Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioelectromagnetics ; 42(3): 191-199, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33527465

RESUMEN

The placenta protects the fetus against excessive stress-associated maternal cortisol during pregnancy. We studied whether exposure to radiofrequency electromagnetic field (RF-EMF) radiation during pregnancy can cause changes in dams and their placentas. Pregnant Sprague-Dawley rats were divided into cage-control, sham-exposed, and RF-exposed groups. They were exposed to RF-EMF signals at a whole-body specific absorption rate of 4 W/kg for 8 h/day from gestational Day 1 to 19. Levels of cortisol in the blood, adrenal gland, and placenta were measured by enzyme-linked immunosorbent assay. Levels of adrenocorticotropic hormone and corticotropin-releasing hormone were monitored in maternal blood. Expression levels of placental 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) messenger RNA (mRNA) were measured by reverse transcription polymerase chain reaction. Morphological changes in the placenta were analyzed using hematoxylin and eosin staining. Fetal parts of the placenta were measured using Zen 2.3 blue edition software. Maternal cortisol in circulating blood (RF: 230 ± 24.6 ng/ml and Sham: 156 ± 8.3 ng/ml) and the adrenal gland (RF: 58.3 ± 4.5 ng/ml and Sham: 30 ± 3.8 ng/ml) was significantly increased in the RF-exposed group (P < 0.05). Placental cortisol was stably maintained, and the level of placental 11ß-HSD2 mRNA expression was not changed in the RF-exposed group. RF-EMF exposure during pregnancy caused a significant elevation of cortisol levels in circulating blood; however, no changes in the placental barrier were observed in pregnant rats. Bioelectromagnetics. © 2021 Bioelectromagnetics Society.


Asunto(s)
Campos Electromagnéticos , Placenta , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2 , Animales , Campos Electromagnéticos/efectos adversos , Femenino , Hidrocortisona , Embarazo , Ratas , Ratas Sprague-Dawley
2.
Artículo en Inglés | MEDLINE | ID: mdl-32604814

RESUMEN

The emergence of new technologies to incorporate and analyze data with high-performance computing has expanded our capability to accurately predict any incident. Supervised Machine learning (ML) can be utilized for a fast and consistent prediction, and to obtain the underlying pattern of the data better. We develop a prediction strategy, for the first time, using supervised ML to observe the possible impact of weak radiofrequency electromagnetic field (RF-EMF) on human and animal cells without performing in-vitro laboratory experiments. We extracted laboratory experimental data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental case studies of human and animal cells response to RF-EMF. We used domain knowledge, Principal Component Analysis (PCA), and the Chi-squared feature selection techniques to select six optimal features for computation and cost-efficiency. We then develop grouping or clustering strategies to allocate these selected features into five different laboratory experiment scenarios. The dataset has been tested with ten different classifiers, and the outputs are estimated using the k-fold cross-validation method. The assessment of a classifier's prediction performance is critical for assessing its suitability. Hence, a detailed comparison of the percentage of the model accuracy (PCC), Root Mean Squared Error (RMSE), precision, sensitivity (recall), 1 - specificity, Area under the ROC Curve (AUC), and precision-recall (PRC Area) for each classification method were observed. Our findings suggest that the Random Forest algorithm exceeds in all groups in terms of all performance measures and shows AUC = 0.903 where k-fold = 60. A robust correlation was observed in the specific absorption rate (SAR) with frequency and cumulative effect or exposure time with SAR×time (impact of accumulated SAR within the exposure time) of RF-EMF. In contrast, the relationship between frequency and exposure time was not significant. In future, with more experimental data, the sample size can be increased, leading to more accurate work.


Asunto(s)
Algoritmos , Células Cultivadas , Ondas de Radio , Aprendizaje Automático Supervisado , Animales , Área Bajo la Curva , Células Cultivadas/efectos de la radiación , Humanos , Ondas de Radio/efectos adversos
3.
Bioelectromagnetics ; 41(2): 104-112, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31828817

RESUMEN

Exposure to a radiofrequency (RF) signal at a specific absorption rate (SAR) of 4 W/kg can increase the body temperature by more than 1 °C. In this study, we investigated the effect of anesthesia on the body temperature of rats after exposure to an RF electromagnetic field at 4 W/kg SAR. We also evaluated the influence of body mass on rats' body temperature. Rats weighing 225 and 339 g were divided into sham- and RF-exposure groups. Each of the resulting four groups was subdivided into anesthetized and non-anesthetized groups. The free-moving rats in the four RF-exposure groups were subjected to a 915 MHz RF identification signal at 4 W/kg whole-body SAR for 8 h. The rectal temperature was measured at 1-h intervals during RF exposure using a small-animal temperature probe. The body temperatures of non-anesthetized, mobile 225 and 339 g rats were not significantly affected by exposure to an RF signal. However, the body temperatures of anesthetized 225 and 339 g rats increased by 1.9 °C and 3.3 °C from baseline at 5 and 6 h of RF exposure, respectively. Three of the five 339 g anesthetized and exposed rats died after 6 h of RF exposure. Thus, anesthesia and body mass influenced RF exposure-induced changes in the body temperature of rats. Bioelectromagnetics. 2020;41:104-112. © 2019 Bioelectromagnetics Society.


Asunto(s)
Anestesia , Temperatura Corporal/fisiología , Campos Electromagnéticos/efectos adversos , Animales , Radiación Electromagnética , Masculino , Ondas de Radio/efectos adversos , Ratas Sprague-Dawley
4.
Environ Res ; 178: 108634, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31450151

RESUMEN

This paper applies Machine Learning (ML) algorithms to peer-reviewed publications in order to discern whether there are consistent biological impacts of exposure to non-thermal low power radio-frequency electromagnetic fields (RF-EMF). Expanding on previous analysis that identified sensitive plant species, we extracted data from 45 articles published between 1996 and 2016 that included 169 experimental case studies of plant response to RF-EMF. Raw-data from these case studies included six different attributes: frequency, specific absorption rate (SAR), power flux density, electric field strength, exposure time and plant type (species). This dataset has been tested with two different classification algorithms: k-Nearest Neighbor (kNN) and Random Forest (RF). The outputs are estimated using k-fold cross-validation method to identify and compare classifier mean accuracy and computation time. We also developed an optimization technique to distinguish the trade-off between prediction accuracy and computation time based on the classification algorithm. Our analysis illustrates kNN (91.17%) and RF (89.41%) perform similarly in terms of mean accuracy, nonetheless, kNN takes less computation time (3.38 s) to train a model compared to RF (248.12 s). Very strong correlations were observed between SAR and frequency, and SAR with power flux density and electric field strength. Despite the low sample size (169 reported experimental case studies), that limits statistical power, nevertheless, this analysis indicates that ML algorithms applied to bioelectromagnetics literature predict impacts of key plant health parameters from specific RF-EMF exposures. This paper addresses both questions of the methodological importance and relative value of different methods of ML and the specific finding of impacts of RF-EMF on specific measures of plant growth and health. Recognizing the importance of standardizing nomenclature for EMF-RF, we conclude that Machine Learning provides innovative and efficient RF-EMF exposure prediction tools, and we propose future applications in occupational and environmental epidemiology and public health.


Asunto(s)
Exposición a Riesgos Ambientales , Aprendizaje Automático , Ondas de Radio , Campos Electromagnéticos , Predicción , Humanos
5.
EBioMedicine ; 44: 209-224, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31160272

RESUMEN

BACKGROUND: Administration of amplitude modulated 27·12 MHz radiofrequency electromagnetic fields (AM RF EMF) by means of a spoon-shaped applicator placed on the patient's tongue is a newly approved treatment for advanced hepatocellular carcinoma (HCC). The mechanism of action of tumour-specific AM RF EMF is largely unknown. METHODS: Whole body and organ-specific human dosimetry analyses were performed. Mice carrying human HCC xenografts were exposed to AM RF EMF using a small animal AM RF EMF exposure system replicating human dosimetry and exposure time. We performed histological analysis of tumours following exposure to AM RF EMF. Using an agnostic genomic approach, we characterized the mechanism of action of AM RF EMF. FINDINGS: Intrabuccal administration results in systemic delivery of athermal AM RF EMF from head to toe at levels lower than those generated by cell phones held close to the body. Tumour shrinkage results from differentiation of HCC cells into quiescent cells with spindle morphology. AM RF EMF targeted antiproliferative effects and cancer stem cell inhibiting effects are mediated by Ca2+ influx through Cav3·2 T-type voltage-gated calcium channels (CACNA1H) resulting in increased intracellular calcium concentration within HCC cells only. INTERPRETATION: Intrabuccally-administered AM RF EMF is a systemic therapy that selectively block the growth of HCC cells. AM RF EMF pronounced inhibitory effects on cancer stem cells may explain the exceptionally long responses observed in several patients with advanced HCC. FUND: Research reported in this publication was supported by the National Cancer Institute's Cancer Centre Support Grant award number P30CA012197 issued to the Wake Forest Baptist Comprehensive Cancer Centre (BP) and by funds from the Charles L. Spurr Professorship Fund (BP). DWG is supported by R01 AA016852 and P50 AA026117.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Calcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Magnetoterapia , Animales , Bloqueadores de los Canales de Calcio/farmacología , Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/patología , Magnetoterapia/métodos , Ratones , Células Madre Neoplásicas/metabolismo , Especificidad de Órganos , ARN Interferente Pequeño/genética , Radiometría , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Bioelectromagnetics ; 39(4): 277-288, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29469164

RESUMEN

This study examines the possible effect of radiofrequency (RF) electromagnetic fields (EMF) on the autonomic nervous system (ANS). The effect of RF EMF on ANS activity was studied by measuring heart rate variability (HRV) during ortho-clinostatic test (i.e., transition from lying to standing and back) in 46 healthy grammar school students. A 1788 MHz pulsed wave with intensity of 54 ± 1.6 V/m was applied intermittently for 18 min in each trial. Maximum specific absorption rate (SAR10 ) value was determined to 0.405 W/kg. We also measured the respiration rate and estimated a subjective perception of EMF exposure. RF exposure decreased heart rate of subjects in a lying position, while no such change was seen in standing students. After exposure while lying, a rise in high frequency band of HRV and root Mean Square of the Successive Differences was observed, which indicated an increase in parasympathetic nerve activity. Tympanic temperature and skin temperature were measured showing no heating under RF exposure. No RF effect on respiration rate was observed. None of the tested subjects were able to distinguish real exposure from sham exposure when queried at the end of the trial. In conclusion, short-term RF EMF exposure of students in a lying position during the ortho-clinostatic test affected ANS with significant increase in parasympathetic nerve activity compared to sham exposed group. Bioelectromagnetics. 39:277-288, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Frecuencia Cardíaca/efectos de la radiación , Ondas de Radio/efectos adversos , Adolescente , Femenino , Humanos , Temperatura , Adulto Joven
7.
Bioelectromagnetics ; 38(5): 356-363, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28342187

RESUMEN

This study considers the computationally determined thermal profile of a finely discretized, heterogeneous human body model, simulating a radiofrequency electromagnetic field (RF-EMF) worker wearing protective clothing subject to RF-EMF exposure, and subject to various environmental conditions including high ambient temperature and high humidity, with full thermoregulatory mechanisms in place. How the human body responds in various scenarios was investigated, and the information was used to consider safety limits in current international RF-EMF safety guidelines and standards. It was found that different environmental conditions had minimal impact on the magnitude of the thermal response due to RF-EMF exposure, and that the current safety factor of 10 applied in international RF-EMF safety guidelines and standards for RF-EMF workers is generally conservative, though it is only narrowly so when workers are subjected to the most adverse environmental conditions. Bioelectromagnetics. 38:356-363, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Ropa de Protección , Exposición a la Radiación/prevención & control , Ondas de Radio/efectos adversos , Temperatura , Humanos
8.
Bioelectromagnetics ; 37(6): 391-9, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27434853

RESUMEN

The increased use of mobile phones has generated public concern about the impact of radiofrequency electromagnetic fields (RF-EMF) on health. In the present study, we investigated whether RF-EMFs induce molecular changes in amyloid precursor protein (APP) processing and amyloid beta (Aß)-related memory impairment in the 5xFAD mouse, which is a widely used amyloid animal model. The 5xFAD mice at the age of 1.5 months were assigned to two groups (RF-EMF- and sham-exposed groups, eight mice per group). The RF-EMF group was placed in a reverberation chamber and exposed to 1950 MHz electromagnetic fields for 3 months (SAR 5 W/kg, 2 h/day, 5 days/week). The Y-maze, Morris water maze, and novel object recognition memory test were used to evaluate spatial and non-spatial memory following 3-month RF-EMF exposure. Furthermore, Aß deposition and APP and carboxyl-terminal fragment ß (CTFß) levels were evaluated in the hippocampus and cortex of 5xFAD mice, and plasma levels of Aß peptides were also investigated. In behavioral tests, mice that were exposed to RF-EMF for 3 months did not exhibit differences in spatial and non-spatial memory compared to the sham-exposed group, and no apparent change was evident in locomotor activity. Consistent with behavioral data, RF-EMF did not alter APP and CTFß levels or Aß deposition in the brains of the 5xFAD mice. These findings indicate that 3-month RF-EMF exposure did not affect Aß-related memory impairment or Aß accumulation in the 5xFAD Alzheimer's disease model. Bioelectromagnetics. 37:391-399, 2016. © 2016 The Authors Bioelectromagnetics published by Wiley Periodicals, Inc. on behalf of Bioelectromagnetics Society.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Memoria/efectos de la radiación , Ondas de Radio/efectos adversos , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Encéfalo/efectos de la radiación , Humanos , Aprendizaje por Laberinto/efectos de la radiación , Ratones , Transporte de Proteínas/efectos de la radiación , Proteolisis/efectos de la radiación
9.
Bioelectromagnetics ; 37(4): 223-33, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27037618

RESUMEN

An exposure system that addresses difficulties that arise for exposure of small animals at low frequencies with a high exposure level is presented. The system, intended to operate at 27 MHz, consists of two identical transverse electro-magnetic (TEM) cells for exposure and sham exposure of groups of 16 free-running mice housed in pairs within standard cages, capable of exposure over extended daily periods while being provided food and water. Inclusion of the exposure cell in a half-wavelength resonator has been developed as a new paradigm to enhance field strength for an increase of >50-fold in available specific absorption rate (SAR) levels compared to traditional TEM cell configurations. The system described allows both daily and weekly exposure schedules and supports blinded protocols with continuous wave (CW) and amplitude modulation (AM) signals with programmable modulation depths and frequencies. Electric field (E-field) homogeneity across the TEM cell along a vertical plane (orthogonal to the axis of the TEM line) was within 3.3%, and 3.1% along the horizontal plane. Accurate and comprehensive dosimetric assessments based on whole-body and organ-specific SAR essential for in vivo bioelectromagnetic experiments are presented, which takes into account various factors (e.g., mouse activities, close proximity, and field homogeneity). Average SAR levels are controllable in the range of 1 mW/kg to 2 W/kg, with expanded uncertainty (k = 2) of 1 dB and instantaneous variation (k = 1) of 4 dB.


Asunto(s)
Campos Electromagnéticos , Exposición a la Radiación/análisis , Monitoreo de Radiación/instrumentación , Absorción de Radiación , Animales , Campos Electromagnéticos/efectos adversos , Ratones , Especificidad de Órganos , Incertidumbre , Irradiación Corporal Total/efectos adversos
10.
Prog Biophys Mol Biol ; 113(2): 254-63, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23872299

RESUMEN

Personal radio frequency electromagnetic field (RF-EMF) exposure, or exposimetry, is gaining importance in the bioelectromagnetics community but only limited data on personal exposure is available in indoor areas, namely schools, crèches, homes, and offices. Most studies are focused on adult exposure, whereas indoor microenvironments, where children are exposed, are usually not considered. A method to assess spatial and temporal indoor exposure of children and adults is proposed without involving the subjects themselves. Moreover, maximal possible daily exposure is estimated by combining instantaneous spatial and temporal exposure. In Belgium and Greece, the exposure is measured at 153 positions spread over 55 indoor microenvironments with spectral equipment. In addition, personal exposimeters (measuring EMFs of people during their daily activities) captured the temporal exposure variations during several days up to one week at 98 positions. The data were analyzed using the robust regression on order statistics (ROS) method to account for data below the detection limit. All instantaneous and maximal exposures satisfied international exposure limits and were of the same order of magnitude in Greece and Belgium. Mobile telecommunications and radio broadcasting (FM) were most present. In Belgium, digital cordless phone (DECT) exposure was present for at least 75% in the indoor microenvironments except for schools. Temporal variations of the exposure were mainly due to variations of mobile telecommunication signals. The exposure was higher during daytime than at night due to the increased voice and data traffic on the networks. Total exposure varied the most in Belgian crèches (39.3%) and Greek homes (58.2%).


Asunto(s)
Carga Corporal (Radioterapia) , Ecosistema , Campos Electromagnéticos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Vivienda/estadística & datos numéricos , Dosis de Radiación , Monitoreo de Radiación/estadística & datos numéricos , Adulto , Bélgica , Niño , Grecia , Humanos , Instituciones Académicas/estadística & datos numéricos , Análisis Espacio-Temporal , Lugar de Trabajo/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA