develop effective strategies for prevention and treatment, among which certain dietary interventions such as consumption of products abundant in lignans and phytosterols may play a substantial role.


Asunto(s)
COVID-19 , Lignanos , Fitosteroles , Pruebas Psicológicas , Autoinforme , Humanos , Adulto Joven , Polonia , Pandemias , COVID-19/epidemiología , Fitosteroles/análisis , Dieta , Percepción
16.
J Food Sci ; 89(4): 2232-2248, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380698

RESUMEN

Sugarcane juice is a popular beverage and is also processed to produce sugar. The polyphenol oxidase (PPO) in sugarcane juice causes enzymatic browning and makes the process of sugar production complex and cumbersome. Storage of sugarcane juice is also hampered by the high sugar content and rapid microbial fermentation. The present research assessed the potential of lemon juice (LJ) and ginger extract (GE) as natural inhibitors of PPO. Enzyme kinetics and the mechanism of inhibition of LJ and GE were studied. Primary investigation was carried out using molecular docking approach to assess the inhibitory potential of LJ and GE and to determine the nature of interaction between the enzyme and inhibitors. Extracts were used as inhibitors and studies revealed that both reduced the PPO activity. Subsequently, pure bioactive inhibitors such as ascorbic acid, citric acid, and 6-shogaol present in these natural extracts were used to study the mode of inhibition of PPO. Citric acid decreased PPO activity by lowering pH, while ascorbic acid was found to be a competitive inhibitor of PPO with a Ki of 75.69 µM. The proportion of LJ and GE required in sugarcane juice was optimized on the basis of browning index and sensory acceptance. Further, the sugarcane cane juice after inhibition of PPO under optimized conditions was spray dried and evaluated for reconstitution properties. The product formulated in the present study is a new and effective approach to address quality-compromising issues associated with long-term storage of cane juice.


Asunto(s)
Saccharum , Saccharum/química , Catecol Oxidasa/química , Simulación del Acoplamiento Molecular , Ácido Ascórbico , Azúcares , Ácido Cítrico
17.
J Food Sci Technol ; 61(3): 503-515, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38327858

RESUMEN

Goat milk has achieved significant place in human diet owing to its enormous therapeutic properties. There exists a scope of value-addition of goat milk to potentiate its health benefits by incorporating herbs and plants. Giloy (Tinospora cordifolia), a traditional medicinal plant with rich bioactive composition, can enhance the bioactive properties and shelf-life of goat milk. To this end, a study was conducted to develop shelf-stable giloy-goat milk beverage (GGB) by adding debittered giloy juice to goat milk (GM) and analyse the detailed product profile including proximate composition, bioactive properties, sensory, rheological, and structural characterisation. GGB resulted in two-fold increase (P < 0.05) in antioxidant activity and total phenolic content, thus enhancing the bioactive properties of the beverage as compared to GM. Further, increase in the particle size of GGB was observed along with components interaction, which was confirmed by FTIR, scanning electron and fluorescent microscopy. Storage stability studies indicated that bioactive properties of GGB remained unaffected (P > 0.05) by the sterilization process up to 90 days and sensory characteristics were not compromised till 105 days of storage. Therefore, the developed GGB is considered to be a shelf-stable beverage that retains its bioactive and sensory properties even after sterilization, making it a promising functional dairy product.

18.
Biosens Bioelectron ; 250: 116056, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38271889

RESUMEN

Green tea is popular among consumers because of its high nutritional value and unique flavor. There is often a strong correlation among the type of tea, its quality level and the price. Therefore, the rapid identification of tea types and the judgment of tea quality grades are particularly important. In this work, a novel sensor array based on nanozyme with polyphenol oxidase (PPO) activity is proposed for the identification of tea polyphenols (TPs) and Chinese green tea. The absorption spectra changes of the nanozyme and its substrate in the presence of different TPs were first investigated. The feature spectra were scientifically selected using genetic algorithm (GA), and then a sensor array with 15 sensing units (5 wavelengths × 3 time) was constructed. Combined with the support vector machine (SVM) discriminative model, the discriminative rate of this sensor array was 100% for different concentrations of typical TPs in Chinese green tea with a detection limit of 5 µM. In addition, the identification of different concentrations of the same tea polyphenols and mixed tea polyphenols have also been achieved. Based on the above study, we further developed a facile and efficient new method for the category differentiation and adulteration identification of green tea, and the accuracy of this array was 96.88% and 100% for eight types of green teas and different adulteration ratios of Biluochun, respectively. This work has significance for the rapid discrimination of green tea brands and adulteration.


Asunto(s)
Técnicas Biosensibles , Camellia sinensis , , Polifenoles , Catecol Oxidasa , China
19.
Yakugaku Zasshi ; 144(2): 183-195, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38296496

RESUMEN

Tannins are a group of polyphenols that possess the ability to precipitate proteins, causing an undesirable astringent taste by interacting with salivary peptides. This interaction deactivates the digestive enzymes; therefore, tannins are considered as plant defense substances. The health benefits of tannins and related polyphenols in foods and beverages have been demonstrated by biological and epidemiological studies; however, their metabolism in living plants and the chemical changes observed during processing of foods and medicinal herbs raises some questions. This review summarizes our studies concerning dynamic changes observed in tannins. Ellagitannins present in the young leaves of Camellia japonica and Quercus glauca undergo oxidative degradation as the leaves mature. Similar oxidative degradation is also observed in whiskey when it is kept for aging in oak barrels, and in decaying wood caused by fungi in natural forests. In contrast, ellagitannins have been observed to undergo reduction in the leaves of Carpinus, Castanopsis, and Triadica species as the leaves mature. This phenomenon of reductive metabolism in leaves enabled us to propose a new biosynthetic pathway for the most fundamental ellagitannin acyl groups, which was also supported by biomimetic synthetic studies. Polyphenols undergo dynamic changes during the process of food processing. Catechin in tea leaves undergo oxidation upon mechanical crushing to generate black tea polyphenols. Though detailed production mechanisms of catechin dimers have been elucidated, structures of thearubigins (TRs), which are complex mixtures of oligomers, remain ambiguous. Our recent studies suggested that catechin B-ring quinones couple with catechin A-rings during the process of oligomerization.


Asunto(s)
Catequina , Taninos , Taninos/química , Taninos/metabolismo , Taninos Hidrolizables/química , Taninos Hidrolizables/metabolismo , Catequina/química , Catequina/metabolismo , Polifenoles , Té/química , Oxidación-Reducción
20.
Front Microbiol ; 15: 1351295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38282971

RESUMEN

Introduction: Acute lung injury (ALI) is a serious respiratory disease characterized by progressive respiratory failure with high morbidity and mortality. It is becoming increasingly important to develop functional foods from polyphenol-rich medicinal and dietary plants in order to prevent or alleviate ALI by regulating intestinal microflora. Rosa roxburghii Tratt polyphenol (RRTP) has significant preventive and therapeutic effects on lipopolysaccharide-induced ALI mice, but its regulatory effects on gut homeostasis in ALI mice remains unclear. Methods: This study aims to systematically evaluate the ameliorative effects of RRTP from the perspective of "lung-gut axis" on ALI mice by intestine histopathological assessment, oxidative stress indicators detection and short-chain fatty acids (SCFAs) production, and then explore the modulatory mechanisms of RRTP on intestinal homeostasis by metabolomics and gut microbiomics of cecal contents. Results: The results showed that RRTP can synergistically exert anti-ALI efficacy by significantly ameliorating intestinal tissue damage, inhibiting oxidative stress, increasing SCFAs in cecal contents, regulating the composition and structure of intestinal flora, increasing Akkermansia muciniphila and modulating disordered intestinal endogenous metabolites. Discussion: This study demonstrated that RRTP has significant advantages in adjuvant therapy of ALI, and systematically clarified its comprehensive improvement mechanism from a new perspective of "lung-gut axis", which provides a breakthrough for the food and healthcare industries to develop products from botanical functional herbs and foods to prevent or alleviate ALI by regulating intestinal flora.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA