RESUMEN
BACKGROUND: The traditional Chinese medicine formula, Yu's Enema Formula (YEF), has demonstrated potential in the treatment of Ulcerative Colitis (UC). OBJECTIVE: This study aimed to unveil the anti-UC mechanisms of YEF. METHODS: Utilizing public databases, we obtained YEF and UC-related targets. GO and KEGG analyses were conducted via clusterProfiler and Reactome. The STRING database facilitated the construction of the PPI network, and hub targets were selected using cytoHubba. We used R software for differential expression and correlation analyses, and molecular docking was performed with PyMOL and AutoDock. HPLC analysis identified the compounds in YEF. For in vivo validation, a UC rat model was employed. RESULTS AND DISCUSSION: 495 YEF-UC overlapping targets were identified. GO and KEGG analyses indicated enrichment in exogenous stimuli response, peptide response, positive MAPK cascade regulation, interleukin- related signaling, and the TLR4 cascade. Hub targets included CTNNB1, JUN, MAPK1, MAPK3, SRC, STAT3, TLR4, TP53, and RELA, which were often interconnected. Molecular docking revealed quercetin's strong binding affinity with CTNNB1, MAPK1, MAPK3, SRC, STAT3, TLR4, and TP53, consistent with HPLC analysis. In vivo experiments suggested that YEF has the potential to alleviate UC symptoms and protect the intestinal mucosal barrier by inhibiting the RhoA/ROCK pathway. CONCLUSION: YEF may safeguard the intestinal mucosal barrier in UC by targeting CTNNB1, MAPK1, MAPK3, SRC, STAT3, TLR4, and TP53, while blocking the RhoA/ROCK pathway.
Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Farmacología en Red , Quinasas Asociadas a rho , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Ratas , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo , Masculino , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Ratas Sprague-Dawley , Enema , Simulación del Acoplamiento Molecular , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de Unión al GTP rhoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Alcohol misuse persists as a prevalent societal concern and precipitates diverse deleterious consequences, entailing significant associated health hazards including acute alcohol intoxication (AAI). Binge drinking, a commonplace pattern of alcohol consumption, may incite neurodegeneration and neuronal dysfunction. Clinicians tasked with managing AAI confront a dearth of pharmaceutical intervention alternatives. In contrast, natural products have garnered interest due to their compatibility with the human body and fewer side effects. Lingjiao Gouteng decoction (LGD), a classical traditional Chinese medicine decoction, represents a frequently employed prescription in cases of encephalopathy, although its efficacy in addressing acute alcoholism and alcohol-induced brain injury remains inadequately investigated. AIM OF THE STUDY: To investigate the conceivable therapeutic benefits of LGD in AAI and alcohol-induced brain injury, while delving into the underlying fundamental mechanisms involved. MATERIALS AND METHODS: We established an AAI mouse model through alcohol gavage, and LGD was administered to the mice twice at the 2 h preceding and 30 min subsequent to alcohol exposure. The study encompassed the utilization of the loss of righting reflex assay, histopathological analysis, enzyme-linked immunosorbent assays, and cerebral tissue biochemical assays to investigate the impact of LGD on AAI and alcohol-induced brain injury. These assessments included a comprehensive evaluation of various biomarkers associated with the inflammatory response and oxidative stress. Finally, RT-qPCR, Western blot, and immunofluorescence staining were carried out to explore the underlying mechanisms through which LGD exerts its therapeutic influence, potentially through the regulation of the RhoA/ROCK2/NF-κB signaling pathway. RESULTS: Our investigation underscores the therapeutic efficacy of LGD in ameliorating AAI, as evidenced by discernible alterations in the loss of righting reflex assay, pathological analysis, and assessment of inflammatory and oxidative stress biomarkers. Furthermore, the results of RT-qPCR, Western blot, and immunofluorescence staining manifest a noteworthy regulatory effect of LGD on the RhoA/ROCK2/NF-κB signaling pathway. CONCLUSIONS: The present study confirmed the therapeutic potential of LGD in AAI and alcohol-induced brain injury, and the protective effects of LGD against alcohol-induced brain injury may be intricately linked to the RhoA/ROCK2/NF-κB signaling pathway.
Asunto(s)
Intoxicación Alcohólica , Alcoholismo , Lesiones Encefálicas , Ratones , Humanos , Animales , FN-kappa B/metabolismo , Intoxicación Alcohólica/tratamiento farmacológico , Transducción de Señal , Etanol/farmacología , Lesiones Encefálicas/tratamiento farmacológico , Biomarcadores , Quinasas Asociadas a rho/metabolismoRESUMEN
BACKGROUND: Blocking the RhoA/ROCK II/MLC 2 (Ras homolog gene family member A/Rho kinase II/myosin light chain 2) signaling pathway can initiate neuroprotective mechanisms against neurological diseases such as stroke, cerebral ischemia, and subarachnoid hemorrhage. Nevertheless, it is not clear whether and how disrupting the RhoA/ROCK II/MLC 2 signaling pathway changes the pathogenic processes of the blood-brain barrier (BBB) after intracerebral hemorrhage (ICH). The present investigation included the injection of rat caudal vein blood into the basal ganglia area to replicate the pathophysiological conditions caused by ICH. METHODS: Scalp acupuncture (SA) therapy was performed on rats with ICH at the acupuncture point "Baihui"-penetrating "Qubin," and the ROCK selective inhibitor fasudil was used as a positive control to evaluate the inhibitory effect of acupuncture on the RhoA/ROCK II/MLC 2 signaling pathway. Post-assessments included neurological deficits, brain edema, Evans blue extravasation, Western blot, quantitative polymerase chain reaction, and transmission electron microscope imaging. RESULTS: We found that ROCK II acts as a promoter of the RhoA/ROCK II/MLC 2 signaling pathway, and its expression increased at 6 h after ICH, peaked at 3 days, and then decreased at 7 days after ICH, but was still higher than the pre-intervention level. According to some experimental results, although 3 days is the peak, 7 days is the best time point for acupuncture treatment. Starting from 6 h after ICH, the neurovascular structure and endothelial cell morphology around the hematoma began to change. Based on the changes in the promoter ROCK II, a 7-day time point was selected as the breakthrough point for treating ICH model rats in the main experiment. The results of this experiment showed that both SA at "Baihui"-penetrating "Qubin" and treatment with fasudil could improve the expression of endothelial-related proteins by inhibiting the RhoA/ROCK II/MLC 2 signaling pathway and reduce neurological dysfunction, brain edema, and BBB permeability in rats. CONCLUSION: This study found that these experimental data indicated that SA at "Baihui"-penetrating "Qubin" could preserve BBB integrity and neurological function recovery after ICH by inhibiting RhoA/ROCK II/MLC 2 signaling pathway activation and by regulating endothelial cell-related proteins.
RESUMEN
Forsythia suspensa tea is a popular traditional Chinese medicine decoction for its healthy and therapeutic benefits. However, its effects in bone metabolism were not clear. In recent study, we uncovered anti-osteoclastogenesis property of Phillygenin (Phi), a compound abundant in Forsythia suspensa leaves, and aimed to investigate the effect and mechanism of Phi on bone metabolism in vivo and in vitro. Lipopolysaccharides-induced murine calvaria osteolysis and ovariectomy-induced bone loss animal models were used to identify the bone-protective effect of Phi in vivo and micro-CT, pQCT, and TRAP staining were applied. We used CCK8, TUNEL, BrdU, and TRAP staining to evaluate the efficacy of Phi on the proliferation and formation of OCs in primary mBMMs. RNA sequence, activity-based protein profiling, molecular docking, G-LISA, and WB were used to inspect the target and underlying mechanism of Phi's actions in mBMMs. We found Phi significantly inhibited bone resorption in vivo and inhibited mBMMs osteoclastogenesis in vitro. Ras homolog gene family member A (RhoA) was identified as the direct target of Phi. It counteracted the effects of RhoA activator and acted as a RhoA inhibitor. By targeting RhoA, Phi modulated Rho-associated coiled-coil containing protein kinase 1 (ROCK1) activity and regulated its downstream NF-κB/NFATc1/c-fos pathway. Furthermore, Phi depressed the disassembling of F-actin ring through cofilin and myosin1a. Our findings provided Phi as a potential option for treating bone loss diseases by targeting RhoA and highlighted the importance of F. suspensa as a preventive approach in bone disorders.
Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Lignanos , Osteólisis , Animales , Femenino , Ratones , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Diferenciación Celular , Lignanos/farmacología , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/farmacología , Osteoclastos , Osteogénesis , Osteólisis/inducido químicamenteRESUMEN
Herba Epimedii is widely used to promote bone healing, and their active ingredients are total flavonoids of Epimedium (TFE). Ras homolog gene family member A / Rho-associated protein kinase (RhoA/Rock), an important pathway regulating the cytoskeleton, has been proven to affect bone formation. However, whether TFE promotes bone healing via this pathway remains unclear. In this study, the therapeutic effects of TFE were estimated using micro-computed tomography and hematoxylin and eosin staining of pathological sections. F-actin in osteoblasts was stained to investigate the protective effects of TFE on the cytoskeleton. Its regulatory effects on the RhoA/Rock1 pathway were explored using RT-qPCR and Western blot analysis. Besides, flow cytometry, alkaline phosphatase and nodule calcification staining were performed to evaluate the effects on osteogenesis. The bone healing in rats was improved, the cytoskeletal damage in osteoblasts was reduced, the RhoA/Rock1 pathway was downregulated, and osteogenesis was enhanced after TFE treatment. Thus, TFE can promote bone formation at least partially by regulating the expression of key genes and proteins in the cytoskeleton. The findings of this study provided evidence for clinical applications and would contribute to a better understanding of Epimedium's mechanisms in treating bone defects.
Asunto(s)
Medicamentos Herbarios Chinos , Ratas , Animales , Microtomografía por Rayos X , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Osteogénesis , CitoesqueletoRESUMEN
BACKGROUND: Obesity has emerged as a global epidemic. Recent research has indicated that diet-induced obesity can be prevented by promoting lacteal junction zippering. Berberine, which is derived from natural plants, is found to be promising in weight reduction, but the underlying mechanism remains unspecified. PURPOSE: To determine whether berberine protects against obesity by regulating the lacteal junction and to explore potential molecular mechanisms. METHODS: Following the induction of the diet-induced obese (DIO) model, mice were administered low and high doses of berberine for 4 weeks. Indicators associated with insulin resistance and lipid metabolism were examined. Various methods, such as Oil Red O staining, transmission electron microscopy imaging, confocal imaging and others were used to observe the effects of berberine on lipid absorption and the lacteal junction. In vitro, human dermal lymphatic endothelial cells (HDLECs) were used to investigate the effect of berberine on LEC junctions. Western Blot and immunostaining were applied to determine the expression levels of relevant molecules. RESULTS: Both low and high doses of berberine reduced body weight in DIO mice without appetite suppression and ameliorated glucolipid metabolism disorders. We also found that the weight loss effect of berberine might contribute to the inhibition of small intestinal lipid absorption. The possible mechanism was related to the promotion of lacteal junction zippering via suppressing the ras homolog gene family member A (RhoA)/Rho-associated kinase (ROCK) signaling pathway. In vitro, berberine also promoted the formation of stable mature junctions in HDLECs, involving the same signaling pathway. CONCLUSION: Berberine could promote lacteal junction zippering and ameliorate diet-induced obesity through the RhoA/ROCK signaling pathway.
Asunto(s)
Berberina , Ratones , Humanos , Animales , Berberina/farmacología , Células Endoteliales/metabolismo , Transducción de Señal , Obesidad/tratamiento farmacológico , Dieta , Lípidos , Proteína de Unión al GTP rhoA/metabolismoRESUMEN
OBJECTIVE: To investigate the effects of electroacupuncture(EA), gastrodin(Gas), and their combination on the signaling pathways involving Ras homologous gene family member A (RhoA) and Rho-associated frizzled helix protein kinase (ROCK-2) within the striatal region of rats subjected to cerebral ischemia. Additionally, we aim to elucidate the therapeutic effects and potential underlying mechanisms associated with the concurrent application of electroacupuncture and medication in the treatment of cerebral ischemia. METHODS: Rats were randomly assigned to one of five groups, namely, the sham operation (Sham) group, model group, EA group, Gas group, and the EA combined with Gas group (referred to as the "EA+Gas group"). Each group consisted of ten rats. Following the induction of cerebral ischemia, the EA group and EA+Gas group received EA stimulation at the Baihui(GV20) and Zusanli(ST36) acupoints for 30 min per session, administered once daily for 14 consecutive days. The Gas group and EA+Gas group were intraperitoneally injected with Gas at a dosage of 10 mg/kg, also administered once daily for 14 consecutive days. Nissl staining was employed to observe morphological alterations in the striatal nerve cells of rats in each group. Immunohistochemistry and western blot techniques were employed to evaluate the expression levels of striatal RhoA and ROCK-2 proteins. RESULTS: In comparison to the Sham group, the model group exhibited a substantial reduction in the number of striatal nerve cells on the ischemic side, accompanied by notable changes in cell morphology, characterized by reduced cytoplasm, defective and atrophied cytosol, solidified nuclei, loosely arranged cells, and enlarged intercellular spaces. Additionally, there was a notable increase in the positive expression of RhoA and ROCK-2. In contrast, when compared to the model group, the EA, Gas, and EA+Gas groups demonstrated an elevated number of normal nerve cells within the ischemic striatal region, with a significant improvement in cell count and morphology. Furthermore, positive expression levels of RhoA and ROCK-2 were notably reduced in these groups. Compared with the EA group or the GAS group, the number of normal nerve cells in the striatum on the ischemic side of the EA+GAS group was further increased, and the positive expression level of RhoA and ROCK-2 were both further reduced. CONCLUSION: The protective mechanism underlying the therapeutic efficacy of EA combined with Gas against cerebral ischemic striatal injury in rats may be associated with the inhibition of the activation of the RhoA/ROCK-2 signaling pathway. Importantly, the therapeutic effects observed with the combination of electroacupuncture and medication were superior to those achieved with EA alone or the sole administration of Gas.
Asunto(s)
Isquemia Encefálica , Electroacupuntura , Animales , Ratas , Isquemia Encefálica/metabolismo , Infarto Cerebral , Transducción de SeñalRESUMEN
Introduction: Myosin IXB (MYO9B) is an unconventional myosin with RhoGAP activity and thus is a regulator of actin cytoskeletal organization. MYO9B was previously shown to be necessary for skeletal growth and health and to play a role in actin-based functions of both osteoblasts and osteoclasts. However, its role in responses to mechanical stimulation of bone cells has not yet been described. Therefore, experiments were undertaken to determine the role of MYO9B in bone cell responses to mechanical stress both in vitro and in vivo. Methods: MYO9B expression was knocked down in osteoblast and osteocyte cell lines using RNA interference and the resulting cells were subjected to mechanical stresses including cyclic tensile strain, fluid shear stress, and plating on different substrates (no substrate vs. monomeric or polymerized collagen type I). Osteocytic cells were also subjected to MYO9B regulation through Slit-Robo signaling. Further, wild-type or Myo9b -/- mice were subjected to a regimen of whole-body vibration (WBV) and changes in bone quality were assessed by micro-CT. Results: Unlike control cells, MYO9B-deficient osteoblastic cells subjected to uniaxial cyclic tensile strain were unable to orient their actin stress fibers perpendicular to the strain. Osteocytic cells in which MYO9B was knocked down exhibited elongated dendrites but were unable to respond normally to treatments that increase dendrite length such as fluid shear stress and Slit-Robo signaling. Osteocytic responses to mechanical stimuli were also found to be dependent on the polymerization state of collagen type I substrates. Wild-type mice responded to WBV with increased bone tissue mineral density values while Myo9b -/- mice responded with bone loss. Discussion: These results demonstrate that MYO9B plays a key role in mechanical stress-induced responses of bone cells in vitro and in vivo.
RESUMEN
BACKGROUND: Studies have found synaptic plasticity damage to be an early marker of Alzheimer's disease (AD). RhoA/ROCK pathway is involved in the regulation of synaptic plasticity. Acupuncture can significantly improve the cognitive state of AD. OBJECTIVE: We aimed to use modern biological technology to detect the changes in synaptic plasticity and RhoA/ROCK pathway in SAMP8 mice, as well as the intervention effect of acupuncture. METHODS: Morris water maze and electrophysiological techniques were used in vivo to detect the changes in spatial memory and LTP of mice. Golgi Cox staining and CASEVIEWER2.1 software were used to quantitatively analyze the changes in the morphology and number of dendritic spines in the hippocampus of mice. The activity of RhoA and ROCK2 in the hippocampus of mice was detected, respectively, by pull-down technique and ELISA. WB technique was used to detect the protein expression of ROCK2 and phosphorylation level of MLC2, LIMK2, and CRMP2 in the hippocampus of mice. RESULTS: The neurobehavior and synaptic plasticity of 8-month-old SAMP8 mice were found to be significantly impaired. Acupuncture could improve the spatial learning and memory ability of SAMP8 mice, and partially prevent the reduction in the number of spines on the secondary branches of the apical dendrites in the hippocampus and the attenuation of LTP. The RhoA/ROCK pathway was significantly activated in the hippocampus of 8-month-old SAMP8 mice, and acupuncture had an inhibitory effect on it. CONCLUSION: Acupuncture can improve synaptic plasticity by inhibiting the abnormal activation of the RhoA/ROCK pathway, and improve the spatial learning and memory ability of AD, so as to achieve the purpose of treating AD.
Asunto(s)
Terapia por Acupuntura , Enfermedad de Alzheimer , Plasticidad Neuronal , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/uso terapéutico , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/uso terapéuticoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Zhuidu Formula (ZDF) is composed of triptolide, cinobufagin and paclitaxel, which are the active ingredients of Tripterygium wilfordii Hook. F, dried toad skin and Taxus wallichiana var. chinensis (Pilg) Florin, respectively. Modern pharmacological studies show that triptolide, cinobufagin, and paclitaxel are well-known natural compounds that exert anti-tumor effects by interfering with DNA synthesis, inducing tumor cell apoptosis, and inhibiting the dynamic balance of the tubulin. However, the mechanism by which the three compounds inhibit triple-negative breast cancer (TNBC) metastasis is unknown. OBJECTIVE: The objective of this investigation was to examine the inhibitory essences of ZDF on the metastasis of TNBC and elucidate its potential mechanism. MATERIALS AND METHODS: Cell viability of triptolide (TPL), cinobufagin (CBF), and paclitaxel (PTX) on MDA-MB-231 cells was assessed employing a CCK-8 assay. The drug interactions of the three drugs on MDA-MB-231 cells were determined in vitro utilizing the Chou-Talalay method. MDA-MB-231 cells were identified for migration, invasion and adhesion in vitro through the implementation of the scratch assay, transwell assay and adhesion assay, respectively. The formation of cytoskeleton protein F-actin was detected by immunofluorescence assay. The expressions of MMP-2 and MMP-9 in the supernatant of the cells were determined by ELISA analysis. The Western blot and RT-qPCR were employed to explore the protein expressions associated with the dual signaling pathways of RhoA/ROCK and CDC42/MRCK. The anti-tumor efficacy of ZDF in vivo and its preliminary mechanism were investigated in the mouse 4T1 TNBC model. RESULTS: The results demonstrated that ZDF could significantly reduce the viability of the MDA-MB-231 cell, and the combination index (CI) values of actual compatibility experimental points were all less than 1, demonstrating a favorable synergistic compatibility relationship. It was found that ZDF reduces RhoA/ROCK and CDC42/MRCK dual signaling pathways, which are responsible for MDA-MB-231cell migration, invasion, and adhesion. Additionally, there has been a significant reduction in the manifestation of cytoskeleton-related proteins. Furthermore, the expression levels of RhoA, CDC42, ROCK2, and MRCKß mRNA and protein were down-regulated. ZDF significantly decreased the protein expressions of vimentin, cytokeratin-8, Arp2 and N-WASP, and inhibited actin polymerization and actomyosin contraction. Furthermore, MMP-2 and MMP-9 levels in the high-dose ZDF group were decreased by 30% and 26%, respectively. ZDF significantly reduced the tumor volume and protein expressions of ROCK2 and MRCKß in tumor tissues without eliciting any perceptible alterations in the physical mass of the mice, and the reduction was more pronounced than that of the BDP5290 treated group. CONCLUSION: The current investigation demonstrates that ZDF exhibits a proficient inhibitory impact on TNBC metastasis by regulating cytoskeletal proteins through the dual signaling pathways of RhoA/ROCK and CDC42/MRCK. Furthermore, the findings indicate that ZDF has significant anti-tumorigenic and anti-metastatic characteristics in breast cancer animal models.
Asunto(s)
Medicina Tradicional China , Proteína Quinasa de Distrofia Miotónica , Invasividad Neoplásica , Paclitaxel , Transducción de Señal , Neoplasias de la Mama Triple Negativas , Quinasas Asociadas a rho , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Transducción de Señal/efectos de los fármacos , Quinasas Asociadas a rho/metabolismo , Proteína Quinasa de Distrofia Miotónica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Etnofarmacología , Paclitaxel/administración & dosificación , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Células MDA-MB-231 , Adhesión Celular/efectos de los fármacos , Humanos , Animales , Ratones , Metástasis de la Neoplasia/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Sinergismo Farmacológico , Metaloproteinasas de la Matriz/metabolismo , Actinas/metabolismo , Procesos de Crecimiento Celular/efectos de los fármacosRESUMEN
BACKGROUND: The Chinese herbal formula Chaihujia Longgu Muli Decoction (CD) has a good antiepileptic effect, but its mechanisms remain unclear. Therefore, in this study we explored the molecular mechanisms of CD against epilepsy. METHODS: Twelve-day-old SD rats were randomly divided into a normal group, model group, valproic acid group, and CD high, medium, and low groups. Except for the normal group, the other groups were given an intraperitoneal injection of pentylenetetrazol (PTZ) to establish epilepsy models, and the Racine score was applied for model judgment. After 14 consecutive days of dosing, the Morris water maze test was performed. Then, hippocampal Nissl staining and immunofluorescence staining were performed, and synaptic ultrastructure was observed by transmission electron microscopy (TEM). RhoA/ROCK signaling pathway proteins were detected. RESULTS: In PTZ model rats, the passing times were reduced, and the escape latency was prolonged in the Morris water maze test. Nissl staining showed that some hippocampal neurons swelled and ruptured, Nissl bodies in the cytoplasm were significantly reduced, and neurons were lost. Immunofluorescence detection revealed that the expression of PSD95 and SYP was significantly reduced. Electron microscopy results revealed that the number of synapses in hippocampal neurons was significantly reduced and the postsynaptic membrane length was significantly reduced. Western blot analysis showed that the RhoA/ROCK signaling pathway was activated, while SYP, SPD95, and PTEN expression was significantly decreased. After treatment with CD, neurobehavioral abnormalities and neuronal damage caused by epileptic seizures were improved. CONCLUSION: CD exerted an antiepileptic effect by inhibiting the activation of the RhoA/ROCK signaling pathway.
Asunto(s)
Anticonvulsivantes , Epilepsia , Animales , Ratas , Anticonvulsivantes/farmacología , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Pentilenotetrazol/farmacología , Ratas Sprague-Dawley , Convulsiones , Transducción de Señal , Quinasas Asociadas a rho/metabolismoRESUMEN
BACKGROUND: We previously found that total flavones of Rhododendron (TFR) protected against the cerebral ischemia/reperfusion (I/R) injury. But the detailed mechanism is not clear. Recent research revealed that reactive astrocytes were divided into A1 and A2 phenotypes for their morphological and functional remodeling and neurotoxic- vs-neuroprotective effect on the injury of the central nervous system (CNS). PURPOSE: The present study was undertaken to explore the role and mechanism of TFR on the phenotypic change of astrocytes following cerebral I/R in vivo and oxygen glucose deprivation/re-oxygenation (OGD/R) in vitro. STUDY DESIGN AND METHODS: We tested the expression of astrocytes marker glial fibrillary acidic protein (GFAP), A1 astrocytes marker C3 protein and A2 astrocytes marker S100a10, as well as the BrdU/GFAP-positive cells, GFAP/S100a10-positive cells and GFAP/C3-positive cells in mice hippocampal tissues to evaluate the phenotypic change of astrocytes. Besides, we assessed the change of astrocyte phenotypes following OGD/R in vitro. RESULTS: We found that mice cerebral I/R promoted the astrocytes proliferation of both A1 and A2 phenotypes in hippocampal tissues. While treatment with TFR could promote the proliferation of A2 astrocytes but inhibit the A1 astrocytes proliferation in mice hippocampal tissues, suggesting that TFR could accelerate the astrocytes transformation into A2 subtype following cerebral I/R. Whereas, in OGD/R model of astrocytes, we found that TFR inhibited the proliferation of both A1 and A2 astrocytes. Besides, we found that TFR could up-regulate the release of cystathionine ß-synthase (CBS)-produced hydrogen sulfide (H2S) and inhibit RhoA/Rho kinase pathway, and revealed that the inhibitory effect of TFR on astrocytes proliferation could be blocked by aminooxyacetic acid (AOAA), an CBS inhibitor. Furthermore, TFR could ameliorate the mice cerebral I/R injury and the OGD/R-induced astrocytic damage. CONCLUSION: These findings suggested that TFR could affect the transformation of astrocytes subtypes following cerebral I/R, which may be related to up-regulation of CBS-produced H2S and subsequent inhibition of RhoA/ROCK pathway.
Asunto(s)
Isquemia Encefálica , Flavonas , Rhododendron , Animales , Ratones , Astrocitos , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Cistationina betasintasa/metabolismo , Cistationina betasintasa/farmacología , Flavonas/farmacología , Oxígeno/metabolismo , Rhododendron/metabolismoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: "Qi deficiency-blood stasis-water retention syndrome" was the most frequent syndrome among heart failure(HF) patients according to Traditional Chinese Medicine (TCM) theory. Xinfuli Granule (XG) was constructed on the basis of classical formula "Baoyuan decoction" to enhance the function of nourishing Qi, activating blood and removing water retention. XG treatment has obtained clinical effect on HF patients. AIM OF THE STUDY: The regulation of XG on energy metabolism of HF was investigated with special focus on endoplasmic reticulum stress (ERS) and mitochondrial function. MATERIALS AND METHODS: Components of XG was acquired by UPLC/Q-TOF-MS Analysis, left anterior descending ligation(LAD)-induced HF rats model and hypoxia-ischemia(H-I)-induced H9c2 cells model were constructed to evaluate the effect of XG treatment. Cardiac function was evaluated by echocardiographic parameters, energy metabolism was evaluated by metabolites and ATP/ADP/AMP levels in blood samples, cardiomyocyte morphology and myocardial fibrosis were assessed by HE staining and Masson staining, mitochondrial ultrastructure was observed under Transmission Electron Microscope, viability and apoptosis rate of H9c2 cells was detected by cell counting kit-8 reaction and flow cytometry analysis, respectively. Mitochondrial membrane potential (MMP) of H9c2 cells was observed by JC-1 kit under fluorescent microscope, expression of peroxisome-proliferator-activated receptor (PPAR)-coactivator (PGC1α), ERS-related genes and RHOA/ROCK pathway were analysed by Quantitative Real-time PCR (RT-qPCR) and Western Blot. RESULTS: Here, we showed that XG alleviated cardiac metabolic remodeling and stimulated ATP production through elevated expression of PGC1α in HF rats. XG also helped recover mitochondrial deformation and decrease apoptosis rate accompanied by an increase of the Bcl2/Bax ratio and the mitochondrial membrane potential in hypoxia-ischemia (H-I) H9c2 cells. In addition, we found that XG downregulated ERS-related proteins ATF4, CHOP, Phospho-eIF2α, and Phospho-PERK, and suppressed the RHOA/ROCK pathway, which served as a potential mediator of ERS. CONCLUSIONS: we found that XG improved energy production by alleviating mitochondrial injury and inhibiting ERS in heart failures mediated by the RHOA/ROCK pathway.
Asunto(s)
Insuficiencia Cardíaca , Ratas , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos , Apoptosis , Mitocondrias/metabolismo , Estrés del Retículo Endoplásmico , Hipoxia/metabolismo , Adenosina Trifosfato/metabolismo , Agua/farmacologíaRESUMEN
BACKGROUND: Nonsteroidal anti-inflammatory drugs are used to relieve sciatica, but their effects are not satisfactory. PURPOSE: This study aimed to explore the therapeutic effects of ferulic acid on sciatica. METHODS: Thirty-two SD rats were randomly divided into 4 groups, i.e., sham operation group, chronic constriction injury (CCI) group, mecobalamin group, and ferulic acid group. We conducted behavioural tests, ELISA, PCR, Western blots, and immunofluorescence analysis. Specific inhibitors were used in cell experiments to explore the related mechanisms. RESULTS: Thermal hyperalgesia was induced after CCI operation, and ferulic acid relieved thermal hyperalgesia. In addition, ferulic acid decreased the IL1ß, IL6, TNF-α, and CRP mRNA levels; the IBA-1, iNOS, IL1ß, RhoA, RhoA-GTP, COX2, Rock1, TRPV1, TRPA1, and p-p38MAPK levels in dorsal root ganglion (DRG) neurons; and the LPS, CRP, substance P (SP), and prostaglandin E2 (PGE2) levels in serum, and these levels were higher in the CCI group. In the cell experiments, LPS induced M1 polarization of GMI-R1 cells via the RhoA/Rock pathway. Ferulic acid attenuated LPS-induced M1 polarization by decreasing the levels of M1 polarization markers, including IL1ß, IL6, TNF-α, iNOS, and CD32, and increased M2 polarization by increasing the levels of M2 polarization markers, including CD206 and Arg-1. LPS treatment clearly increased the iNOS, IL1ß, RhoA, Rock1, Rock2 and p-p38 MAPK levels and reduced Arg-1 expression, and ferulic acid reversed these changes. CONCLUSION: Ferulic acid can inhibit peripheral sensitization by reducing the levels of inflammatory factors, TRPA1 and TRPV1 through the RhoA/p38 MAPK pathway to alleviate sciatica.
Asunto(s)
Ciática , Animales , Antiinflamatorios , Ácidos Cumáricos , Ciclooxigenasa 2 , Dinoprostona , Guanosina Trifosfato , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Interleucina-6 , Lipopolisacáridos , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Ciática/tratamiento farmacológico , Sustancia P , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por MitógenosRESUMEN
OBJECTIVE: To observe the effect of electroacupuncture (EA) of "Tianshu"(ST25) and "Shangjuxu"(ST37)on gastrointestinal motility, psychological abnormality and expression of RhoA and ROCK protein in rats with diarrhea predominant irritable bowel syndrome (IBS-D), so as to explore its underlying mechanism in improving IBS-D. METHODS: Thirty-six male rats were randomly and equally divided into control, model, EA and medication groups (n=9 in each group). The IBS-D model with psychological abnormality was established by gavage of dinitrobenzene sulfonic acid (DNBS) + chronic restraint stress. EA (2 Hz/100 Hz, 0.3 mA) was applied to bilateral ST25 and ST37 for 20 min, once a day for 7 days. Rats of the medication group received gavage of pinaverium bromide solution (15 mg/kg), once a day for 7 days. The rats' food intake in 24 h, body mass and colonic contraction waves were recorded. The anhedonia-related behavior was measured using the sucrose consumption test. The elevated plus maze test (the open-arm residence time ratio) was used to assess the anxiety-like behavior. The small intestinal propulsion rate test was used to assess the intestinal motility. The expression levels of RhoA and ROCK proteins in the colonic tissue were measured by Western blot. RESULTS: After modeling, the body mass, food consumption, sucrose preference index, the open-arm residence time ratio andlatency of colonic contraction waves were significantly decreased (P<0.05), and the number of contraction waves, intestinal propulsive rate, and the expression levels of RhoA and ROCK proteins considerably increased (P<0.01ï¼P<0.05) in the model group relevant to the control group. Following the interventions, the decrease of body mass, food consumption, sucrose preference index, open-arm residence time ratio and latency of contraction waves, and the increase of the contraction waves, intestinal propulsive rate, and the expression levels of RhoA and ROCK proteins were all reversed by both EA and medication (P<0.05ï¼P<0.01). The effect of EA was significantly superior to that of medication in increasing the sucrose pre-ference index (P<0.05). CONCLUSION: EA can improve both colonic motility and psychological disorders in IBS-D rats with psychological disorder, which may be related to its function in down-regulating the expression of colonic RhoA and ROCK proteins.
Asunto(s)
Electroacupuntura , Síndrome del Colon Irritable , Puntos de Acupuntura , Animales , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/terapia , Masculino , Ratas , Ratas Sprague-Dawley , SacarosaRESUMEN
Triple-negative breast cancer is an aggressive subtype of breast cancer with poor clinical outcomes and poor prognosis. Hesperetin is an active component extracted from Citrus fruits and Traditional Chinese Medicine has a wide range of pharmacological effects. Here, we assessed the anti-migration and anti-invasive effects and explored inhibitory mechanisms of hesperetin on metastasis of human triple negative breast cancer MDA-MB-231 cells. Cell viability experiments revealed that 200 µM hesperetin has a clear inhibitory effect on MDA-MB-231 cells. TGF-ß1 treatment induces apparent tumor progression in MDA-MB-231 cells including aberrant wound-healing and invasion ability, which is effectively suppressed by hesperetin co-treatment. Additionally, hesperetin inhibited the TGF-ß1-mediated actin stress fiber formation. Western blot results showed that hesperetin suppressed the TGF-ß1-mediated (i) activation of Fyn, (ii) phosphorylation of paxillin at Y31, Y88, and Y118 sites, (iii) the increased expression of RhoA, and (iv) activation of Rho-kinase. We demonstrated the increased interaction of Fyn with paxillin and RhoA protein in the TGF-ß1-induced metastasis of MDA-MB-231 cells. Small interfering RNA Fyn inhibited phosphorylation of paxillin (Y31) and activation of Rho-kinase induced by TGF-ß1. In conclusion, hesperetin has a significant inhibitory effect on migration and invasion of MDA-MB-231 cells induced by TGF-ß1, which might be attributed to inhibiting the Fyn/paxillin/RhoA pathway.
Asunto(s)
Hesperidina , Paxillin , Proteínas Proto-Oncogénicas c-fyn , Neoplasias de la Mama Triple Negativas , Proteína de Unión al GTP rhoA , Línea Celular Tumoral , Movimiento Celular , Femenino , Hesperidina/farmacología , Humanos , Paxillin/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proteína de Unión al GTP rhoA/metabolismoRESUMEN
Chronic heart failure (CHF) is one of the most common chronic diseases with increasing incidence and mortality. Liquiritigenin (LQG) is shown to protect mice from cardiotoxicity. However, its underlying mechanism remains unclear. Our study aimed to reveal the role of ARHGAP18 in LQG-mediated cardioprotective effects in CHF. In the current study, CHF cell model and rat model were established by the application of doxorubicin (DOX). The reactive oxygen species (ROS) level and cell apoptosis were determined by flow cytometry. The cardiac function of rats was evaluated by measuring left ventricular systolic pressure, left ventricular end diastolic pressure, and serum level of lactate dehydrogenase and brain natriuretic peptide. The expression of active RhoA was elevated and that of ARHGAP18 was decreased in DOX-induced CHF cell model. ARHGAP18 could reduce DOX-induced RhoA activation, ROS elevation, and cell apoptosis. Meanwhile, the knockdown of ARHGAP18 could promote the activation of RhoA, the level of ROS, and the rate of cell apoptosis, which could be reversed by the application of RhoA inhibitor. LQG promoted the expression of ARHGAP18 and exerted similar effects of ARHGAP18 in CHF cell model. The application of LQG could also reverse the effects mediated by ARHGAP18 knockdown. Moreover, LQG significantly improved cardiac function and ameliorated DOX-induced cardiotoxicity of CHF rats. In conclusion, LQG could alleviate DOX-induced CHF via promoting ARHGAP18 and suppressing RhoA/ROCK1 pathway. LQG was a potential agent for CHF treatment.
Asunto(s)
Flavanonas/farmacología , Proteínas Activadoras de GTPasa/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Regulación hacia Abajo , Doxorrubicina/toxicidad , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/genética , Técnicas de Silenciamiento del Gen , Glycyrrhiza/química , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Medicina Tradicional China , Plantas Medicinales , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismoRESUMEN
Increasing evidence suggests that in vitro fertilization (IVF) may be associated with an increased risk of developing obesity and metabolic diseases later in life in the offspring. Notably, the addition of melatonin to culture medium may improve embryo development and prevent cardiovascular dysfunction in IVF adult mice. This study aimed to determine if melatonin supplementation in the culture medium can reverse impaired glucose metabolism in IVF mice offspring and the underlying mechanisms. Blastocysts used for transfer were generated by natural mating (control group) or IVF with or without melatonin (10-6 M) supplementation (mIVF and IVF group, respectively) in clinical-grade culture media. Here, we first report that IVF decreased hepatic expression of Fbxl7, which was associated with impaired glucose metabolism in mice offspring. Melatonin addition reversed the phenotype by up-regulating the expression of hepatic Fbxl7. In vitro experiments showed that Fbxl7 enhanced the insulin signaling pathway by degrading RhoA through ubiquitination and was up-regulated by transcription factor Foxa2. Specific knockout of Fbxl7 in the liver of adult mice, through tail intravenous injection of recombinant adeno-associated virus, impaired glucose tolerance, while overexpression of hepatic Fbxl7 significantly improved glucose tolerance in adult IVF mice. Thus, the data suggest that Fbxl7 plays an important role in maintaining glucose metabolism of mice, and melatonin supplementation in the culture medium may rescue the long-term risk of metabolic diseases in IVF offspring.
Asunto(s)
Melatonina , Animales , Blastocisto , Medios de Cultivo , Suplementos Dietéticos , Fertilización In Vitro , Glucosa , Melatonina/farmacología , RatonesRESUMEN
Epithelial cell proliferation has been demonstrated to be a critical modality for mucosal repair after gastrointestinal mucosal injury. This research aimed to investigate the effect of total ginsenosides upon the proliferation of intestinal epithelial cells (IEC-6), and elucidate its potential mechanisms through polyamine-regulated pathway including the expression of proliferation-related proteins. Total ginsenosides (PGE3) were extracted from Panax ginseng, a Chinese herbal medicine, whose chromatogram was obtained by high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD). The cell proliferation, cell cycle distribution and the level of c-Myc, RhoA, Cdk2 proteins were detected to determine the effects of PGE3 at 25, 50 and100 mg/l doses on IEC-6. Furthermore, rats model of intestinal mucosal injury were induced by the subcutaneous injection of indomethacin, and the effect of Panax ginseng aqueous extracts (PGE1) on intestinal mucosal injury was observed. PGE3 could promote IEC-6 cell proliferation, reduce the proportion of G0/G1 phase cells and elevate the proportion of G2/M + S phase cells, and revert the proliferation and cell cycle arrest induced by DFMO (DL-a-difluoromethylornithine, an inhibitor of polyamines synthesis). PGE3 exposure enhanced the level of c-Myc, RhoA and Cdk2 proteins, and reversed the inhibition of these proteins expression induced by DFMO. The results of gross and pathological scores showed administration of PGE1 significantly alleviated intestinal mucosal injury of rats. Our findings indicate that total ginsenosides promoted the IEC-6 proliferation presumably via its regulation on cell cycle and the expression of proliferation-related proteins regulated by polyamines, and provided a novel perspective for exploring the repair effect of Panax ginseng upon gastrointestinal mucosal injury.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Naoluoxintong (NLXT) is a traditional Chinese Medicine (TCM) prescription that is clinically used in the treatment of ischemic stroke (IS). However, its therapeutic mechanism remains unclear. AIM OF THE STUDY: To obtain the mechanism of NLXT by observing the protective effects of NLXT on the NogoA/RhoA/Rock pathway in a rat model of IS by regulating DNA methylation. MATERIALS AND METHODS: Rats were divided into five groups using a random number table: normal group, model group, NLXT group, blocker group I (NLXT + SGI-1027) and blocker group II (NLXT + Y27632). The right middle cerebral artery occlusion-reperfusion (MCAO/R) rat model was made, and the regional cerebral blood flow (rCBF) of each group was detected using laser Doppler. The methylation levels of CpG sites of neurite outgrowth inhibitor protein-A (Nogo-A), Nogo receptor (NgR), ras homolog gene family member A (RhoA) and rho-associated coiled-coil protein kinase 2 (ROCK2) genes in rat brain tissue were detected using the bisulfite method. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect NogoA, RhoA, NgR1, NgR2 and ROCK2 mRNA expression in rat brain tissue. NogoA, RhoA, NgR1, NgR2 and ROCK2 proteins were detected using immunoblotting in rat brain tissue. RESULTS: After the modeling of middle cerebral artery occlusion (MCAO), neurological deficit test was made to ensure the success of the modeling. At each time point after surgery, the rCBF of the other groups decreased compared with the normal group (P < 0.01 or P < 0.05). Meanwhile, the rCBF increased in blocker group I as well as blocker group II after 3 days (P < 0.05). There were differences in the DNA methylation sites of NogoA, RhoA, NgR and ROCK2 genes between the model group and the NLXT group (P < 0.05). Compared with the normal group, NogoA, NgR1, NgR2, RhoA and ROCK2 gene expression in the model group increased observably (P < 0.01). In comparison with the model group, NogoA and NgR1 gene expression in the blocker group II was prominently observed on the 1st day. NogoA, NgR1, NgR2, RhoA and ROCK2 gene expression remarkably reduced (P < 0.01) on the 3rd and 7th days. Compared with the normal group, NogoA, RhoA, NgR1, NgR2 and ROCK2 protein expression in the model group increased observably (P < 0.01). In comparison with the model group, NogoA, RhoA, NgR1, NgR2 and ROCK2 protein expression in the other groups declined prominently (P < 0.01). CONCLUSION: NLXT can reduce the DNA methylation level of NogoA pathway after IS, thus inhibit the expression of NogoA/RhoA/ROCK pathway from producing anti-cerebral ischemia pharmacological effect.