Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Redox Biol ; 70: 103033, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38211440

RESUMEN

Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/cirugía , Calidad de Vida , Estudios Longitudinales , Metilación de ADN , Ejercicio Físico , Oxidación-Reducción , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Progresión de la Enfermedad , ARN Mensajero/metabolismo , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética
2.
Antioxidants (Basel) ; 12(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38136184

RESUMEN

This study evaluated the effects of maternal selenium-enriched yeast (SeY) supplementation during late gestation and lactation on sow performance, transfer of selenium (Se) and redox status, and gut microbiota community, as well as on the gut health of offspring. Seventy pregnant sows on day 85 of gestation were randomly allocated to the following two treatments: (1) sows who were fed a basal diet (basal diet contained 0.3 mg/kg Se as Na2SeO3, n = 35); (2) and sows who were fed a SeY-supplemented diet (basal diet with 0.2 mg/kg Se as SeY, n = 35). The offspring piglets were only cross-fostered within the group on day 3 of lactation (L3) according to the pig farm epidemic prevention policy. The plasma, milk, and feces samples from 10 sows, as well as plasma and intestinal samples per treatment, were collected on L1 and L21, respectively. Our results showed that maternal SeY supplementation increased the first week average weight and ADG of piglets (p < 0.05). Compared with the CON group, the SeY supplementation increased the Se content in the plasma and milk of sows and the plasma of piglets on L1 and L21 (p < 0.05). In addition, in sows, the levels of fat in the milk on L21, the level of IgA, T-AOC, and GSH-Px in the plasma on L21, and the level of T-AOC and GSH-Px in the colostrum were increased, while the MDA content was decreased in the plasma on L1 and in the colostrum and milk on L14 (p < 0.05). In the piglet plasma, the levels of IgA on L1 and L21, GSH-Px on L1, and GSH on L21 were increased, while the MDA content was decreased on L1 (p < 0.05). Maternal SeY supplementation up-regulated the small intestinal protein abundances of MUC1, E-cadherin, ZO-1, occludin, and claudin and activated the Nrf2/Keap1 signaling pathway in weaned offspring piglets. The 16S rRNA sequencing results showed that fecal microbiota had distinct separations during lactation, and the relative abundances of unclassified_f_Lachnospiraceae, Prevotaceae_UCG-001, and Lachnospiraceae_NK4A136_group were increased on L1. Collectively, the current findings suggest that maternal SeY supplementation during late gestation and lactation could improve the piglet's growth performance, Se status, antioxidant capacity and immunoglobulins transfer at the first week of lactation, as well as alter the fecal microbiota composition by increasing antioxidative-related and SCFA-producing microbiota in sows. These changes contributed to enhancing the small intestinal barrier function and activating the Nrf2/Keap1 pathway in offspring.

3.
Br Poult Sci ; 64(6): 751-762, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37782109

RESUMEN

1. It was hypothesised that dietary N-acetyl-L-cysteine (NAC) in feed, as a source of cysteine, could improve the performance of heat-stressed finisher broilers by fostering glutathione (GSH) synthesis. GSH is the most abundant intracellular antioxidant for which the sulphur amino acid cysteine is rate limiting for its synthesis.2. In the first experiment, four levels of NAC: 0, 500, 1000 and 2000 mg/kg were added to a diet with a suboptimal level of sulphur amino acids in the finisher phase. In the second experiment, NAC was compared to other sulphur amino acid sources at equal molar amounts of digestible sulphur amino acids. Birds were allocated to four groups: control, 2000 mg/kg NAC, 1479 mg/kg L-cystine, and 2168 mg/kg Ca-salt of 2-hydroxy-4-(methylthio)butanoic acid. A chronic cyclic heat stress model (temperature was increased to 34°C for 7 h daily) was initiated at 28 d of age.3. In the first experiment, growth performance and feed efficiency in the finisher phase were significantly improved by graded NAC. ADG was 88.9, 92.2, 93.7 and 97.7 g/d, and the feed-to-gain ratio was 2.18, 1.91, 1.85 and 1.81 for the 0, 500, 1000 and 2000 mg/kg NAC treatments, respectively. However, liver and heart GSH levels were not affected by NAC. On d 29, liver gene transcript of cystathionine-beta-synthase like was reduced by NAC, which suggested reduced trans-sulphuration activity. The second experiment showed that L-cystine and Ca-salt of 2-hydroxy-4-(methylthio) butanoic acid were more effective in improving performance than NAC.4. In conclusion, N-acetyl-L-cysteine improved dose-dependently growth and feed efficiency in heat-stressed finishing broilers. However, this was not associated with changes in tissue GSH levels, but more likely worked by sparing methionine and/or NAC's and cysteine's direct antioxidant properties.


Asunto(s)
Acetilcisteína , Aminoácidos Sulfúricos , Animales , Antioxidantes/metabolismo , Pollos , Cistina , Glutatión , Dieta/veterinaria , Respuesta al Choque Térmico , Butiratos , Suplementos Dietéticos , Alimentación Animal/análisis
4.
Anim Biotechnol ; 34(8): 3988-3999, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37747460

RESUMEN

This study was purposed to investigate the efficacy of dietary creatine nitrate (CrN) supplementation on redox status and mitochondrial function in pectoralis major (PM) muscle of broilers that experienced preslaughter transport. A total of 288 Arbor Acres broilers (28-day-old) were randomly assigned into five dietary treatments, including a basal diet or the basal diet supplemented with 600 mg/kg guanidinoacetic acid (GAA), 300, 600, or 900 mg/kg CrN for 14 days, respectively. On the transportation day, the basal diet group was divided into two groups on average, resulting in six groups. The control group was transported for 0.5 h and the other groups for 3 h (identified as Control, T3h, GAA600, CrN300, CrN600, and CrN900 group, respectively), and all crates were randomly placed on the truck travelling at an average speed of 80 km/h. Our results showed that GAA600 and CrN treatments decreased the muscle ROS level and MDA content (P < 0.05) and increased the mitochondrial membrane potential (P < 0.001), as well as a higher mRNA expression of avUCP (P < 0.001) and lower mRNA expressions of Nrf2 (P < 0.001), Nrf2 and PGC-1α (P < 0.05) compared with T3h group. Meanwhile, the mRNA and protein expressions of Nrf1, TFAM, and PGC-1α in CrN600 and CrN900 groups were lower than those in the T3h group (P < 0.05). Conclusively, dietary supplementation with GAA and CrN decreased muscle oxidative products and enhanced mitochondrial uncoupling mechanism and mtDNA copy number, which relieved muscle oxidative damage and maintained mitochondrial function.


Asunto(s)
Creatina , Músculos Pectorales , Animales , Creatina/farmacología , Creatina/metabolismo , Nitratos/farmacología , Nitratos/metabolismo , Pollos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Suplementos Dietéticos , Dieta , Mitocondrias , Oxidación-Reducción , ARN Mensajero/metabolismo , Alimentación Animal/análisis
5.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37668533

RESUMEN

Lysolecithin is widely used as emulsifier to improve the digestibility and retention of fat. The current study aimed to investigate the effects of dietary lysolecithin supplementation on growth performance, nutrients absorption, lipid metabolism, and redox status of weaned pigs. A total of 60 weaned piglets were assigned into 2 dietary treatments in a randomized complete block design, receiving basal diet with 0 or 1,000 mg/kg lysolecithin for a period of 28 d. Each dietary treatment had 10 replicates with 3 piglets per replicate. Growth performance and fecal score were monitored during trial. Samples of blood, ileum, and liver tissues were collected and analyzed for serology, intestinal histomorphology, and lipid metabolism-related gene and protein expressions. Dietary lysolecithin supplementation increased average daily gain (+15%, P < 0.05) and tended to increase average daily feed intake (+14%, P = 0.08) in overall experimental period. At final, the average body weight of piglets in lysolecithin group was 10% greater than that of control group (P = 0.09). In addition, dietary lysolecithin supplementation improved the ability of nutrients absorption as indicated by the higher d-xylose level in plasma (P < 0.05). Moreover, piglets from lysolecithin group had higher concentration of high-density lipoprotein (P < 0.05), but lower triglyceride (P < 0.05) in plasma. The inclusion of lysolecithin in diet increased the level of reduced glutathione (GSH) and GSH to oxidized glutathione (GSSG) ratio in plasma and liver (P < 0.05), but attenuated the levels of malondialdehyde and GSSG in ileum (P < 0.05). The upregulation of lipogenesis-related genes (FAS and ACC), downregulation of lipolysis (PNPLA2 and PABP1), and lipid mobilization (PGC-1α and SRIT1) genes were observed in lysolecithin relative to control piglets. Compared with control group, dietary lysolecithin supplementation upregulated protein expressions of GPX4, SREBP1, and LPL in liver and LPL in ileum (P < 0.05). Collectively, our study indicates that dietary lysolecithin supplementation improved growth performance of weaned piglets, which may be associated with the improved nutrients absorption, redox status, and lipid metabolism.


Early weaning has been widely adopted to maximize productivity for swine production. However, the weaned piglets suffer from insufficient energy intake due to the reduced feed intake caused by weaning stress, which compromises the growth rate of piglets. In the present study, dietary lysolecithin supplementation increased average daily gain and average daily feed intake in overall experimental period, thereby showed positive effect on final body weight of weaned piglets. In addition, lysolecithin supplementation improved adipogenesis and anti-oxidant capacity, but suppressed lipolysis and pro-oxidant factors.


Asunto(s)
Suplementos Dietéticos , Lisofosfatidilcolinas , Porcinos , Animales , Disulfuro de Glutatión , Metabolismo de los Lípidos , Dieta/veterinaria , Oxidación-Reducción , Destete , Nutrientes , Alimentación Animal/análisis
6.
Antioxidants (Basel) ; 12(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37507878

RESUMEN

An imbalance of oxy-inflammation status has been involved in axonal damage and demyelination in multiple sclerosis (MS). The aim of this study was to investigate the efficacy of an antioxidant treatment (calcium disodium ethylenediaminetetracetic acid-EDTA) chelation therapy associated with a micronutrient complex in MS patients. A total of 20 MS patients and 20 healthy subjects, enrolled as a control group (CTR), were recruited. We measured the plasma ROS production and total antioxidant capacity (TAC) by a direct assessment using Electron Paramagnetic Resonance; activities of the antioxidant system (thiols' redox status and enzymes); and the urinary presence of biomarkers of oxidative stress by immunoenzymatic assays. We also evaluated the levels of inflammation by plasmatic cytokines (TNFα, IL-1ß, and IL-6) and assessed the sICAM levels, as well as the nitric oxide (NO) catabolism and transthyretin (TTR) concentration. Comparing CTR and MS, in the latter ROS production, oxidative damage, inflammatory biomarkers, and NO metabolite concentrations results were significantly higher, while TAC was significantly lower. Treatment in MS induced significant (p < 0.05) down-regulating of pro-inflammatory sICAM1, TNF-α, IL6, as well as biomarkers of lipid peroxidation and DNA damage production. The protective effect exhibited may occur by decreasing ROS production and increasing antioxidant capacity, turning into a more reduced thiols' status.

7.
Redox Biol ; 64: 102777, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315344

RESUMEN

Zinc (Zn) has antioxidant, anti-inflammatory and anti-proliferative actions, with Zn dysregulation associated with coronary ischemia/reperfusion injury and smooth muscle cell dysfunction. As the majority of studies concerning Zn have been conducted under non-physiological hyperoxic conditions, we compare the effects of Zn chelation or supplementation on total intracellular Zn content, antioxidant NRF2 targeted gene transcription and hypoxia/reoxygenation-induced reactive oxygen species generation in human coronary artery smooth muscle cells (HCASMC) pre-adapted to hyperoxia (18 kPa O2) or normoxia (5 kPa O2). Expression of the smooth muscle marker SM22-α was unaffected by lowering pericellular O2, whereas calponin-1 was significantly upregulated in cells under 5 kPa O2, indicating a more physiological contractile phenotype under 5 kPa O2. Inductively coupled plasma mass spectrometry established that Zn supplementation (10 µM ZnCl2 + 0.5 µM pyrithione) significantly increased total Zn content in HCASMC under 18 but not 5 kPa O2. Zn supplementation increased metallothionein mRNA expression and NRF2 nuclear accumulation in cells under 18 or 5 kPa O2. Notably, NRF2 regulated HO-1 and NQO1 mRNA expression in response to Zn supplementation was only upregulated in cells under 18 but not 5 kPa. Furthermore, whilst hypoxia increased intracellular glutathione (GSH) in cells pre-adapted to 18 but not 5 kPa O2, reoxygenation had negligible effects on GSH or total Zn content. Reoxygenation-induced superoxide generation in cells under 18 kPa O2 was abrogated by PEG-superoxide dismutase but not by PEG-catalase, and Zn supplementation, but not Zn chelation, attenuated reoxygenation-induced superoxide generation in cells under 18 but not 5kPaO2, consistent with a lower redox stress under physiological normoxia. Our findings highlight that culture of HCASMC under physiological normoxia recapitulates an in vivo contractile phenotype and that effects of Zn on NRF2 signaling are altered by oxygen tension.


Asunto(s)
Vasos Coronarios , Hiperoxia , Humanos , Vasos Coronarios/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/metabolismo , Superóxidos/metabolismo , Zinc/farmacología , Zinc/metabolismo , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Hiperoxia/metabolismo , Glutatión/metabolismo , ARN Mensajero/metabolismo , Suplementos Dietéticos
8.
Poult Sci ; 102(6): 102651, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37068353

RESUMEN

This study was conducted to investigate the effects of different levels of palygorskite-based composite (PBC) on growth performance, antioxidant status, and meat quality of broilers. A total of 320 one-day-old mixed-sex Ross 308 broiler chicks were allocated to 1 of 5 groups with 8 replicates of 8 birds each, and given a basal diet supplemented with 0, 250, 500, 1,000, and 2,000 mg/kg PBC for a 42-day trial, respectively. PBC quadratically increased feed efficiency during the late and overall experimental periods (P < 0.05). Compared with the control group, 1,000 mg/kg PBC increased feed efficiency during the overall period (P < 0.05). PBC linearly increased serum total superoxide dismutase (T-SOD) activity at 21 d and glutathione peroxidase (GSH-Px) activity at both 21 d and 42 d (P < 0.05). Compared with the control group, PBC supplementation, regardless of its level, increased 21-day serum SOD activity (P < 0.05). The 21-day serum GSH-Px activity was increased by PBC when its level exceeded 250 mg/kg (P < 0.05). PBC linearly increased 42-day total antioxidant capacity (T-AOC) activity, but linearly decreased 42-day malondialdehyde level in liver (P < 0.05). An addition of PBC, irrespective of its level, increased 42-day hepatic T-AOC activity (P < 0.05). PBC quadratically increased 45-min yellowness value and linearly increased 24-h pH value, but quadratically decreased 24-h lightness value and linearly and quadratically reduced 24-h drip loss in breast muscle (P < 0.05). Compared with the control group, the 24-h drip loss of breast muscle was decreased by PBC, regardless of its dosage (P < 0.05). An addition of PBC linearly increased 42-day T-AOC and T-SOD activities of breast muscle (P < 0.05). Compared with the control group, muscle T-SOD activity was increased by PBC, regardless of its administration level (P < 0.05). These results suggested that PBC could improve growth performance, antioxidant capacity, and meat quality of broilers, and its recommended dosage is 1,000 mg/kg.


Asunto(s)
Antioxidantes , Pollos , Animales , Alimentación Animal/análisis , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Carne/análisis , Superóxido Dismutasa
9.
Reprod Sci ; 30(9): 2813-2828, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37002533

RESUMEN

Diabetes mellitus increases the risk of obstetric complications, morbidity, and infant mortality. Controlled nutritional therapy with micronutrients has been employed. However, the effect of calcium (Ca2+) supplementation on diabetic pregnancy is unclear. We aimed to evaluate whether diabetic rats supplemented with Ca2+ during pregnancy present better glucose tolerance, redox status, embryonic and fetal development, newborn weight, and the prooxidant and antioxidant balance of male and female pups. For this, newborn rats received the beta-cytotoxic drug streptozotocin for inducing diabetes on the day of birth. In adulthood, these rats were mated and treated with Ca2+ twice a day from day 0 to day 20 of pregnancy. On day 17, the pregnant rats were submitted to the oral glucose tolerance test (OGTT). At the end of pregnancy, they were anesthetized and killed to collect blood and pancreas samples. The uterine horns were exposed for an evaluation of maternal reproductive outcomes and embryofetal development, and the offspring's liver samples were collected for redox status measurement. Nondiabetic and diabetic rats supplemented with Ca2+ showed no influence on glucose tolerance, redox status, insulin synthesis, serum calcium levels, and embryofetal losses. The reduced rate of newborns classified as adequate for gestational age (AGA) and higher rates of LGA (large) and small (LGA) newborns and higher -SH and GSH-Px antioxidant activities in female pups were observed in diabetic dams, regardless of supplementation. Thus, maternal supplementation caused no improvement in glucose tolerance, oxidative stress biomarkers, embryofetal growth and development, and antioxidants in pups from diabetic mothers.


Asunto(s)
Calcio , Diabetes Mellitus Experimental , Embarazo , Ratas , Animales , Masculino , Femenino , Antioxidantes/farmacología , Diabetes Mellitus Experimental/complicaciones , Ratas Wistar , Estrés Oxidativo , Suplementos Dietéticos , Glucosa/farmacología , Glucemia
10.
Animals (Basel) ; 13(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36830534

RESUMEN

Plant extracts are a phytochemically-rich alternative to antibiotic and synthetic feed additives, with high systemic bioactivity in animals. The present study aimed to evaluate the effect of a hydroalcoholic extract of custard apple (Annona squamosa) leaf (ASLE) on the growth, hematobiochemical parameters, digestive enzyme activities, redox status, nonspecific immune response, and cold and bacterial infection tolerance in Nile tilapia (Oreochromis niloticus). A total of 300 Nile tilapia fingerlings (11.87 ± 0.48 g) were fed ASLE-supplemented diets at increasing levels of 0, 5, 10, 15, and 20 g/kg for 60 days. At the end of the feeding period, the fish were experimentally challenged with cold water stress or Aeromonas sobria, and mortalities were recorded for 10 days. The results revealed that the growth performance and feed conversion ratio were significantly improved with an increasing level of ASLE supplementation. The hematologic profile and hepato-renal functions were retained within a healthy range in the various groups supplemented with an ASLE diet. Antioxidant status was significantly improved in the serum of fish fed ASLE-supplemented diets, in terms of superoxide dismutase (SOD), catalase (CAT) activities, reduced glutathione, and total antioxidant capacity. Meanwhile, the myeloperoxidase (MPO) and malondialdehyde (MDA) levels decreased significantly. Similarly, there was a noticeable improvement in the hepatic CAT and SOD activities and a reduction of hepatic MDA. Marked improvements in lysozyme activity, nitric oxide production, complement3 level, and phagocytic activity were recorded in groups fed ASLE-supplemented diets, which peaked with the 20 g ASLE/kg diet. Moreover, the serum glucose and cortisol levels significantly declined in groups fed ASLE at levels of 15-20 g/kg compared to the other groups. Supplementation with ASLE increased the activities of protease, lipase, and α-amylase. ASLE supplementation at a concentration of 10-20 g/kg diet enhanced the resistance of Nile tilapia to A. sobria infection. According to this study, ASLE supplementation enhanced the antioxidant balance, non-specific immune response, physiological status, resistance against infection, and growth performance of Nile tilapia at supplementation levels of 10-20 g/kg diet.

11.
J Med Biochem ; 42(1): 47-57, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36819142

RESUMEN

Background: The uneven lipid-lowering statin effects and statin intolerance raise interest regarding the involvement of coadministration of statins and dietary supplements. This study aimed to evaluate the effects of octacosanol supplementation on markers of redox status in cardiovascular patients on chronic atorvastatin therapy. Methods: A double-blind, randomized, placebo-controlled, single-centre study was conducted. Redox status homeostasis parameters [i.e., advanced oxidation protein products (AOPP), pro-oxidant-antioxidant balance (PAB), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase activity (SOD), total protein sulfhydryl (SHgroups), and paraoxonase 1 (PO N 1) activity] were assessed in 81 patients. According to favorable changes in lipid profile, patients were classified into two groups: responders (n = 35) and non-responders (n = 46), and followed for 13 weeks. A principal component analysis (PCA) was applied to explore the effect of octacosanol supplementation and the relationship between investigated parameters as predictors of responders' and non-responders' status. Results: Significant decrease in Oxy-score value was found at the endpoint compared to baseline in responders' group (21.0 (13.4-25.5) versus 15.1 (12.4-18.0); P < 0.01). PCA analysis extracted 4 significant factors in the both groups, whereas extracted factors containing "octacosanol status" variable explained 14.7% and 11.5% of the variance in responders' and non-responders' subgroups, respectively. Conclusions: Octacosanol supplementation leads to an improvement of lipid profile and markers of redox status in responders' group. New studies are needed to validate our results in order to find the best approach for personalized supplementation as a useful adjunct to standard statin therapy.

12.
Probiotics Antimicrob Proteins ; 15(5): 1327-1341, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36066817

RESUMEN

The poultry sector demands alternative additives to antibiotics that can be used as performance enhancers. Therefore, this experiment was conducted to evaluate the probiotics effects on performance, intestinal health, and redox status of 720 broilers exposed to heat stress from 15 days of age. Eight dietary treatments were evaluated: basal diet (BD) without antibiotic and probiotic (T1); BD supplemented with antibiotic zinc bacitracin (T2), BD supplemented with commercial probiotic of Bacillus subtilis DSM 17,299 (T3), BD supplemented with non-commercial probiotic of Lactococcus lactis NCDO 2118, Lactobacillus delbrueckii CNRZ 327, Escherichia coli CEC15, or Saccharomyces boulardii (T4 to T7), and BD simultaneously supplemented with the four non-commercial probiotics (T8). Feed intake, weight gain, and feed conversion were determined in the period from 1 to 42 days of age. Carcass and cuts yield, abdominal fat deposition, cloacal temperature, weight and length of intestine, activity of myeloperoxidase and eosinophilic peroxidase enzymes in the jejunum, jejunal histomorphometry, relative gene expression in the jejunum (occludin, zonulin, interleukin-8, cholecystokinin, ghrelin, and heat shock protein-70), and liver (heat shock protein-70), in addition to malondialdehyde level and superoxide dismutase activity in the intestine, liver, and blood, were measured in broilers at 42 days old. As main results, broilers fed T1 diet exhibited lower weight gain (3.222 kg) and worse feed conversion (1.70 kg/kg). However, diets containing non-commercial probiotics resulted in up to 3.584 kg of weight gain and improved feed conversion by up to 10%, similar to that observed for broilers of the T2 and T3 groups.


Asunto(s)
Pollos , Probióticos , Animales , Pollos/metabolismo , Suplementos Dietéticos , Dieta , Respuesta al Choque Térmico , Antibacterianos/metabolismo , Aumento de Peso , Proteínas de Choque Térmico/metabolismo , Alimentación Animal/análisis
13.
Free Radic Biol Med ; 194: 230-244, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442587

RESUMEN

Oxidative stress as a driver of disease is reinforcing the trend towards supplementation with antioxidants. While antioxidants positively influence the redox status when applied at physiological doses, higher concentrations may have pro-oxidative effects. Precise assessment methods for testing the supply of antioxidants are lacking. Using in-situ-irradiation as stressor and electron paramagnetic resonance (EPR) spectroscopy as readout system for formed radicals, a stress response assessment method was developed, using protein solutions and plasma samples from transfusion medicine. The method was validated in a double-blind placebo-controlled in vivo cross-over pilot study in blood plasma samples of individuals before and after vitamin C supplementation. Reference measurements were performed for the exogenous antioxidants ß-carotene and vitamin C, and glutathione as an endogenous representative. Malondialdehyde was studied for oxidative stress indication. Protein solutions without antioxidants showed a linear increase in radical concentration during irradiation. The in-vitro-addition of vitamin C or plasma samples from subjects displayed two slopes (m1, m2) for radical production, whereby m1 represented the amount of antioxidants and proteins, m2 only the protein content. These two slopes in combination with the intervening transition area (T) were used to calculate the oxidative stress coping capacity (OSC), which correlated positively with vitamin C concentration in blood plasma, while oxidative stress biomarkers showed only fluctuations within their reference ranges. Furthermore, a selective radical quenching mechanism for vitamin C was observed: the proportion of reactive oxygen species (ROS) in the plasma samples was degraded in dependence to the vitamin C concentration ingested. The proportion of lipid oxygen species (LOS) remained stable while the ascorbyl radical increased with higher vitamin C intake. OSC may represent a sensitive method to detect treatment effects on the redox status in vivo in future validation and treatment studies, and potentially in clinical routine.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ácido Ascórbico/farmacología , Espectroscopía de Resonancia por Spin del Electrón/métodos , Oxidación-Reducción , Estrés Oxidativo , Proyectos Piloto , Plasma/metabolismo , Vitaminas/farmacología , Método Doble Ciego , Estudios Cruzados
14.
Anim Nutr ; 11: 359-368, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36329684

RESUMEN

Previous studies have revealed that dietary N-carbamylglutamate (NCG) or L-arginine (Arg) improves small intestinal integrity and immune function in suckling Hu lambs that have experienced intrauterine growth retardation (IUGR). Whether these nutrients alter redox status and apoptosis in the colon of IUGR lambs is still unknown. This study, therefore, aimed at investigating whether dietary supplementation of Arg or NCG alters colonic redox status, apoptosis and endoplasmic reticulum (ER) stress and the underlying mechanism of these alterations in IUGR suckling Hu lambs. Forty-eight 7-d old Hu lambs, including 12 with normal birth weight (4.25 ± 0.14 kg) and 36 with IUGR (3.01 ± 0.12 kg), were assigned to 4 treatment groups (n = 12 each; 6 males and 6 females) for 3 weeks. The treatment groups were control (CON), IUGR, IUGR + Arg and IUGR + NCG. Relative to IUGR lambs, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) content, as well as proliferation index, were higher (P < 0.05) whereas reactive oxygen species (ROS), malondialdehyde (MDA) levels and apoptotic cell numbers were lower (P < 0.05) in colonic tissue for both IUGR + Arg and NCG lambs. Both mRNA and protein levels of C/EBP homologous protein 10 (CHOP10), B-cell lymphoma/leukaemia 2 (Bcl-2) -associated X protein (Bax), apoptosis antigen 1 (Fas), activating transcription factor 6 (ATF6), caspase 3, and glucose-regulated protein 78 (GRP78) were lower (P < 0.05) while glutathione peroxidase 1 (GPx1), Bcl-2 and catalase (CAT) levels were higher (P < 0.05) in colonic tissue for IUGR + Arg and IUGR + NCG lambs compared with IUGR lambs. Based on our results, dietary NCG or Arg supplementation can improve colonic redox status and suppress apoptosis via death receptor-dependent, mitochondrial and ER stress pathways in IUGR suckling lambs.

15.
Nutrients ; 14(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36145081

RESUMEN

Methionine restriction and selenium supplementation are recommended because of their health benefits. As a major nutrient form in selenium supplementation, selenomethionine shares a similar biological process to its analog methionine. However, the outcome of selenomethionine supplementation under different methionine statuses and the interplay between these two nutrients remain unclear. Therefore, this study explored the metabolic effects and selenium utilization in HepG2 cells supplemented with selenomethionine under deprived, adequate, and abundant methionine supply conditions by using nuclear magnetic resonance-based metabolomic and molecular biological approaches. Results revealed that selenomethionine promoted the proliferation of HepG2 cells, the transcription of selenoproteins, and the production of most amino acids while decreasing the levels of creatine, aspartate, and nucleoside diphosphate sugar regardless of methionine supply. Selenomethionine substantially disturbed the tricarboxylic acid cycle and choline metabolism in cells under a methionine shortage. With increasing methionine supply, the metabolic disturbance was alleviated, except for changes in lactate, glycine, citrate, and hypoxanthine. The markable selenium accumulation and choline decrease in the cells under methionine shortage imply the potential risk of selenomethionine supplementation. This work revealed the biological effects of selenomethionine under different methionine supply conditions. This study may serve as a guide for controlling methionine and selenomethionine levels in dietary intake.


Asunto(s)
Selenio , Selenometionina , Aminoácidos , Ácido Aspártico , Colina , Citratos , Creatina , Suplementos Dietéticos , Glicina , Células Hep G2 , Humanos , Hipoxantinas , Lactatos , Metionina/metabolismo , Metionina/farmacología , Azúcares de Nucleósido Difosfato , Racemetionina , Selenio/metabolismo , Selenio/farmacología , Selenometionina/farmacología , Selenoproteínas
16.
Biometals ; 35(5): 833-851, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35763150

RESUMEN

Vanadium has been shown to catalyze the generation of reactive oxygen species. Since free radical production and lipid peroxidation are potentially important mediators in testicular physiology and pathophysiology, the present study was conducted to elucidate vanadium-induced oxidative damage in rat testis and the ameliorative role of Salvia officinalis essential oil (SEO) against the adverse effects of this heavy metal. Adult male Wistar rats were treated daily during 10 days either with ammonium metavanadate (5 mg/kg bw, intraperitoneally), SEO (15 mg/kg bw, orally) or their combination. A group of rats receiving daily a saline solution served as a negative control. Vanadium treatment induced a significant decrease in body and reproductive organ weights, serum testosterone level and sperm number and motility. An increase in lipid peroxidation and protein oxidation as well as a marked inhibition in the activities of antioxidant enzymes in the testes and seminal vesicles indicated the occurrence of oxidative stress after vanadium toxicity. Histopathological changes in testis and seminal vesicles were also observed following vanadium administration. However, co-administration of SEO to vanadium-treated rats resulted in an appreciable improvement of these parameters, emphasizing the therapeutic effects of SEO. It can be suggested that SEO mitigates vanadium-induced reproductive damage due to its antioxidant capacity. Thus, we can hypothesize that SEO supplementation could protect against vanadium poisoning.


Asunto(s)
Aceites Volátiles , Salvia officinalis , Animales , Antioxidantes/farmacología , Daño del ADN , Peroxidación de Lípido , Masculino , Aceites Volátiles/farmacología , Estrés Oxidativo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno , Solución Salina/farmacología , Salvia officinalis/metabolismo , Semillas/metabolismo , Testosterona/farmacología , Vanadio/farmacología
17.
Front Vet Sci ; 9: 906084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720853

RESUMEN

Heat stress has become a widespread concern in the world, which is one of the major environmental stressors and causes substantial economic loss in the rabbit industry. Heat stress leads to multiple damages to the health of rabbits, such as organ damage, oxidative stress, disordered endocrine regulation, suppressed immune function and reproductive disorders, ultimately, induces the decreased production performance and increased mortality. Nutritional approaches, including feeding strategies, adjusting feed formula, and supplementing vitamins, minerals, electrolytes, Chinese herbal medicines, and functional active substances to the feed, were reported to mitigate the detrimental effects of heat stress in rabbits. Therefore, elucidating the damage of heat stress to rabbits; proper management and nutritional approaches should be considered to solve the heat stress issue in rabbits. This review highlights the scientific evidence regarding the effects of heat stress on rabbit's immune function, endocrine, blood biochemical changes, antioxidant capacity and production performance, and the potential mitigation strategies of nutritional intervention to alleviate heat stress in rabbits; which could contribute to develop nutritional strategies in relieving heat stress of rabbits.

18.
Microbiol Spectr ; 10(3): e0270821, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35638825

RESUMEN

Manganese (Mn) is an essential trace element that is supplemented in microbial media with varying benefits across species and growth conditions. We found that growth of Lactococcus cremoris was unaffected by manganese omission from the growth medium. The main proteome adaptation to manganese omission involved increased manganese transporter production (up to 2,000-fold), while the remaining 10 significant proteome changes were between 1.4- and 4-fold. Further investigation in translationally blocked (TB), nongrowing cells showed that Mn supplementation (20 µM) led to approximately 1.5 X faster acidification compared with Mn-free conditions. However, this faster acidification stagnated within 24 h, likely due to draining of intracellular NADH that coincides with substantial loss of culturability. Conversely, without manganese, nongrowing cells persisted to acidify for weeks, albeit at a reduced rate, but maintaining redox balance and culturability. Strikingly, despite being unculturable, α-keto acid-derived aldehydes continued to accumulate in cells incubated in the presence of manganese, whereas without manganese cells predominantly formed the corresponding alcohols. This is most likely reflecting NADH availability for the alcohol dehydrogenase-catalyzed conversion. Overall, manganese influences the lactococcal acidification rate, and flavor formation capacity in a redox dependent manner. These are important industrial traits especially during cheese ripening, where cells are in a non-growing, often unculturable state. IMPORTANCE In nature as well as in various biotechnology applications, microorganisms are often in a nongrowing state and their metabolic persistence determines cell survival and functionality. Industrial examples are dairy fermentations where bacteria remain active during the ripening phases that can take up to months and even years. Here we investigated environmental factors that can influence lactococcal metabolic persistence throughout such prolonged periods. We found that in the absence of manganese, acidification of nongrowing cells remained active for weeks while in the presence of manganese it stopped within 1 day. The latter coincided with the accumulation of amino acid derived volatile metabolites. Based on metabolic conversions, proteome analysis, and a reporter assay, we demonstrated that the manganese elicited effects were NADH dependent. Overall the results show the effect of environmental modulation on prolonged cell-based catalysis, which is highly relevant to non-growing cells in nature and biotechnological applications.


Asunto(s)
Queso , Lactococcus lactis , Queso/microbiología , Fermentación , Homeostasis , Lactococcus , Lactococcus lactis/metabolismo , Manganeso/metabolismo , Manganeso/farmacología , NAD/metabolismo , NAD/farmacología , Oxidación-Reducción , Proteoma/metabolismo , Proteoma/farmacología
19.
Mar Drugs ; 20(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35447897

RESUMEN

The vast ocean holds many unexplored organisms with unique adaptive features that enable them to thrive in their environment. The secretion of fluorescent proteins is one of them, with reports on the presence of such compounds in marine annelids being scarce. The intertidal Eulalia sp. is an example. The worm secretes copious amounts of mucus, that when purified and concentrated extracts, yield strong fluorescence under UV light. Emission has two main maxima, at 400 nm and at 500 nm, with the latter responsible for the blue-greenish fluorescence. Combining proteomics and transcriptomics techniques, we identified ubiquitin, peroxiredoxin, and 14-3-3 protein as key elements in the mucus. Fluorescence was found to be mainly modulated by redox status and pH, being consistently upheld in extracts prepared in Tris-HCl buffer with reducing agent at pH 7 and excited at 330 nm. One of the proteins associated with the fluorescent signal was localized in secretory cells in the pharynx. The results indicate that the secretion of fluorescent proteinaceous complexes can be an important defense against UV for this dweller. Additionally, the internalization of fluorescent complexes by ovarian cancer cells and modulation of fluorescence of redox status bears important considerations for biotechnological application of mucus components as markers.


Asunto(s)
Anélidos , Poliquetos , Animales , Biotecnología , Colorantes/metabolismo , Humanos , Moco/química , Extractos Vegetales/análisis , Poliquetos/química , Proteínas/análisis
20.
Neurotox Res ; 40(2): 473-484, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35239160

RESUMEN

Quinolinic acid (QUIN) is an important agonist of NMDA receptors that are found at high levels in cases of brain injury and neuroinflammation. Therefore, it is necessary to investigate neuroprotection strategies capable of neutralizing the effects of the QUIN on the brain. Coenzyme Q10 (CoQ10) is a provitamin that has an important antioxidant and anti-inflammatory action. This work aims to evaluate the possible neuroprotective effect of CoQ10 against the toxicity caused by QUIN. Striatal slices from 30-day-old Wistar rats were preincubated with CoQ10 25-100 µM for 15 min; then, QUIN 100 µM was added to the incubation medium for 30 min. A dose-response curve was used to select the CoQ10 concentration to be used in the study. Results showed that QUIN caused changes in the production of ROS, nitrite levels, activities of antioxidant enzymes, glutathione content, and damage to proteins and lipids. CoQ10 was able to prevent the effects caused by QUIN, totally or partially, except for damage to proteins. QUIN also altered the activities of electron transport chain complexes and ATP levels, and CoQ10 prevented totally and partially these effects, respectively. CoQ10 prevented the increase in acetylcholinesterase activity, but not the decrease in the activity of Na+,K+-ATPase caused by QUIN. We also observed that QUIN caused changes in the total ERK and phospho-Akt content, and these effects were partially prevented by CoQ10. These findings suggest that CoQ10 may be a promising therapeutic alternative for neuroprotection against QUIN neurotoxicity.


Asunto(s)
Antioxidantes , Ácido Quinolínico , Acetilcolinesterasa/metabolismo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Metabolismo Energético , Homeostasis , Oxidación-Reducción , Ácido Quinolínico/toxicidad , Ratas , Ratas Wistar , Transducción de Señal , Ubiquinona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA