Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38398618

RESUMEN

Introduction: Adaptogens are a group of plants that exhibit complex, nonspecific effects on the human body, increasing its ability to adapt, develop resilience, and survive in stress conditions. They are found in many traditional medicinal systems and play a key role in restoring the body's strength and stamina. Research in recent years has attempted to elucidate the mechanisms behind their pharmacological effects, but it appears that these effects are difficult to define precisely and involve multiple molecular pathways. Neuroinflammation: In recent years, chronic inflammation has been recognized as one of the common features of many central nervous system disorders (dementia and other neurodegenerative diseases, depression, anxiety, ischemic stroke, and infections). Because of the specific nature of the brain, this process is called neuroinflammation, and its suppression can result in an improvement of patients' condition and may promote their recovery. Adaptogens as anti-inflammatory agents: As has been discovered, adaptogens display anti-inflammatory effects, which suggests that their application may be broader than previously thought. They regulate gene expression of anti- and proinflammatory cytokines (prostaglandins, leukotriens) and can modulate signaling pathways (e.g., NF-κB). Aim: This mini-review aims to present the anti-neuroinflammatory potential of the most important plants classified as adaptogens: Schisandra chinensis, Eleutherococcus senticosus, Rhodiola rosea and Withania somnifera.


Asunto(s)
Extractos Vegetales , Rhodiola , Humanos , Extractos Vegetales/farmacología , Enfermedades Neuroinflamatorias , Adaptación Fisiológica , Transducción de Señal , FN-kappa B/farmacología
2.
J Neural Transm (Vienna) ; 131(3): 203-212, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38347175

RESUMEN

Cognitive impairment, depression and (mental) fatigue represent the most frequent neuropsychiatric symptoms of the post-COVID syndrome. Neuroinflammation, oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological mechanisms underlying these symptoms. Attempts to treat post-COVID-associated cognitive impairment and fatigue with different drugs available for other diseases have not yet been successful. One probable explanation could be that these drugs work by one specific mechanism of action only and not in a broad multi-target way. Therefore, they will not address the broad pathophysiological spectrum possibly responsible for cognitive impairment, depression and fatigue in post-COVID syndrome. Notably, nearly all drugs currently under investigation for fatigue in post-COVID syndrome are rather addressing one single target instead of the several pathomechanisms underlying this condition. Contrary to this approach, herbal drugs often consist of many different ingredients with different pharmacological properties and pharmacological targets. Therefore, these drugs might be a promising approach for the treatment of the broad symptomatic presentation and the pathophysiological mechanisms of cognitive impairment and fatigue following a SARS-CoV-2 infection. Of these herbal drugs, extracts of Ginkgo biloba and Rhodiola rosea probably are the best investigated candidates. Their broad pharmacological spectrum in vitro and in vivo includes anti-oxidative, anti-inflammatory, antidepressant as well as properties reducing cognitive impairment and fatigue. In several studies, both drugs showed positive effects on physical and mental fatigue and impaired cognition. Moreover, depressive symptoms were also reduced in some studies. However, even if these results are promising, the data are still preliminary and require additional proof by further studies.


Asunto(s)
COVID-19 , Disfunción Cognitiva , Rhodiola , Humanos , Ginkgo biloba , COVID-19/complicaciones , SARS-CoV-2 , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología
3.
J Diet Suppl ; 21(4): 495-511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213037

RESUMEN

Premenstrual syndrome is a common disorder in women of reproductive age characterized by a variety of cyclical symptoms with a great impact on their lifestyle. Available pharmacological options include both antidepressants and oral contraceptives, both of which have side effects, are expensive and not always effective. Vitamins, minerals and plant extracts have been proven to alleviate the symptomatology of the premenstrual syndrome. For this reason, the purpose of this study was to test the effectiveness of a commercial phytotherapeutic dietary supplement (PREMEN-CALM®: γ-aminobutyric acid, Rhodiola rosea L., Vitex agnus-castus, vitamin B6 and melatonin) as an alternative treatment for this condition. A randomized, double-blind, and placebo-controlled pilot study was performed. Participants (n = 42) were assessed before and after 3 months of taking the supplement (n = 21) or the placebo (n = 21). Outcome measures include antioxidant and inflammatory biomarkers, body composition, subjective sleep quality, mood state profile, quality of life, and certain characteristics of the menstrual cycle. The within-group analysis revealed a significant improvement in the total antioxidant status (1.49 ± 0.34 vs reference value 1, p = 0.002), mood state profile (p = 0.02), and affective symptoms (p = 0.01) in the women receiving the commercial phytotherapeutic dietary supplement PREMEN-CALM®. On the contrary, the between-group analysis showed no statistical differences, suggesting a plausible placebo effect. The phytotherapeutic supplement PREMEN-CALM® might be effective in treating or alleviating the symptoms of the premenstrual syndrome without adverse events. Integrative medicine approaches in the clinical practice may help improve the health of women suffering from this and other gynecological conditions.


Asunto(s)
Antioxidantes , Suplementos Dietéticos , Melatonina , Extractos Vegetales , Síndrome Premenstrual , Calidad de Vida , Vitex , Adulto , Femenino , Humanos , Adulto Joven , Afecto/efectos de los fármacos , Antioxidantes/uso terapéutico , Método Doble Ciego , Medicamentos Herbarios Chinos , Melatonina/uso terapéutico , Melatonina/administración & dosificación , Ciclo Menstrual/efectos de los fármacos , Fitoterapia , Proyectos Piloto , Extractos Vegetales/uso terapéutico , Síndrome Premenstrual/tratamiento farmacológico , Calidad del Sueño , Resultado del Tratamiento , Vitamina B 6/uso terapéutico
4.
Molecules ; 28(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37959831

RESUMEN

Rhodiola rosea L. (RRL) is a popular plant in traditional medicine, and Rosavin, a characteristic ingredient of RRL, is considered one of the most important active ingredients in it. In recent years, with deepening research on its pharmacological actions, the clinical application value and demand for Rosavin have been steadily increasing. Various routes for the extraction and all-chemical or biological synthesis of Rosavin have been gradually developed for the large-scale production and broad application of Rosavin. Pharmacological studies have demonstrated that Rosavin has a variety of biological activities, including antioxidant, lipid-lowering, analgesic, antiradiation, antitumor and immunomodulation effects. Rosavin showed significant therapeutic effects on a range of chronic diseases, including neurological, digestive, respiratory and bone-related disorders during in vitro and vivo experiments, demonstrating the great potential of Rosavin as a therapeutic drug for diseases. This paper gives a comprehensive and insightful overview of Rosavin, focusing on its extraction and synthesis, pharmacological activities, progress in disease-treatment research and formulation studies, providing a reference for the production and preparation, further clinical research and applications of Rosavin in the future.


Asunto(s)
Extractos Vegetales , Rhodiola , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Disacáridos/farmacología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
5.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569669

RESUMEN

The roots and rhizomes of Rhodiola rosea L. (Crassulaceae), which is widely growing in Northern Europe, North America, and Siberia, have been used since ancient times to alleviate stress, fatigue, and mental and physical disorders. Phenolic compounds: phenylpropanoids rosavin, rosarin, and rosin, tyrosol glucoside salidroside, and tyrosol, are responsible for the biological action of R. rosea, exerting antioxidant, immunomodulatory, anti-aging, anti-fatigue activities. R. rosea extract formulations are used as alternative remedies to enhance mental and cognitive functions and protect the central nervous system and heart during stress. Recent studies indicate that R. rosea may be used to treat diabetes, cancer, and a variety of cardiovascular and neurological disorders such as Alzheimer's and Parkinson's diseases. This paper reviews the beneficial effects of the extract of R. rosea, its key active components, and their possible use in the treatment of chronic diseases. R. rosea represents an excellent natural remedy to address situations involving decreased performance, such as fatigue and a sense of weakness, particularly in the context of chronic diseases. Given the significance of mitochondria in cellular energy metabolism and their vulnerability to reactive oxygen species, future research should prioritize investigating the potential effects of R. rosea main bioactive phenolic compounds on mitochondria, thus targeting cellular energy supply and countering oxidative stress-related effects.


Asunto(s)
Terapias Complementarias , Rhodiola , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Enfermedad Crónica
6.
Chem Biol Interact ; 380: 110540, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37169278

RESUMEN

The biological effects of Rhodiola rosea extracts and one of its major constituents, salidroside, were evaluated for their capacity to induce hormesis/hormetic effects. The findings indicate that the Rhodiola rosea extracts and salidroside commonly induce hormetic dose responses within a broad range of biological models, cell types and across a broad range of endpoints, with particular emphasis on longevity and neuroprotective endpoints. This paper represents the first integrative documentation and assessment of Rhodiola rosea extracts and salidroside induction of hormetic effects. These findings have important biomedical applications and should have an important impact with respect to critical study design, dose selection and other experimental features.


Asunto(s)
Extractos Vegetales , Rhodiola , Extractos Vegetales/farmacología , Hormesis , Longevidad , Neuroprotección
7.
Mol Nutr Food Res ; 67(12): e2300015, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37082899

RESUMEN

SCOPE: Salidroside (SA) is an active compound derived from Rhodiola rosea and is widely used in healthcare foods. However, the underlying mechanism and its specific role in regulating the gut microbial community during exercise (Ex) remains unknown. METHODS AND RESULTS: Mice are subjected to a weight-loaded swimming test (WST) Ex to determine how gut microbiota affects the antifatigue activity of SA. The SA-treated group mice (100 mg kg-1 .bw.) display a significant increase in swimming time compared to the control group (26.2 versus 10.5 min, p < 0.01), as well as an increase in respiratory enzymatic activities after swimming. The respiratory enzymatic activities are significantly higher in the SA-treated group than in the RS (regular rest) group after swimming. The bacteria profiles in the Ex + SA group change significantly with higher species diversity and abundance. Receiver operating characteristic (ROC) curves of Alistipes, Rikenellaceae, Parabacteroides, Candidatus Arthromitus, and Lactobacillus indicate a high diagnostic utility to distinguish SA treatment. Microbial function analysis shows that SA may improve Ex-induced fatigue by modulating energy metabolism-related processes. CONCLUSIONS: SA demonstrates antifatigue effects on various levels of regulating energy metabolism and microbial composition, providing insights into the underlying mechanisms of SA as a natural prebiotic.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Fenoles/farmacología , Glucósidos/farmacología , Extractos Vegetales/farmacología
8.
J Funct Biomater ; 14(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36976074

RESUMEN

Atopic dermatitis (AD) is the most common heterogeneous skin disease. Currently, effective primary prevention approaches that hamper the occurrence of mild to moderate AD have not been reported. In this work, the quaternized ß-chitin dextran (QCOD) hydrogel was adopted as a topical carrier system for topical and transdermal delivery of salidroside for the first time. The cumulative release value of salidroside reached ~82% after 72 h at pH 7.4, while in vitro drug release experiments proved that QCOD@Sal (QCOD@Salidroside) has a good, sustained release effect, and the effect of QCOD@Sal on atopic dermatitis mice was further investigated. QCOD@Sal could promote skin repair or AD by modulating inflammatory factors TNF-α and IL-6 without skin irritation. The present study also evaluated NIR-II image-guided therapy (NIR-II, 1000-1700 nm) of AD using QCOD@Sal. The treatment process of AD was monitored in real-time, and the extent of skin lesions and immune factors were correlated with the NIR-II fluorescence signals. These attractive results provide a new perspective for designing NIR-II probes for NIR-II imaging and image-guided therapy with QCOD@Sal.

9.
Comb Chem High Throughput Screen ; 26(12): 2238-2246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36740798

RESUMEN

AIM: To study the effect of Rhodiola Rosea injection on cardiac function and the reninangiotensin- aldosterone system (RASS) in rats with chronic heart failure. BACKGROUND: Rhodiola Rosea injection, a traditional Chinese medication for relieving blood stasis and improving blood circulation, is an excellent therapeutic for treating coronary heart disease-angina pectoris. Rhodiola Rosea injection's major component, salidroside, protects the cardiovascular system. But there isn't much first-hand evidence about how injectable Rhodiola Rosea affects heart failure. OBJECTIVES: In this study, a rat model of heart failure was established, and the effect of Rhodiola rosea injection on myocardial cell morphology, cardiac function, and ventricular remodelling in rats with heart failure was investigated. METHODS: 66 SD male rats were selected; 10 were randomly selected as a blank control group, and 56 were treated intraperitoneally with doxorubicin (4 g/g). After 6 weeks, all animals had LVEF 60%. Established a heart failure model. Each group had 14 rats: model control, low-dose, mediumdose, and high-dose Rhodiola Rosea injection. The 2 mL/kg of Rhodiola Rosea injection was injected into the tail vein once a day for 2 weeks. Both the blank and control groups received normal daily saline. After 2 weeks, the echocardiographic index, RASS-related index, and serum BNP level were assessed in all rats, and myocardial tissue morphology was observed. MiRNA423-5p, miRNA499-5p, and miRNA210-3p were extracted from peripheral blood. Rhodiola rosea injection on its expression was compared to healthy control rats. RESULTS: 6 mL/kg Rhodiola Rosea injection lowered LVEDV and LVESV while increasing LVEF and LVFS. Injections of 6 mL/kg Rhodiola Rosea reduce plasma levels of miR-210-3p, miR-423- 5p, miRNA-499, and BNP in heart failure model rats. The 6 mL/kg Rhodiola Rosea injection can restore the RASS indexes of heart failure rats to the level of the normal group. CONCLUSION: The present study offers preliminary evidence supporting the use of Rhodiola Rosea injection in the treatment of heart failure and offers a solid foundation for clinical off-label medication use.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , Rhodiola , Ratas , Masculino , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico
10.
Molecules ; 28(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36838523

RESUMEN

Planar chromatography has recently been combined with six different effect-directed assays for three golden root (Rhodiola rosea L.) samples. However, the profiles obtained showed an intense tailing, making zone differentiation impossible. The profiling was therefore improved to allow for the detection of individual bioactive compounds, and the range of samples was extended to 15 commercial golden root products. Further effect-directed assays were studied providing information on 15 different effect mechanisms, i.e., (1) tyrosinase, (2) acetylcholinesterase, (3) butyrylcholinesterase, (4) ß-glucuronidase, and (5) α-amylase inhibition, as well as endocrine activity via the triplex planar yeast antagonist-verified (6-8) estrogen or (9-11) androgen screen, (12) genotoxicity via the planar SOS-Umu-C bioassay, antimicrobial activity against (13) Gram-negative Aliivibrio fischeri and (14) Gram-positive Bacillus subtilis bacteria, and (15) antioxidative activity (DPPH• radical scavengers). Most of the golden root profiles obtained were characteristic, but some samples differed substantially. The United States Pharmacopeia reference product showed medium activity in most of the assays. The six most active compound zones were further characterized using high-resolution mass spectrometry, and the mass signals obtained were tentatively assigned to molecular formulae. In addition to confirming the known activities, this study is the first to report that golden root constituents inhibit butyrylcholinesterase (rosin was tentatively assigned), ß-glucuronidase (rosavin, rosarin, rosiridin, viridoside, and salidroside were tentatively assigned), and α-amylase (stearic acid and palmitic acid were tentatively assigned) and that they are genotoxic (hydroquinone was tentatively assigned) and are both agonistic and antagonistic endocrine active.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Butirilcolinesterasa/farmacología , Acetilcolinesterasa/química , Extractos Vegetales/química , Cromatografía en Capa Delgada/métodos , Espectrometría de Masas , Bacillus subtilis , Bioensayo , Glucuronidasa
11.
Nutrients ; 15(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36771289

RESUMEN

Multi-level studies have shown that Rhodiola rosea (RHO) and Caffeine (CAF) have the potential to be nutritional supplements to enhance physical performance in resistance exercise-untrained and -trained subjects. This study examined the synergistic effects of RHO (262.7 mg/kg for rats and 2.4 g for volunteers) and CAF (19.7 mg/kg for rats and 3 mg/kg for volunteers) supplementation on improving physical performance in rats, resistance exercise-untrained volunteers and resistance exercise-trained volunteers. Rats and volunteers were randomly grouped into placebo, CAF, RHO and CAF+RHO and administered accordingly with the nutrients during the training procedure, and pre- and post-measures were collected. We found that RHO+CAF was effective in improving forelimb grip strength (13.75%), erythropoietin (23.85%), dopamine (12.65%) and oxygen consumption rate (9.29%) in the rat model. Furthermore, the current results also indicated that the combination of RHO+CAF significantly increased the bench press one-repetition maximum (1RM) (16.59%), deep squat 1RM (15.75%), maximum voluntary isometric contraction (MVIC) (14.72%) and maximum repetitions of 60% 1RM bench press (22.15%) in resistance exercise-untrained volunteers. Additionally, despite the excellent base level of the resistance exercise-trained volunteers, their deep squat 1RM and MVIC increased substantially through the synergistic effect of RHO and CAF. In conclusion, combined supplementation of RHO+CAF is more beneficial in improving the resistance exercise performance for both resistance exercise-untrained and -trained volunteers. The present results provide practical evidence that the synergies of RHO and CAF could serve as potential supplementary for individuals, especially resistance exercise-trained subjects, to ameliorate their physical performances effectively and safely.


Asunto(s)
Cafeína , Músculo Esquelético , Extractos Vegetales , Entrenamiento de Fuerza , Rhodiola , Animales , Humanos , Ratas , Cafeína/farmacología , Suplementos Dietéticos , Método Doble Ciego , Fuerza Muscular , Resistencia Física , Proyectos Piloto , Rhodiola/química , Condicionamiento Físico Animal , Extractos Vegetales/farmacología
12.
Fitoterapia ; 166: 105439, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36716798

RESUMEN

Rhodiola rosea roots and rhizomes hold an important place in the folk medicines of Russia, Scandinavia, Mongolia, and China as a health supplement for stimulating the nervous system, enhancing physical and mental performances, and nowadays they constitute the active ingredient in many popular commercial preparations sold worldwide as food additives, pharmaceutical remedies, and drinks. This study was aimed at providing a detailed phytochemical characterization of the Rhodiola 5%, a commercially available extract of R. rosea roots, and resulted in the characterization of 18 secondary metabolites, including 13 polyphenols and 6 terpenoids, and in the discovery of the new rhodiosidin (5), the first R. rosea metabolite to show both terpenoid and cinnamoyl moieties. The 5-lipoxygenase inhibiting activity of the main components was characterized and disclosed that rosiridin (6), kenposide A and rosavins are mainly responsible for this activity of the extract.


Asunto(s)
Rhodiola , Rhodiola/química , Estructura Molecular , Extractos Vegetales/química , Raíces de Plantas/química , Antiinflamatorios/farmacología , Terpenos/análisis
13.
Molecules ; 28(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36677969

RESUMEN

Rhodiola rosea (L.) is a valuable source of nutrients. Nutrients have adaptogenic, immunostimulating, nootropic, anti-inflammatory and anti-cancer properties. Natural deep eutectic solvents (NADES) consisting of choline chloride and malonic, malic, tartaric or citric acids have been first used to extract biologically active substances from R. rosea. The total content of polyphenols has been determined by the Folin-Ciocalteu method for all extracts. Antioxidant activity has been determined by the phosphomolybdate method, and antiradical activity has been determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Rosavin concentration has been determined by high-performance liquid chromatography (HPLC). Extraction kinetics has been evaluated regarding the effectiveness of NADES with each other and with reference solvents (water and 50% ethanol) has been made. Extraction conditions have been optimized according to the Box-Behnken design of the experiment. The optimal parameters of the extraction process have been established. The antibacterial activity of NADES-based extracts against bacterial cultures of Micrococcus luteus, Pseudomonas fluorescens, and Bacillus subtilis has been studied.


Asunto(s)
Disolventes Eutécticos Profundos , Rhodiola , Solventes/química , Extractos Vegetales/química , Agua/química , Polifenoles
14.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(3): 199-204, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36062784

RESUMEN

Objective: To investigate the effects of different prescription compositions of traditional Chinese medicine and its different extraction methods of compound formula extracts on hypoxia tolerance in mice, in order to preferably select their prescription compositions and preparation extraction methods. Methods: Male BALB/c mice were randomly divided into 6 groups: blank control group, compound danshen group, compound Rhodiola Rosea alcohol-water extract group (Rhodiola rosea, Astragali Radix, Polygonati Rhizoma, Lycii Fructus), compound Rhodiola Rosea water extract group, compound Astragalus alcohol-water extract group (Astragali Radix, Polygonati Rhizoma, Lycii Fructus) and compound Astragalus water extract group, 30 mice in each group. Each group was administered continuously by gavage for 10 d. The blank group was gavaged with sterilized injection water. The mice in the other groups were treated with 0.15 g/kg of compound danshen, 3 g/kg of compound Rhodiola Rosea alcohol-water extract or water extract, and 1.7 g/kg of compound Astragalus alcohol-water extract or water extract, respectively. Each group was subjected to normobaric hypoxia tolerance test, sodium nitrite toxicity survival test and acute cerebral ischemia-hypoxia test 1 h after the last gavage, and the mice brain tissues were used to determine the activity of antioxidant enzymes and metabolites related to oxidative stress. Results: Compared with the blank control group, in normobaric hypoxia tolerance test, the survival time of mice in the compound danshen group and the compound Astragalus alcohol-water extract group and water extraction group was prolonged significantly (P<0.01), and the number of open-mouth gasping after cerebral ischemia and hypoxia was increased significantly (P<0.05). There was no statistical difference in survival time after sodium nitrite injection in each group. Compared with the blank control group, the activities of T-AOC, SOD, GSH and CAT were increased significantly (P<0.05, P<0.01) and the content of MDA was decreased significantly (P<0.01) in the compound Astragalus water extract group. Compared with the compound danshen group, the activities of SOD, CAT and GSH were increased significantly (P<0.01, P<0.05) and the content of MDA was decreased significantly (P<0.05). Conclusion: Compound Astragalus water extraction has the best effect of hypoxia tolerance, compound Rhodiola Rosea can eliminate Rhodiola rosea and consists of Astragali Radix, Polygonati Rhizoma, Lycii Fructus and its extraction method is water extraction.


Asunto(s)
Planta del Astrágalo , Rhodiola , Animales , Etanol , Hipoxia , Masculino , Ratones , Extractos Vegetales/farmacología , Nitrito de Sodio , Superóxido Dismutasa/metabolismo , Agua
15.
Antibiotics (Basel) ; 11(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36140000

RESUMEN

Campylobacter jejuni is a major foodborne pathogen and the leading cause of bacterial gastroenteritis, i.e., campylobacteriosis. Besides searching for novel antimicrobials, identification of new targets for their action is becoming increasingly important. Rhodiola rosea has long been used in traditional medicine. Ethanolic extracts from the roots and rhizomes of the plant contain a wide range of bioactive compounds with various pharmacological activities. In this study, cultivated plant materials have been used, i.e., "Mattmark" and "Rosavine". Through optimized protocols, we obtained fractions of the initial ethanolic extracts rich in most important bioactive compounds from R. rosea, including salidroside, rosavins, proanthocyanidins (PACs), and flavonoids. The antimicrobial activity in relation to the chemical composition of the extracts and their fractions was studied with an emphasis on C. jejuni AI-2-mediated intercellular signaling. At concentration 15.625 mg/L, bioluminescence reduction rates varied from 27% to 72%, and the membrane remained intact. Fractions rich in PACs had the strongest antimicrobial effect against C. jejuni, with the lowest minimal inhibitory concentrations (MICs) (M F3 40%: 62.5 mg/L; R F3 40%: 250 mg/L) and the highest intercellular signaling reduction rates (M F3 40%: 72%; R F3 40%: 65%). On the other hand, fractions without PACs were less effective (MICs: M F5 PVP: 250 mg/L; R F5 PVP: 1000 mg/L and bioluminescence reduction rates: M F5 PVP: 27%; R F5 PVP: 43%). Additionally, fractions rich in flavonoids had strong antimicrobial activity (MICs: M F4 70%: 125 mg/L; R F4 70%: 250 mg/L and bioluminescence reduction rates: M F4 70%: 68%; R F4 70%: 50%). We conclude that PACs and flavonoids are crucial compound groups responsible for the antimicrobial activity of R. rosea roots and rhizomes in C. jejuni.

16.
Nutrients ; 14(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079857

RESUMEN

The phenolic profiles, antioxidant activity, antiproliferative property and the underlying molecular mechanisms of cell apoptosis of Rhodiola rosea free phenolic (RFE) were analyzed in this work. Overall, Rhodiola rosea rhizome phenolic extract (RE) contained Rhodiola rosea rhizome free phenolic extract (RFE) and Rhodiola rosea rhizome bound phenolic extract (RBE). Compared with RBE, RFE contained higher phenolic contents and possessed stronger antioxidant activity. High-performance liquid chromatography (HPLC) results demonstrated that the main phenolics of were epigallocatechin (EGC), epigallocatechin gallate (EGCG), gallic acid (GA) and catechin. Gas chromatography-mass spectrometry (GC-MS) analysis found that Rhodiola rosea L. was rich in volatile phytochemicals. In addition, many types of vitamin E and a few kinds of carotenoids were found in Rhodiola rosea. In addition, the main compounds in RFE (GA, EGC, EGCG) and RFE all exhibited excellent antiproliferative activity, indicating the antiproliferative activity of RFE was partly attributed to the synergy effects of the main compounds. Further study confirmed that RFE could block 16.99% of HepG2 cells at S phase and induce 20.32% programmed cell death compared with the control group. Specifically, RFE dose-dependently induced cell apoptosis and cell cycle arrest via modulating the p53 signaling pathway including up-regulation of the expression of p53 and Bax while down-regulation of the Bcl-2, cyclin D1 and CDK4 levels. Therefore, RFE exhibited the potential of being developed as an auxiliary antioxidant and a therapeutic agent for cancer.


Asunto(s)
Rhodiola , Antioxidantes/farmacología , Fenoles/análisis , Fenoles/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/química , Rhodiola/química , Proteína p53 Supresora de Tumor
17.
Molecules ; 27(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35745023

RESUMEN

Rhodiola rosea L. has a long history of use in traditional medicine to stimulate the nervous system, treat stress-induced fatigue and depression, enhance physical performance and work productivity and treat gastrointestinal ailments and impotence. Apart from its well-established traditional use, a significant number of publications on the clinical efficacy of various R. rosea preparations can be found in the literature. The majority of these studies are related to the efficacy of R. rosea in terms of cognitive functions and mental performance, including various symptoms of life-stress, fatigue and burnout. The beneficial effects of this medicinal plant on enhancing physical performance have also been evaluated in professional athletes and non-trained individuals. Moreover, even though most evidence originates from pre-clinical trials, several clinical studies have additionally demonstrated the remediating effects of R. rosea on cardiovascular and reproductive health by addressing non-specific stress damage and reversing or healing the disrupted physiologies and disfunctions. Overall, in accordance with its aim, the results presented in this review provide an encouraging basis for the clinical efficacy of R. rosea preparations in managing various aspects of stress-induced conditions.


Asunto(s)
Plantas Medicinales , Rhodiola , Fatiga/tratamiento farmacológico , Humanos , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Estrés Psicológico/tratamiento farmacológico
18.
Front Pharmacol ; 12: 736198, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803686

RESUMEN

Background: Rhodiola rosea L. has long been used as traditional medicines in Europe and Asia to treat a variety of common conditions and diseases including Alzheimer's disease, cardiovascular disease, cognitive dysfunctions, cancer, and stroke. Previous studies reported that Rhodiola rosea L. and its components (RRC) improve ischemia stroke in animal models. Here, we conducted a systematic review and meta-analysis for preclinical studies to evaluate the effects of RRC and the probable neuroprotective mechanisms in ischemic stroke. Methods: Studies of RRC on ischemic stroke animal models were searched in seven databases from inception to Oct 2021. The primary measured outcomes included the neural functional deficit score (NFS), infarct volume (IV), brain water content, cell viability, apoptotic cells, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells, B-cell lymphoma-2 (Bcl-2) level and tumor necrosis factor-α (TNF-α) level. The secondary outcome measures were possible mechanisms of RRC for ischemic stroke. All the data were analyzed via RevMan version 5.3. Results: 15 studies involving 345 animals were identified. Methodological quality for each included studies was accessed according to the CAMARADES 10-item checklist. The quality score of studies range from 1 to 7, and the median was 5.53. Pooled preclinical data showed that compared with the controls, RRC could improve NFS (Zea Longa (p < 0.01), modified neurological severity score (mNSS) (p < 0.01), rotarod tests (p < 0.01), IV (p < 0.01), as well as brain edema (p < 0.01). It also can increase cell viability (p < 0.01), Bcl-2 level (p < 0.01) and reduce TNF-α level (p < 0.01), TUNEL-positive cells (p < 0.01), apoptotic cells (p < 0.01). Conclusion: The findings suggested that RRC can improve ischemia stroke. The possible mechanisms of RRC are largely through antioxidant, anti-apoptosis activities, anti-inflammatory, repressing lipid peroxidation, antigliosis, and alleviating the pathological blood brain barrier damage.

19.
Pharm Biol ; 59(1): 1181-1190, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34465263

RESUMEN

CONTEXT: The traditional medicine 2036 Specialty-Qiangxin recipe (2036S-QXR) has been widely used in China to improve cardiac function, prevent stroke, and strengthen the immune system. However, its long-term toxicity remains unknown. OBJECTIVE: The present study evaluates the long-term toxicity of 2036S-QXR in rats. MATERIALS AND METHODS: 2036S-QXR (0.6, 1.2, and 2.4 g/kg body weight per day) was orally administered for 26 weeks to Wistar rats, while the rats in the control group received distilled water. The effects on urinary, hematological, biochemical, and histopathological parameters were investigated during the study period. RESULTS: No significant changes in all tested parameters were observed in the 0.6 and 1.2 g/kg groups, compared with the control group (p < 0.05). Higher levels of alanine aminotransferase (46.00 ± 12.85 vs. 25.40 ± 3.36) and aspartate aminotransferase (152.40 ± 32.52 vs. 111.40 ± 18.78) were observed after 13 weeks in the female rats in the 2.4 g/kg group compared with the control group (p < 0.05), but these returned to the control levels after the recovery period (p > 0.05). Several cases displayed the presence of urine protein (3/7 males and 3/7 females) and mild lesions in the kidney (10/20) and thymus (5/20) in the 2.4 g/kg group, without significant changes compared with the control group (p > 0.05). DISCUSSION AND CONCLUSIONS: The present study shows that 2036S-QXR does not cause long-term toxicity, supporting its therapeutic use. To further determine the optimal doses, future studies should test more doses and include more animals in each group.


Asunto(s)
Medicamentos Herbarios Chinos/toxicidad , Medicina Tradicional China/efectos adversos , Pruebas de Toxicidad , Animales , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Femenino , Masculino , Medicina Tradicional China/métodos , Ratas , Ratas Wistar , Factores de Tiempo
20.
Nutrients ; 13(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445021

RESUMEN

Adaptogens are synthetic compounds (bromantane, levamisole, aphobazole, bemethyl, etc.) or plant extracts that have the ability to enhance the body's stability against physical loads without increasing oxygen consumption. Extracts from Panax ginseng, Eleutherococcus senticosus, Rhaponticum carthamoides, Rhodiola rosea, and Schisandra chinensis are considered to be naturally occurring adaptogens and, in particular, plant adaptogens. The aim of this study is to evaluate the use of plant adaptogens in the past and now, as well as to outline the prospects of their future applications. The use of natural adaptogens by humans has a rich history-they are used in recovery from illness, physical weakness, memory impairment, and other conditions. About 50 years ago, plant adaptogens were first used in professional sports due to their high potential to increase the body's resistance to stress and to improve physical endurance. Although now many people take plant adaptogens, the clinical trials on human are limited. The data from the meta-analysis showed that plant adaptogens could provide a number of benefits in the treatment of chronic fatigue, cognitive impairment, and immune protection. In the future, there is great potential to register medicinal products that contain plant adaptogens for therapeutic purposes.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Fitoterapia , Extractos Vegetales/uso terapéutico , Estrés Fisiológico/efectos de los fármacos , Adolescente , Adulto , Animales , Femenino , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Masculino , Persona de Mediana Edad , Fitoterapia/historia , Extractos Vegetales/efectos adversos , Extractos Vegetales/historia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA