Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Heliyon ; 10(7): e29151, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38617936

RESUMEN

Baicalin, a flavonoid extracted from traditional Chinese medicine, Scutellaria baicalensis has significant anti-inflammatory effects. Microsponges are drug delivery systems that improve drug stability and slow the release rate. The combination of baicalin and the microsponges produced a new and stable system for its delivery, resulting in a novel formulation of baicalin. Baicalin microsponges (BM) were prepared using the quasi-emulsion solvent diffusion method. Effects of the mass ratio of the polymer (ethylcellulose) to baicalin, the concentration of the emulsifier polyvinyl alcohol (PVA), the stirring speed on the encapsulation efficiency (EE), and yield of the microsponges were investigated by combining the one-factor test and Box-Behnken design (BBD). The preparation process was standardised using 2.61:1 mass ratio of ethyl cellulose to baicalin, 2.17% concentration of PVA, with stirring at 794 rpm. Optimised BM formulations were evaluated for the parameters of EE (54.06 ± 3.02)% and yield of (70.37 ± 2.41)%, transmission electron microscopy (TEM), and in vitro cell evaluation. Results of the in vitro anti-inflammatory assay showed that baicalin microsponges-pretreated-lipopolysaccharide (LPS)-induced RAW264.7, mouse macrophages showed reduced inflammatory response, similar to that seen in baicalin-treated macrophages.

2.
Int Immunopharmacol ; 129: 111598, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38309092

RESUMEN

BACKGROUND AND PURPOSE: Wuling capsule (WL) has good efficacy in the clinical treatment of chronic hepatitis B and liver injury. Liver fibrosis is a common pathological feature of chronic liver disease and may progress to irreversible cirrhosis and liver cancer. Accumulating evidence reveals that modulating macrophage polarization contribute to the therapy of liver fibrosis. However, the effects of WL on modulating macrophage polarization to relive liver fibrosis remain unclear. This study investigated the anti-liver fibrosis effects of WL in carbon tetrachloride (CCl4)-induced liver fibrosis in rats, and the modulation effects and underlying molecular mechanism on macrophage polarization. METHODS: A rat liver fibrosis model was constructed by intraperitoneal injection of 40 % CCl4 olive oil mixture. At 2, 4, 6, and 8 weeks, the histopathological status of the liver was assessed by hematoxylin-eosin (HE) and Masson staining; the liver biochemical indexes were measured in rat liver tissue. The expression levels of inflammatory cytokines in liver tissue were detected by ELISA. The mRNA levels and proteins expression of macrophage markers of different phenotypes, TLR4-NF-κB signaling pathway indicators were detected independently by ELISA, immunofluorescence, RT-PCR and western blotting. RESULTS: In vivo, WL treatment attenuated abnormal changes in weight, organ indices and biochemical indices, alleviated pathological changes, and reduced collagen fiber deposition as well as the expression of α-SMA in liver tissues. Further studies revealed that WL decreased the expression of the macrophage M1 polarization markers inducible nitric oxide synthase (iNOS), TNF-α, IL-6, and CD86, promoted the expression of the M2 macrophage polarization markers IL-10, CD206, and arginase-1 (Arg-1), and inhibited the activation of the TLR4-NF-κB signaling pathway via several key signaling proteins. In vitro, WL significantly suppressed macrophage M1 polarization, and promoted M2 polarization while boosted M1 polarization transform to M2 polarization in LPS-activated RAW264.7 cells. CONCLUSIONS: This study demonstrated that WL modulated macrophage polarization against liver fibrosis mainly by inhibiting the activation of the TLR4-NF-κB signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos , FN-kappa B , Receptor Toll-Like 4 , Ratas , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Macrófagos/metabolismo
3.
Heliyon ; 10(2): e24120, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298712

RESUMEN

Inflammatory diseases contribute to more than 50 % of global deaths. Research suggests that network pharmacology can reveal the biological mechanisms underlying inflammatory diseases and drug effects at the molecular level. The aim of the study was to clarify the biological mechanism of Cinnamomum zeylanicum essential oil (CZEO) and predict molecular targets of CZEO against inflammation by employing network pharmacology and in vitro assays. First, the genes related to inflammation were identified from the Genecards and Online Mendelian Inheritance in Man (OMIM) databases. The CZEO targets were obtained from the SwissTargetPrediction and Similarity Ensemble Approach (SEA) database. A total of 1057 CZEO and 526 anti-inflammation targets were obtained. The core hub target of CZEO anti-inflammatory was obtained using the protein-protein interaction network. KEGG pathway analysis suggested CZEO to exert anti-inflammatory effect mainly through Tumor necrosis factor, Toll-like receptor and IL-17 signalling pathway. Molecular docking of active ingredients-core targets interactions was modelled using Pyrx software. Docking and simulation studies revealed benzyl benzoate to exhibit good binding affinity towards IL8 protein. MTT assay revealed CZEO to have non-cytotoxic effect on RAW 264.7 cells. CZEO also inhibited the production of NO, PGE2, IL-6, IL-1ß and TNF-α and promoted the activity of endogenous antioxidant enzymes in LPS-stimulated RAW 264.7 cells. Additionally, CZEO inhibited intracellular ROS generation, NF-kB nuclear translocation and modulated the expression of downstream genes involved in Toll-like receptor signalling pathway. The results deciphered the mechanism of CZEO in treating inflammation and provided a theoretical basis for its clinical application.

4.
J Ethnopharmacol ; 323: 117709, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38181931

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shangkehuangshui (SK) has been traditionally used to treat traumatic injury, soft tissue and bone injury in Foshan hospital of traditional Chinese medicine for more than 60 years, which composed of many Chinese herbs such as Coptis chinensis Franch., Gardenia jasminoides Ellis, Phellodendron chinense Schneid. and etc. SK exhibits heat-clearing and detoxifying, enhancing blood circulation to eliminate blood stasis properties, and demonstrates noteworthy clinical efficacy. Nevertheless, the underlying mechanism remains uncertain. AIM OF THE STUDY: The early study found that SK had good anti-inflammatory effects in acute soft tissue injury model. This research is to verify the anti-inflammatory properties of SK both in vitro and in vivo via TLR4/TLR2-NF-κB signaling pathway, to clarify the underlying mechanisms responsible for the curative effect of SK. METHODS: The RAW264.7 cells inflammatory model was established with lipopolysaccharide (LPS) in vitro. NO and TNF-α, IL-6, IL-1ß were determined with Griess method and ELISA method respectively. The mRNA and protein expression levels of TLR4/TLR2-NF-κB pathway were evaluated by qPCR and Western blot method. In vivo experiment, chronic soft tissue injury rat models were established by tracking gastrocnemius muscle with electrical stimulation, then local appearance and pathological changes were observed and recorded, the contents of inflammatory factors in serum and tissue were performed. Moreover, we also measured and contrasted the expression of TLR4/TLR2-NF-κB related factors. RESULTS: SK effectively inhibited the LPS-induced generation of inflammatory cytokines, including NO, TNF-α, IL-6 and IL-1ß in RAW264.7 cells, and significantly suppressed the expression of TLR4, TLR2, MyD88, IκB, and NF-κB. In vivo, SK remarkably decreased the damage appearance scores after 4 and 14 days of administration and inhibit the quantity of NO and leukocytes present in the serum. Additionally, the inflammatory infiltration in the pathological section was alleviated, myofibrillar hyperplasia and blood stasis were reduced. SK markedly downregulated NO, TNF-α, IL-6 and IL-1ß in injured tissues of rats, also declined the expression of TLR4, TLR2, MyD88, IκB, NF-κB, IL-6, TNF-α and IL-1ß. CONCLUSION: This study revealed that SK had obvious effects of anti-inflammatory actions in vivo and vitro, effectively reduced acute and chronic soft tissue injury in clinical, this might be attributed to inhibit the TLR4/TLR2-NF-κB pathway, further inhibit the expression of downstream relevant pro-inflammatory cytokines.


Asunto(s)
FN-kappa B , Traumatismos de los Tejidos Blandos , Ratas , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Lipopolisacáridos/farmacología , Transducción de Señal , Citocinas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Traumatismos de los Tejidos Blandos/tratamiento farmacológico
5.
J Ethnopharmacol ; 321: 117509, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030026

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia mongolica is well known for its use in folk medicine, it is commonly used to alleviate a variety of diseases associated with inflammation, such as laryngitis, tonsillitis, headaches and hepatitis in northwest China. However, its anti-inflammatory mechanism is still unknown. AIM OF THE STUDY: The most potential anti-inflammatory part (AMPA) was identified by screening individual parts of A. Mongolica. After the network pharmacological analysis, the anti-inflammation effects and molecular mechanisms of AMPA were evaluated in RAW264.7 cells induced by LPS. MATERIALS AND METHODS: AMPA was chosen as the most anti-inflammatory of the A. Mongolica, as measured by the effect of each part of the A. Mongolica on NO and COX-2. The chemical composition of AMPA was identified using HPLC-Q-TOF-MS/MS, and targets of bioactive chemicals and targets related to inflammation were found using open-source databases. The "Compound-targets" network and PPI network were established by combining compounds and overlapped targets, and targets in the PPI networks were analyzed by GO and KEGG enrichment. The RAW26.7 cells induced by LPS were used as a model of inflammation examination. MTT assay was performed to assess the cytotoxicity of AMPA on LPS-induced RAW264.7 cells. The level of NO was measured by the Griess method while the inflammatory factors were detected by ELISA. The protein expression levels of iNOS, COX-2, MAPK, NF-κB signaling pathway and AMPK/Nrf2-related proteins were determined by Western blot. The results of nuclear translocation of p65 and Nrf2 were analyzed by immunofluorescence assay. RESULTS: A total of 18 compounds with potential bioactivity were identified, and after intersecting 640 compound-predicted targets and 1608 inflammation targets, the compounds and intersected targets were utilized to structure "compound-target" and PPI networks. Among AMPA, AM6, AM7, AM11, AM8 and AM1 compounds were essential in the "compound-targets" network, meanwhile, TNF, RELA, MAPK1, NOS2, PRKAG, and PTGS2 targets play important roles in the PPI network. The top 10 terms and pathways were obtained based on GO and KEGG. The cell experiments show that 50 µg/mL was the maximum concentration of AMPA without cytotoxicity in the LPS-induced RAW264.7 cell model. When compared with the LPS group, AMPA treatment not only effectively suppressed the generation of NO, TNF-α, IL-6, PGE2, IL-1ß and MCP-1 in LPS-induced RAW264.7 cells, but also down-regulated the expression of COX-2, iNOS and the protein levels p-ERK, p-p38, p-IκB-α and p-p65, inhibited the nuclear translocation of p65. Furthermore, the expression levels of p-LKB1, p-AMPK, Nrf2 and HO-1 proteins were up-regulated and Nrf2 nuclear translocation was promoted. CONCLUSION: AMPA should be considered an anti-inflammatory agent for the results of network pharmacology and in vitro, which could inhibit the MAPK pathway and NF-κB pathway and activate the AMPK/Nrf2 pathway in LPS-stimulated RAW264.7 cells.


Asunto(s)
Artemisia , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Ciclooxigenasa 2 , Proteínas Quinasas Activadas por AMP , Farmacología en Red , Espectrometría de Masas en Tándem , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/uso terapéutico , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
6.
Chin J Nat Med ; 21(11): 852-858, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38035940

RESUMEN

We reported the discovery of six novel coumarins, toddasirins A-F (1-6), each endowed with modified isoprenyl or geranyl side chains, derived from the roots of Toddalia asiatica. Comprehensive structural elucidation was achieved through multispectroscopic analyses, single-crystal X-ray diffraction experiments, and advanced quantum mechanical electronic circular dichroism (ECD) calculations. Furthermore, the anti-inflammatory activity of these compounds was assessed. Notably, compounds 1-3 and 6 demonstrated notable inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells, with 50% inhibitory concentration (IC50) values of 3.22, 4.78, 8.90, and 4.31 µmol·L-1, respectively.


Asunto(s)
Cumarinas , Rutaceae , Ratones , Animales , Cumarinas/farmacología , Cumarinas/química , Rutaceae/química , Antiinflamatorios/farmacología , Extractos Vegetales/química , Células RAW 264.7 , Óxido Nítrico , Estructura Molecular
7.
Medicina (Kaunas) ; 59(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38004077

RESUMEN

Background and Objectives: This study evaluated the in vitro anti-adipogenic and anti-inflammatory properties of black cumin (Nigella sativa L.) seed extract (BCS extract) as a potential candidate for developing herbal formulations targeting metabolic disorders. Materials and Methods: We evaluated the BCS extract by assessing its 2,2-diphenyl-1-picrohydrazyl (DPPH) radical scavenging activity, levels of prostaglandin E2 (PGE2) and nitric oxide (NO), and mRNA expression levels of key pro-inflammatory mediators. We also quantified the phosphorylation of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPK) signaling molecules. To assess anti-adipogenic effects, we used differentiated 3T3-L1 cells and BCS extract in doses from 10 to 100 µg/mL. We also determined mRNA levels of key adipogenic genes, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/BEPα), adipocyte protein 2 (aP2), lipoprotein lipase (LPL), fatty acid synthase (FAS), and sterol-regulated element-binding protein 1c (SREBP-1c) using real-time quantitative polymerase chain reaction (qPCR). Results: This study showed a concentration-dependent DPPH radical scavenging activity and no toxicity at concentrations up to 30 µg/mL in Raw264.7 cells. BCS extract showed an IC50 of 328.77 ± 20.52 µg/mL. Notably, pre-treatment with BCS extract (30 µg/mL) significantly enhanced cell viability in lipopolysaccharide (LPS)-treated Raw264.7 cells. BCS extract treatment effectively inhibited LPS-induced production of PGE2 and NO, as well as the expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), interleukin (IL)-1ß and IL-6, possibly by limiting the phosphorylation of p38, p65, inhibitory κBα (I-κBα), and c-Jun N-terminal kinase (JNK). It also significantly attenuated lipid accumulation and key adipogenic genes in 3T3-L1 cells. Conclusions: This study highlights the in vitro anti-adipogenic and anti-inflammatory potential of BCS extract, underscoring its potential as a promising candidate for managing metabolic disorders.


Asunto(s)
Enfermedades Metabólicas , Nigella sativa , Humanos , Animales , Ratones , Nigella sativa/metabolismo , Células 3T3-L1 , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Macrófagos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Adipocitos , Semillas , ARN Mensajero/metabolismo , Enfermedades Metabólicas/metabolismo , Óxido Nítrico/metabolismo
8.
Phytomedicine ; 119: 154983, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37586161

RESUMEN

BACKGROUND: Biancaea decapetala (Roth) O.Deg. (Fabaceae) is used to treat colds, fever, and rheumatic pain caused by inflammation. However, the mechanism underlying its anti-inflammatory properties remains unclear. PURPOSE: This study aimed to evaluate the anti-inflammatory activity of Biancaea decapetala extract (BDE) in vitro and in vivo and explore the possible underlying mechanism and potential targets. METHODS: The release of nitric oxide (NO) and inflammatory cytokines in LPS-stimulated RAW264.7 cells and rats were measured using Griess reagent and enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (H&E) staining was employed to examine the pathology of animal tissues. Transcriptome analysis was performed to screen the pathways related to BDE-mediated inhibition of inflammation, and the expression of related proteins was measured using real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, ELISA, and immunofluorescence methods. Surface Plasmon Resonance (SPR) and the Drug Affinity Reaction Target Stability (DARTS) method were used to verify whether BDE binds to TNF-α target protein, while a L929 cell model and NF-κB gene reporter systematic method were used to investigate the inhibitory effect of BDE on the activity of TNF-α protein. RESULTS: BDE inhibited the expression of TNF-α, IL-1ß, IL-6, and NO in RAW264.7 cells and rats, and improved the pathological changes in lung tissue. RNA-seq showed that BDE may regulate the TNF/Akt/NF-κB pathway to inhibit inflammation onset. BDE significantly downregulated the mRNA expression of TNF-α, IL-6, IL-1ß, and that of relevant proteins, including TNF-α, p-p65, p-Akt, p-IκBα. Furthermore, BDE inhibited the nuclear translocation of NF-κB (p65) and the activation of the Akt pathway by SC79. The L929 cell model, luciferase reporter gene analysis, DARTS, and SPR experiments showed that BDE may bind to TNF-α and inhibit the TNF-α-NF-κB pathway. CONCLUSION: BDE may target TNF-α to inhibit the TNF/Akt/NF-κB pathway, thereby attenuating inflammation. These findings reveal the anti-inflammatory effects and mechanisms of BDE and provide a theoretical basis for the further development and utilization of BDE.


Asunto(s)
Fabaceae , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Lipopolisacáridos/farmacología
9.
Molecules ; 28(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37570786

RESUMEN

Mesosphaerum suaveolens (L.) Kuntze (Syn. Hyptis suaveolens (L.) Poit.) is a wild essential-oil-bearing plant having multiple uses in traditional medicine, perfumery, food, agriculture, and pharmaceutical industries. The present paper is the first report on the in vitro anti-inflammatory effects of the leaf essential oil of M. suaveolens (MSLEO) and unravels its molecular mechanism in LPS-stimulated RAW 264.7 macrophage cells. GC-MS analysis of the essential oil (EO) isolated from the leaves by hydro-distillation led to the identification of 48 constituents, accounting for 90.55% of the total oil, and ß-caryophyllene (16.17%), phyllocladene (11.85%), abietatriene (11.46%), and spathulenol (7.89%) were found to be the major components. MSLEO treatment had no effect on the viability of RAW 264.7 cells up to a concentration of 100 µg/mL, and the EO was responsible for a reduction in proinflammatory cytokines like IL-6, IL-1ß, and TNF-α, a decrease in intracellular ROS production, and the restoration of oxidative damage by elevating the levels of endogenous antioxidative enzymes like CAT, SOD, GPx, and GSH. RT-qPCR analysis indicated that MSLEO reduced the mRNA expression levels of iNOS and COX-2 as compared to the LPS-induced group. In addition, a confocal microscopy analysis showed that MSLEO inhibited the translocation of NF-κB from the cytosol to the nucleus. The results of this experiment demonstrate that MSLEO possesses significant anti-inflammatory potential by preventing the activation of NF-κB, which, in turn, inhibits the downstream expression of other inflammatory mediators associated with the activation of the NF-κB pathway in LPS-induced RAW 264.7 cells. Thus, the leaf essential oil of M. suaveolens may prove to be a promising therapeutic agent for the treatment of inflammation, and targeting the NF-κB signaling pathway may be considered as an attractive approach for anti-inflammatory therapies.


Asunto(s)
FN-kappa B , Aceites Volátiles , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Aceites Volátiles/uso terapéutico , Transducción de Señal , Macrófagos , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células RAW 264.7 , Estrés Oxidativo
10.
Chin J Integr Med ; 29(10): 905-913, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37434032

RESUMEN

OBJECTIVE: To investigate the anti-oxidant and anti-inflammatory effects of ethanol extract of Polygala sibirica L. var megalopha Fr. (EEP) on RAW264.7 mouse macrophages. METHODS: RAW264.7 cells were pretreated with 0-200 µg/mL EEP or vehicle for 2 h prior to exposure to 1 µg/mL lipopolysaccharide (LPS) for 24 h. Nitric oxide (NO) and prostaglandin (PGE2) production were determined by Griess reagent and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor α (TNF-α), interleukin-1beta (IL-1ß), and IL-6 were determined using reverse transcription polymerase chain reaction (RT-PCR). Western blot assay was used to determine the protein expressions of iNOS, COX-2, phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), inhibitory subunit of nuclear factor Kappa B alpha (Iκ B-α) and p38. Immunofluorescence was used to observe the nuclear expression of nuclear factor-κ B p65 (NF-κ B p65). Additionally, the anti-oxidant potential of EEP was evaluated by reactive oxygen species (ROS) production and the activities of catalase (CAT) and superoxide dismutase (SOD). The 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), superoxide anion (O2-) radical and nitrite scavenging activity were also measured. RESULTS: The total polyphenol and flavonoid contents of EEP were 23.50±2.16 mg gallic acid equivalent/100 g and 43.78±3.81 mg rutin equivalent/100 g. With EEP treatment (100 and 150 µg/mL), there was a notable decrease in NO and PGE2 production induced by LPS in RAW264.7 cells by downregulation of iNOS and COX-2 mRNA and protein expressions (P<0.01 or P<0.05). Furthermore, with EEP treatment (150 µg/mL), there was a decrease in the mRNA expression levels of TNF-α, IL-1ß and IL-6, as well as in the phosphorylation of ERK, JNK and p38 mitogen-activated protein kinase (MAPK, P<0.01 or P<0.05), by blocking the nuclear translocation of NF-κ B p65 in LPS-stimulated cells. In addition, EEP (100 and 150 µg/mL) led to an increase in the anti-oxidant enzymes activity of SOD and CAT, with a concomitant decrease in ROS production (P<0.01 or P<0.05). EEP also indicated the DPPH, OH, O2- radical and nitrite scavenging activity. CONCLUSION: EEP inhibited inflammatory responses in activated macrophages through blocking MAPK/NF-κ B pathway and protected against oxidative stress.


Asunto(s)
Antioxidantes , Polygala , Animales , Ratones , Antioxidantes/farmacología , Lipopolisacáridos/farmacología , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Etanol/química , Interleucina-6/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Especies Reactivas de Oxígeno/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Nitritos/metabolismo , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Superóxido Dismutasa/metabolismo , ARN Mensajero , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo
11.
Fitoterapia ; 169: 105606, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37442484

RESUMEN

Fraxinifolines A-F (1-6), six new B-seco limonoids, together with four known A,D-di-seco ones, were isolated from the twigs with leaves of Tetradium fraxinifolium. Their structures with absolute configurations were elucidated on the basis of analysis of MS, NMR, single-crystal X-ray diffraction and biogenetic pathway. An anti-inflammatory bioassay in vitro showed limonoids 1-3 had significant immunosuppressive effect against the production of pro-inflammatory cytokines (IL-1ß and/or TNF-α) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells.


Asunto(s)
Limoninas , Estructura Molecular , Limoninas/farmacología , Limoninas/química , Antiinflamatorios/farmacología , Citocinas , Factor de Necrosis Tumoral alfa/metabolismo
12.
Acta Pharmacol Sin ; 44(12): 2504-2524, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37482570

RESUMEN

Sinomenine (SIN) is an isoquinoline alkaloid isolated from Sinomenii Caulis, a traditional Chinese medicine used to treat rheumatoid arthritis (RA). Clinical trials have shown that SIN has comparable efficacy to methotrexate in treating patients with RA but with fewer adverse effects. In this study, we explored the anti-inflammatory effects and therapeutic targets of SIN in LPS-induced RAW264.7 cells and in collagen-induced arthritis (CIA) mice. LPS-induced RAW264.7 cells were pretreated with SIN (160, 320, 640 µM); and CIA mice were administered SIN (25, 50 and 100 mg·kg-1·d-1, i.p.) for 30 days. We first conducted a solvent-induced protein precipitation (SIP) assay in LPS-stimulated RAW264.7 cells and found positive evidence for the direct binding of SIN to guanylate-binding protein 5 (GBP5), which was supported by molecular simulation docking, proteomics, and binding affinity assays (KD = 3.486 µM). More importantly, SIN treatment markedly decreased the expression levels of proteins involved in the GBP5/P2X7R-NLRP3 pathways in both LPS-induced RAW264.7 cells and the paw tissue of CIA mice. Moreover, the levels of IL-1ß, IL-18, IL-6, and TNF-α in both the supernatant of inflammatory cells and the serum of CIA mice were significantly reduced. This study illustrates a novel anti-inflammatory mechanism of SIN; SIN suppresses the activity of NLRP3-related pathways by competitively binding GBP5 and downregulating P2X7R protein expression, which ultimately contributes to the reduction of IL-1ß and IL-18 production. The binding specificity of SIN to GBP5 and its inhibitory effect on GBP5 activity suggest that SIN has great potential as a specific GBP5 antagonist.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Humanos , Ratones , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Interleucina-18/efectos adversos , Receptores Purinérgicos P2X7/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR , Lipopolisacáridos/farmacología , Transducción de Señal , Artritis Reumatoide/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteínas de Unión al GTP
13.
Molecules ; 28(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298794

RESUMEN

During a search for natural inflammatory inhibitors, 1-O-acetylbritannilactone (ABL), a sesquiterpene lactone, was isolated from the flowers of Inula britannica. ABL significantly inhibited human neutrophil elastase (HNE) with a half-maximal inhibitory concentration (IC50) of 3.2 ± 0.3 µM, thus did so more effectively than the positive control material (epigallocatechin gallate) (IC50 7.2 ± 0.5 µM). An enzyme kinetic study was performed. ABL noncompetitively inhibited HNE with an inhibition constant Ki of 2.4 µM. ABL inhibited lipopolysaccharide-induced nitric oxide and prostaglandin E2 production by RAW 264.7 cells in a dose-dependent manner, as well as the protein-level expression of inducible nitric oxide synthase and cyclooxygenase-2. The anti-inflammatory effect of ABL was confirmed using a transgenic Tg(mpx:EGFP) zebrafish larval model. The exposure of the larvae to ABL inhibited neutrophil recruitment to the site of injury after tail fin amputation.


Asunto(s)
Inula , Animales , Ratones , Humanos , Pez Cebra , Células RAW 264.7 , Elastasa de Leucocito , Inflamación/tratamiento farmacológico , Lactonas/farmacología , Flores
14.
J Med Food ; 26(7): 454-461, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37347980

RESUMEN

Good immunity is highly valued in modern society. Although yuja's efficacy in immunity enhancement has been elucidated, there have been few studies on its role. In this study, we investigate the immune enhancement activity of yuja juice extracts (YJEs) and yuja concentrate extracts (YCEs). The immunoregulatory potencies of YJE and YCE were examined by determining cell viability and the expression of cytokines and immune-related molecules in RAW264.7 cells and mouse primary splenocytes. YJE and YCE induced the production of inducible nitric oxide synthase and cytokines (IL-10, IL-4, IL-6, and IFN-γ) at 1000 µg/mL concentration in RAW 264.7 cells. In addition, in mice that were orally administered 3000 or 2000 mg/kg concentrations of YJE or YCE, immune-related cytokines in splenocytes were boosted to levels higher than those in control mice. Importantly, no liver toxicity was observed at all doses. Thus, our results suggest that compounds present in YJEs and YCEs represent novel natural immune-modulatory substances.


Asunto(s)
Extractos Vegetales , Bazo , Ratones , Animales , Células RAW 264.7 , Extractos Vegetales/farmacología , Óxido Nítrico/metabolismo , Citocinas/metabolismo
15.
J Ethnopharmacol ; 315: 116641, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37236379

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Oldenlandia umbellata L., belonging to the Rubiaceae family, is an annual plant possessing anti-inflammatory and antipyretic, anti-nociceptive, anti-bacterial, anti-helminthic, antioxidant and hepatoprotective activities and used in traditional medicine to treat inflammation and respiratory diseases. AIM OF THE STUDY: The present study aims to evaluate the anti-osteoporotic effect of Methanolic extract of O.umbellata in MG-63 cells and RANKL-stimulated RAW 264.7 cells. MATERIALS AND METHODS: The methanolic extract from the aerial parts of O.umbellata was subjected to metabolite profiling. The anti-osteoporotic effect of MOU was assessed in MG-63 cells and RANKL-stimulated RAW 264.7 cells. In MG-63 cells, the proliferative effect of MOU was evaluated using MTT assay, ALP assay, Alizarin red staining, ELISA and western blot. Similarly, the anti-osteoclastogenic effect of MOU was assessed in RANKL-stimulated RAW 264.7 cells via MTT, TRAP staining and western blot. RESULTS: LC-MS metabolite profiling showed the presence of 59 phytoconstituents including scandoside, scandoside methyl ester, deacetylasperuloside, asperulosidic acid, and cedrelopsin in MOU. In MG-63 cells, MOU has increased the proliferation of osteoblast cells and ALP activity, thereby increasing bone mineralization. ELISA results showed increased levels of osteogenic markers such as osteocalcin and osteopontin in the culture media. Western blot analysis showed inhibition of GSK3ß protein expression and increased the expression levels of ß-catenin, Runx-2, col 1 and osterix, promoting osteoblast differentiation. In RANKL-stimulated RAW 264.7 cells, MOU did not elicit any significant cytotoxicity; instead, it suppressed the osteoclastogenesis reducing the osteoclast number. MOU has reduced TRAP activity in a dose-dependent manner. MOU inhibited the TRAF6, NFATc1, c-Jun, C-fos and cathepsin K expression, thereby inhibiting osteoclast formation. CONCLUSION: In conclusion, MOU promoted osteoblast differentiation via inhibiting GSK3ß and activating Wnt/ß catenin signalling and its transcription factors, including ß catenin, Runx2 and Osterix. Similarly, MOU inhibited osteoclast formation by inhibiting the expression of TRAF6, NFATc1, c-Jun, C-fos and cathepsin K in RANK-RANKL signalling. Finally, it can be emphasised that O.umbellata is a potential source of therapeutic leads for the treatment of osteoporosis.


Asunto(s)
Osteogénesis , beta Catenina , Ratones , Animales , Células RAW 264.7 , beta Catenina/metabolismo , Catepsina K/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Osteoclastos , Diferenciación Celular , Osteoblastos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Vía de Señalización Wnt , Proliferación Celular , Ligando RANK/metabolismo , Factores de Transcripción NFATC/metabolismo
16.
Bioorg Chem ; 134: 106447, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36889198

RESUMEN

Fifteen new chromones, sadivamones A-E (1-5), cimifugin monoacetate (6), sadivamones F-N (7-15), together with fifteen known chromones (16-30), were isolated from the ethyl acetate portions of 70% ethanol extract of Saposhnikovia divaricata (Turcz.) Schischk roots. The structures of the isolates were determined using 1D/2D NMR data and electron circular dichroism (ECD) calculations. Meanwhile, LPS induced RAW264.7 inflammatory cell model was used to determine the potential anti-inflammatory activity of all the isolated compounds in vitro. The results showed that compounds 2, 8, 12-13, 18, 20-22, 24, and 27 significantly inhibited the production of lipopolysaccharide (LPS)-induced NO in macrophages. To determine the signaling pathways involved in the suppression of NO production by compounds 8, 12 and 13, we investigated ERK and c-Jun N-terminal protein kinase (JNK) expression by western blot analysis. Further mechanistic studies demonstrated that compounds 12 and 13 inhibited the phosphorylation of ERK and the activation of ERK and JNK signaling in RAW264.7 cells via MAPK signaling pathways. Taken together, compounds 12 and 13 may be valuable candidates for the treatment of inflammatory diseases.


Asunto(s)
Apiaceae , Medicamentos Herbarios Chinos , Lipopolisacáridos/farmacología , Medicamentos Herbarios Chinos/farmacología , Apiaceae/química , Cromonas/farmacología , Cromonas/química , Antiinflamatorios/farmacología
17.
J Ethnopharmacol ; 308: 116262, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36796743

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE OF STUDY: Pterospermum rubiginosum is an evergreen plant in Western Ghats, India, used by traditional tribal healers due to its excellent biological potential for treating inflammation and pain relief procedures. The bark extract is also consumed to relieve the inflammatory changes at the bone fractured site. The traditional medicinal plant in India have to be characterized for its diverse phytochemical moieties, its interactive multiple target sites, and to reveal the hidden molecular mechanism behind the biological potency. AIM OF THE STUDY: The study focussed on plant material characterization, computational analysis (prediction study), toxicological screening (In vivo), and anti-inflammatory evaluation of P. rubiginosum methanolic bark extracts (PRME) in LPS-induced RAW 264.7 cells. MATERIALS AND METHODS: The pure compound isolation of PRME and their biological interactions were used to predict the bioactive components, molecular targets, and molecular pathways of PRME in inhibiting inflammatory mediators. The anti-inflammatory effects of PRME extract were evaluated in the lipopolysaccharide (LPS)-induced RAW264.7 macrophage cell model. The toxicity evaluation of PRME was performed in healthy 30 Sprague-Dawley experimental rats, were randomly divided into five groups for toxicological evaluation for 90 days. The tissue levels of oxidative stress and organ toxicity markers were measured using the ELISA method. Nuclear magnetic resonance spectroscopy (NMR) was performed to characterize the bioactive molecules. RESULTS: Structural characterization revealed the presence of vanillic acid, 4-O-methyl gallic acid, E-resveratrol, gallocatechin, 4'-O-methyl gallocatechin, and catechin. Molecular docking of NF-kB exhibited significant interactions with vanillic acid and 4-O-methyl gallic acid with binding energy -351.159 Kcal/Mol and -326.5505 Kcal/Mol, respectively. The PRME-treated animals showed an increase in total GPx and antioxidant levels (SOD and catalase). Histopathological examination revealed no variation in the liver, renal and splenic tissue's cellular pattern. PRME inhibited the pro-inflammatory parameters (IL-1ß, IL-6, and TNF-α) in LPS-induced RAW 264.7 cells. The protein level of TNF-α and NF-kB protein expression study brought out a notable reduction and exhibited a good correlation with the gene expression study. CONCLUSION: The current study establishes the therapeutic potential of PRME as an effective inhibitory agent against LPS-activated RAW 264.7 cells induced inflammatory mediators. Long-term toxicity evaluation on SD rats confirmed the non-toxic nature of PRME up to 250mg/body weight for 3 months.


Asunto(s)
FN-kappa B , Extractos Vegetales , Ratas , Animales , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Lipopolisacáridos/farmacología , Corteza de la Planta/química , Simulación del Acoplamiento Molecular , Ácido Vanílico/análisis , Ácido Vanílico/uso terapéutico , Ratas Sprague-Dawley , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Ácido Gálico/análisis
18.
J Ethnopharmacol ; 303: 116021, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516907

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Colocasia esculenta (CE) (L.) Schott is an annual herbaceous tropical plant from the family of Araceae which has been traditionally used for the healing of various ailments such as asthma, arthritis, internal hemorrhage, diarrhea, and neurological disorders. The plant is reported to have potential anti-microbial, anti-fungal, antimetastatic, anti-hepatotoxic, and anti-lipid peroxidative activities. AIM OF THE STUDY: The present study is designed to explore the potential anti-inflammatory property of Colocasia esculenta methanolic root extract (CEMRE) on carrageenan-induced rat paw edema and lipopolysaccharide (LPS) stimulated RAW264.7 cells. MATERIALS AND METHODS: Carrageenan-induced rat paw edema model was used to investigate the in vivo anti-inflammatory action of CEMRE. Adult male Wistar rats (180-220 g; n = 6) were pre-treated with CEMRE (100, 200, and 400 mg/kg BW) orally before 1 h of injection of 1% carrageenan. Indomethacin (10 mg/kg BW) was given orally as the standard drug. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), nitric oxide (NO), prostaglandinE2 (PGE2), and cytokines levels were measured. Liquid chromatography-mass spectrometry (LC-MS) was done to identify the phytoconstituents present in CEMRE. The inhibitory activity of CEMRE was investigated against cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in in vitro assessment of LPS-stimulated RAW264.7 cells. The RAW 264.7 cells were pre-treated with Indomethacin (5 µM and 10 µM) and CEMRE (17 µg/ml and 34 µg/ml) followed by induction of LPS (1 µg/ml) for 24 h. Docking analyses were also performed to explore the interaction of important phytoconstituents (Sinapic acid, Acetylsalicylic acid, L-fucose, Salicylic acid, Quinic acid, Zingerone, and Gingerol) of CEMRE with COX-2 and iNOS. RESULTS: Pre-treatment with CEMRE (400 mg/kg) could inhibit the paw inflammation significantly which was elevated due to carrageenan induction. The inhibition is comparable to that of the standard drug Indomethacin. The concentration of serum AST, ALT, ALP, NO, PGE2 and cytokines were also considerably lowered in the CEMRE-treated group as compared to the carrageenan-induced group. CEMRE (34 µg/ml) inhibited the LPS-stimulated relative expression of mRNA of COX-2 and iNOS and significantly reduced the expression of nitric oxide and prostaglandin E2. Docking analyses revealed promising interaction with low binding energies between Sinapic acid with both the target proteins COX-2 and iNOS. CONCLUSION: Collectively, our results suggested that CEMRE exhibited effective anti-inflammatory actions on carrageenan-induced rat paw edema and LPS-treated RAW 264.7 cells by reducing the in vivo paw edema inhibition, inhibiting the serum NO, PGE2, cytokines and also reduced the in vitro production of NO, PGE2 along with expressions of mRNA COX-2 and iNOS. Molecular docking demonstrated good binding affinities among the target proteins and ligand Sinapic acid. Thus the bioactive compound from CE need to be isolated and purified.


Asunto(s)
Antiinflamatorios , Colocasia , Animales , Ratas , Antiinflamatorios/farmacología , Carragenina , Colocasia/química , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/patología , Indometacina , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas Wistar , Células RAW 264.7 , Ratones
19.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5591-5598, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36471977

RESUMEN

The ethyl acetate fraction of ethanol extract of Eucommiae Cortex can effectively inhibit joint inflammation and bone destruction in rats with collagen-induced arthritis(CIA) and has a potential therapeutic effect on rheumatoid arthritis. The triterpenoid(EU-Tid) and iridoid(EU-Idd) of Eucommiae Cortex are derivatives isolated from the ethyl acetate fraction of the ethanol extract of Eucommiae Cortex, and it is not clear whether they have inhibitory effects on joint inflammation and bone erosion in CIA rats. Therefore, based on the CIA model, the effects of EU-Tid, EU-Idd, and their combination(EU-TP) on arthritis in rats were observed, and the material basis of Eucommiae Cortex against arthritis was further clarified. The samples were collected two and four weeks after administration to observe the pathological changes in different stages of arthritis in CIA rats. For the rats in the model control group, with the prolongation of the disease course, the paw volume and arthritis score increased and histopathological lesions aggravated. Compared with the model control group, the drug administration groups showed reduced paw volumes and arthritis scores, and improved joint lesions and cartilage destruction. Additionally, the mRNA expression levels of tumor necrosis factor-α(TNF-α), interleukin-17(IL-17), and interleukin-23(IL-23) in the spleen were down-regulated in the drug administration groups. EU-TP and EU-Tid at concentrations of 160 and 320 µg·mL~(-1) could significantly inhibit the proliferation of human fibroblast-like synoviocytes-RA(HFLS-RA) and nitric oxide(NO) release in the supernatant of RAW264.7 cells induced by lipopolysaccharide(LPS) at the concentration range of 10-80 µg·mL~(-1) in vitro. EU-Idd had no effect on the proliferation of HFLS-RA but could reduce the NO release at concentrations of 40 and 80 µg·mL~(-1). The results indicated that the terpenoids of Eucommiae Cortex had great potential in the treatment of rheumatoid arthritis.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Triterpenos , Ratas , Humanos , Animales , Artritis Experimental/tratamiento farmacológico , Iridoides/farmacología , Triterpenos/farmacología , Triterpenos/uso terapéutico , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Extractos Vegetales/farmacología , Inflamación/tratamiento farmacológico , Etanol , Citocinas
20.
Molecules ; 27(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35744785

RESUMEN

Polygonum odoratum var. Pakphai has been used in traditional Thai medicine for the treatment of flatulence and constipation and to relieve the inflammation caused by insect bites. Quercetin (Q), which is abundant in plant-based foods, has been found to exert anti-inflammatory properties. This study evaluated the anti-inflammatory activity of P. odoratum ethanolic extract in RAW264.7 macrophage cells. Leaves were extracted with 50% ethanol, phenolics and flavonoids were then analyzed using UHPLC-QTOF-MS and HPLC-DAD. RAW264.7 cells were induced with lipopolysaccharides (LPSs). They were then treated with the extract and prostaglandin E2 (PGE2), and interleukin-6 (IL-6) and tumor necrotic factor-alpha (TNF-α) concentrations were determined. Levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), IL-6 and TNF-α mRNAs were analyzed using qRT-PCR. Chemical analysis demonstrated that the extract was abundant with Q while also containing catechin, gallic acid, epicatechin gallate and coumarin. The extract increased the viability of RAW264.7 cells and dose-dependently decreased nitric oxide production, PGE2, IL-6 and TNF-α levels in the medium from the LPS-induced RAW264.7 cell culture. Consistently, COX-2, iNOS, IL-6 and TNF-α mRNA levels were decreased in a concentration-dependent manner (p < 0.05). Thus, the quercetin-rich ethanolic extract derived from P. odoratum var Pakphai leaves can exert anti-inflammatory activity in LPS-induced RAW264.7 cells through a reduction of the pro-inflammatory mediator response.


Asunto(s)
Lipopolisacáridos , Polygonum , Animales , Antiinflamatorios/química , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Etanol/metabolismo , Expresión Génica , Mediadores de Inflamación/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Extractos Vegetales/química , Hojas de la Planta/metabolismo , Polygonum/química , Quercetina/metabolismo , Quercetina/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA