Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int Immunopharmacol ; 132: 112027, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38603860

RESUMEN

BACKGROUND AND PURPOSE: Osteoporosis (OP) is a frequent clinical problem for the elderly. Traditional Chinese Medicine (TCM) has achieved beneficial results in the treatment of OP. Ziyuglycoside II (ZGS II) is a major active compound of Sanguisorba officinalis L. that has shown anti-inflammation and antioxidation properties, but little information concerning its anti-OP potential is available. Our research aims to investigate the mechanism of ZGS II in ameliorating bone loss by inflammatory responses and regulation of gut microbiota and short chain fatty acids (SCFAs) in ovariectomized (OVX) mice. METHODS: We predicted the mode of ZGS II action on OP through network pharmacology and molecular docking, and an OVX mouse model was employed to validate its anti-OP efficacy. Then we analyzed its impact on bone microstructure, the levels of inflammatory cytokines and pain mediators in serum, inflammation in colon, intestinal barrier, gut microbiota composition and SCFAs in feces. RESULTS: Network pharmacology identified 55 intersecting targets of ZGS II related to OP. Of these, we predicted IGF1 may be the core target, which was successfully docked with ZGS II and showed excellent binding ability. Our in vivo results showed that ZGS II alleviated bone loss in OVX mice, attenuated systemic inflammation, enhanced intestinal barrier, reduced the pain threshold, modulated the abundance of gut microbiota involving norank_f__Muribaculaceae and Dubosiella, and increased the content of acetic acid and propanoic acid in SCFAs. CONCLUSIONS: Our data indicated that ZGS II attenuated bone loss in OVX mice by relieving inflammation and regulating gut microbiota and SCFAs.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Simulación del Acoplamiento Molecular , Osteoporosis , Ovariectomía , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Femenino , Ratones , Osteoporosis/tratamiento farmacológico , Osteoporosis/inmunología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Saponinas/farmacología , Saponinas/uso terapéutico , Humanos , Citocinas/metabolismo , Farmacología en Red , Inflamación/tratamiento farmacológico
2.
Heliyon ; 10(7): e28435, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560225

RESUMEN

The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.

3.
Phytomedicine ; 128: 155413, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513377

RESUMEN

AIM OF THE STUDY: To evaluate the in vitro and in vivo anti-metastasis efficacy of Jianpi Yangzheng (JPYZ) decoction against gastric cancer (GC) and its potential mechanisms. MATERIALS AND METHODS: The distant metastasis of GC cells administered via tail vein injection was assessed using the pre-metastatic niche (PMN) model. 16S rRNA sequencing and GC-MS/MS were applied to determine the component of the gut microbiota and content of short-chain fatty acids (SCFAs) in feces of mice, respectively. The proportion of myeloid-derived suppressor cells (MDSCs) in the lung was evaluated by flow cytometry and immunofluorescence. Serum or tissue levels of inflammation factors including IL-6, IL-10 and TGF-ß were determined by ELISA or Western blot respectively. RESULTS: Injecting GC cells into the tail vein of mice led to the development of lung metastases and also resulted in alterations in the composition of gut microbiota and the levels of SCFAs produced. Nevertheless, JPYZ treatment robustly impeded the effect of GC cells administration. Mechanically, JPYZ treatment not only prevented the alteration in gut microbiota structure, but also restored the SCFAs content induced by GC cells administration. Specifically, JPYZ treatment recovered the relative abundance of genera Moryella, Helicobacter, Lachnoclostridium, Streptococcus, Tuzzerella, GCA-900066575, uncultured_Lachnospiraceae, Rikenellaceae_RC9_gut_group and uncultured_bacterium_Muribaculaceae to near the normal control levels. In addition, JPYZ abrogated MDSCs accumulation in the lung tissue and blocked inflammation factors overproduction in the serum and lung tissues, which subsequently impede the formation of the immunosuppressive microenvironment. Correlation analysis revealed that the prevalence of Rikenellaceae in the model group exhibited a positive correlation with MDSCs proportion and inflammation factor levels. Conversely, the scarcity of Muribaculaceae in the model group showed a negative correlation with these parameters. This suggests that JPYZ might exert an influence on the gut microbiota and their metabolites, such as SCFAs, potentially regulating the formation of the PMN and consequently impacting the outcome of GC metastasis. CONCLUSION: These findings suggest that GC cells facilitate metastasis by altering the gut microbiota composition, affecting the production of SCFAs, and recruiting MDSCs to create a pro-inflammatory pre-metastatic niche. JPYZ decoction counteracts this process by reshaping the gut microbiota structure, enhancing SCFA production, and inhibiting the formation of the pre-metastatic microenvironment, thereby exerting an anti-metastatic effect.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Neoplasias Pulmonares , Células Supresoras de Origen Mieloide , Neoplasias Gástricas , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Medicamentos Herbarios Chinos/farmacología , Ratones , Células Supresoras de Origen Mieloide/efectos de los fármacos , Línea Celular Tumoral , Ácidos Grasos Volátiles/metabolismo , Ratones Endogámicos BALB C , Humanos , ARN Ribosómico 16S , Masculino , Heces/microbiología , Femenino
4.
Front Microbiol ; 15: 1320500, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525084

RESUMEN

Introduction: Postmenopausal osteoporosis (PMOP) is a common chronic disease, and the loss of bone density and bone strength after menopause are its main symptoms. Effective treatments for PMOP are still uncertain, but Chinese medicine has some advantages in slowing down bone loss. Shengu granules are often used clinically to treat PMOP. It has been shown to be an effective prescription for the treatment of PMOP, and there is evidence that gut flora may play an important role. However, whether Shengu granules attenuate PMOP by modulating gut flora and related mechanisms remains unclear. Methods: In this study, we mainly examined the bone strength of the femur, the structure of the intestinal microbiota, SCFAs in the feces and the level of FOXP3 cells in the colon. To further learn about the inflammation response, the condition of the mucosa and the level of cytokines in the serum also included in the testing. In addition, to get the information of the protein expression, the protein expression of OPG and RANKL in the femur and the protein expression of ZO-1 and Occludin in the colon were taken into account. Results: The osteoporosis was significantly improved in the SG group compared with the OVX group, and the diversity of intestinal flora, the secretion level of SCFAs and the expression level of FOXP3 were significantly increased compared with the OVX group. In terms of inflammatory indicators, the intestinal inflammation scores of the SG group was significantly lower than those in the OVX group. Additionally, the serum expression levels of IL-10 and TGF-ß in the SG group were significantly increased compared with the OVX group, and the expression levels of IL-17 and TNF-α were significantly decreased compared with the OVX group. In terms of protein expression, the expression levels of ZO-1, Occluding and OPG were significantly increased in the SG group compared with the OVX group, and the expression level of RANKL was significantly decreased compared with the OVX group. Discussion: Shengu granules treatment can improve the imbalance of intestinal flora, increase the secretion of SCFAs and the expression of FOXP3, which reduces the inflammatory response and repairs the intestinal barrier, as well as regulates the expression of OPG/RANKL signaling axis. Overall, Shengu granules ameliorate ovariectomy-induced osteoporosis by the gut-bone-immune axis.

5.
J Agric Food Chem ; 72(14): 7845-7860, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38501913

RESUMEN

Ginseng is widely recognized for its diverse health benefits and serves as a functional food ingredient with global popularity. Ginsenosides with a broad range of pharmacological effects are the most crucial active ingredients in ginseng. This study aimed to derive ginseng glucosyl oleanolate (GGO) from ginsenoside Ro through enzymatic conversion and evaluate its impact on liver cancer in vitro and in vivo. GGO exhibited concentration-dependent HepG2 cell death and markedly inhibited cell proliferation via the MAPK signaling pathway. It also attenuated tumor growth in immunocompromised mice undergoing heterograft transplantation. Furthermore, GGO intervention caused a modulation of gut microbiota composition by specific bacterial populations, including Lactobacillus, Bacteroides, Clostridium, Enterococcus, etc., and ameliorated SCFA metabolism and colonic inflammation. These findings offer promising evidence for the potential use of GGO as a natural functional food ingredient in the prevention and treatment of cancer.


Asunto(s)
Ingredientes Alimentarios , Microbioma Gastrointestinal , Ginsenósidos , Neoplasias Hepáticas , Panax , Ratones , Animales , Ginsenósidos/farmacología , Ginsenósidos/metabolismo , Panax/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico
6.
Cell Rep ; 43(3): 113865, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412096

RESUMEN

Microbial metabolites that can modulate neurodegeneration are promising therapeutic targets. Here, we found that the short-chain fatty acid propionate protects against α-synuclein-induced neuronal death and locomotion defects in a Caenorhabditis elegans model of Parkinson's disease (PD) through bidirectional regulation between the intestine and neurons. Both depletion of dietary vitamin B12, which induces propionate breakdown, and propionate supplementation suppress neurodegeneration and reverse PD-associated transcriptomic aberrations. Neuronal α-synuclein aggregation induces intestinal mitochondrial unfolded protein response (mitoUPR), which leads to reduced propionate levels that trigger transcriptional reprogramming in the intestine and cause defects in energy production. Weakened intestinal metabolism exacerbates neurodegeneration through interorgan signaling. Genetically enhancing propionate production or overexpressing metabolic regulators downstream of propionate in the intestine rescues neurodegeneration, which then relieves mitoUPR. Importantly, propionate supplementation suppresses neurodegeneration without reducing α-synuclein aggregation, demonstrating metabolic rescue of neuronal proteotoxicity downstream of protein aggregates. Our study highlights the involvement of small metabolites in the gut-brain interaction in neurodegenerative diseases.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Caenorhabditis elegans/metabolismo , Animales Modificados Genéticamente/metabolismo , Propionatos/farmacología , Propionatos/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas/metabolismo , Suplementos Dietéticos , Intestinos , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo
7.
ACS Chem Neurosci ; 15(5): 1010-1025, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38382546

RESUMEN

Alteration of gut microbiota and microbial metabolites such as short-chain fatty acids (SCFAs) coexisted with stress-generated brain disorders, including depression. Herein, we investigated the effect of SCFAs in a treatment-resistant depression (TRD) model of rat. Rats were exposed to chronic-unpredictable mild stress (CUMS) and repeated adrenocorticotropic hormone (ACTH) injections to generate a TRD-like phenotype. The cecal contents of these animals were engrafted into healthy-recipient rats and allowed to colonize for 4 weeks (TRD-FMT group). Blood, brain, colon, fecal, and cecal samples were collected for molecular studies. Rats exposed to CUMS + ACTH showed TRD-like phenotypes in sucrose-preference (SPT), forced swim (FST), and elevated plus maze (EPM) tests. The TRD-FMT group also exhibited anxiety- and depression-like behaviors. Administration of SCFAs (acetate, propionate, and butyrate at 67.5, 25, and 40 mM, respectively) for 7 days exerted robust antidepressant and antianxiety effects by restoring the levels of SCFAs in plasma and fecal samples, and proinflammatory cytokines (TNF-α and IL-6), serotonin, GABA, norepinephrine, and dopamine in the hippocampus and/or frontal cortex of TRD and TRD-FMT animals. SCFAs treatment elevated the expression of free-fatty acid receptors 2/3, BDNF, doublecortin, and zonula-occludens, and reduced the elevated plasma levels of kynurenine and quinolinic acid and increased mucus-producing goblet cells in TRD and TRD-FMT animals. In 16S sequencing results, decreased microbial diversity in TRD rats corresponds with differences in the genus of Faecalibacterium, Anaerostipes, Allobaculum, Blautia, Peptococcus, Rombustia, Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-002, Solobacterium, Subdolibacterium, and Eubacterium ventriosum. SCFAs may impart beneficial effects via modulation of tryptophan metabolism, inflammation, neurotransmitters, and microbiota-gut-brain axis in TRD rats.


Asunto(s)
Ansiedad , Depresión , Ratas , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Ácidos Grasos Volátiles , Fenotipo , Hormona Adrenocorticotrópica , Suplementos Dietéticos , Estrés Psicológico/metabolismo
8.
Appl Microbiol Biotechnol ; 108(1): 40, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38175236

RESUMEN

Folic acid deficiency is common worldwide and is linked to an imbalance in gut microbiota. However, based on model animals used to study the utilization of folic acid by gut microbes, there are challenges of reproducibility and individual differences. In this study, an in vitro fecal slurry culture model of folic acid deficiency was established to investigate the effects of supplementation with 5-methyltetrahydrofolate (MTHF) and non-reduced folic acid (FA) on the modulation of gut microbiota. 16S rRNA sequencing results revealed that both FA (29.7%) and MTHF (27.9%) supplementation significantly reduced the relative abundance of Bacteroidetes compared with control case (34.3%). MTHF supplementation significantly improved the relative abundance of Firmicutes by 4.49%. Notably, compared with the control case, FA and MTHF supplementation promoted an increase in fecal levels of Lactobacillus, Bifidobacterium, and Pediococcus. Short-chain fatty acid (SCFA) analysis showed that folic acid supplementation decreased acetate levels and increased fermentative production of isobutyric acid. The in vitro fecal slurry culture model developed in this study can be utilized as a model of folic acid deficiency in humans to study the gut microbiota and demonstrate that exogenous folic acid affects the composition of the gut microbiota and the level of SCFAs. KEY POINTS: • Establishment of folic acid deficiency in an in vitro culture model. • Folic acid supplementation regulates intestinal microbes and SCFAs. • Connections between microbes and SCFAs after adding folic acid are built.


Asunto(s)
Deficiencia de Ácido Fólico , Microbioma Gastrointestinal , Animales , Humanos , Ácido Fólico , Fermentación , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Ácidos Grasos Volátiles
9.
Mol Nutr Food Res ; 68(4): e2200652, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37937381

RESUMEN

SCOPE: Alzheimer's disease is an age-dependent neurodegenerative disorder. Mounting studies focus on the improvement of advanced cognitive impairment by dietary nutrients. Krill oil (KO), a rich source of DHA/EPA and astaxanthin, is effective in improving cognitive function. The study mainly investigates the protective effects of long-term KO administration on early cognitive impairment. METHODS AND RESULTS: Results show that 2 months KO administration (50 and 100 mg kg-1 BW) can dramatically promote learning and memory abilities. Mechanism studies demonstrate that KO reduces amyloid ß concentration by regulating the amyloidogenic pathway, inhibits neuro-inflammation via regulating TLR4-NLRP3 signaling pathway, and prevents neuron injure. KO supplementation also enhances gut barrier integrity, reduces serum lipopolysaccharide leakage, and alters the gut microbiota by reducing Helicobacteraceae, Lactobacillaceae proportion, increasing Dubosiella and Akkermansia relative abundance. Particularly, a significant increase of isovaleric acid, propionic acid, and acetic acid levels is observed after KO supplementation. Correlation analysis shows that short-chain fatty acids (SCFAs), gut microbiota, and cognitive function are strongly correlated. CONCLUSIONS: The results reveal that KO relieves early mild cognitive impairment possibly for its role in mediating the gut microbiome-SCFAs-brain axis. Thus, KO may provide potential intervention strategies to prevent cognitive impairment in the early stages through the microbiota-gut-brain axis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Euphausiacea , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/prevención & control , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Aceites
10.
J Nutr Biochem ; 123: 109473, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37844767

RESUMEN

Vitamin D (VD) is a steroid hormone that is widely known to play an important role in maintaining mineral homeostasis, and regulating various physiological functions. Our previous results demonstrated that the interruption of VD metabolism caused hyperglycemia in zebrafish. In the present study we further explored the mechanism that VD regulates glucose metabolism by maintaining intestinal homeostasis in zebrafish. Our results showed that the expression of several peptide hormones including gastric inhibitory peptide, peptide YY, and fibroblast growth factor 19 in the intestine decreased, while the expression of sodium glucose cotransporter-1 and gcg was increased in the intestine of the zebrafish fed with the VD3-deficient diet. Consistently, similar results were obtained in cyp2r1-/- zebrafish, in which endogenous VD metabolism is blocked. Furthermore, the results obtained from germ-free zebrafish exhibited that VD-regulated glucose metabolism was partly dependent on the microbiota in zebrafish. Importantly, the transplantation of gut microbiota collected from cyp2r1-/- zebrafish to germ-free zebrafish led to hyperglycemic symptoms in the fish, which were associated with the altered structure and functions of the microbiota in cyp2r1-/- zebrafish. Interestingly, the treatments with acetate or Cetobacterium somerae, a potent acetate producer, lowered the glucose contents whereas augmented insulin expression in zebrafish larvae. Notably, acetate supplementation alleviated hyperglycemia in cyp2r1-/- zebrafish and other diabetic zebrafish. In conclusion, our study has demonstrated that VD modulates the gut microbiota-SCFAs-gastrointestinal hormone axis, contributing to the maintenance of glucose homeostasis.


Asunto(s)
Hiperglucemia , Pez Cebra , Animales , Pez Cebra/metabolismo , Vitamina D/metabolismo , Intestinos/microbiología , Glucosa/metabolismo , Vitaminas/metabolismo , Homeostasis , Acetatos
11.
Microbiol Spectr ; 11(6): e0034423, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37823635

RESUMEN

IMPORTANCE: Methicillin-resistant Staphylococcus aureus (MRSA) colonizes the upper respiratory airways and is resistant to antibiotics. MRSA is a frequently acquired infection in hospital and community settings, including cases of MRSA-induced pneumonia. Multidrug-resistant Staphylococcus aureus and the limited efficacy of antibiotics necessitate alternative strategies for preventing or treating the infection. QingXiaoWuWei decoction (QXWWD) protects against both gut microbiota dysbiosis and MRSA-induced pneumonia. Furthermore, the QXWWD-regulated metabolic remodeling and macrophage gene expression network contribute to its protective effects through the microbiota-short-chain fatty acid axis. The results of this study suggest that QXWWD and its pharmacodynamic compounds might have the potential to prevent and treat pulmonary infections, especially those caused by multidrug-resistant organisms. Our study provides a theoretical basis for the future treatment of pulmonary infectious diseases by manipulating gut microbiota and their metabolites via traditional Chinese medicine.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Microbiota , Infecciones Estafilocócicas , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Ácidos Grasos Volátiles , Expresión Génica
12.
Front Pharmacol ; 14: 1223742, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719865

RESUMEN

Objective: To comprehensively evaluate the effect of acupuncture on gut microbiota, identify specific microbes closely related to the clinical efficacy of acupuncture, and explored the role of short-chain fatty acids (SCFAs). Methods: A randomized placebo-controlled trial was conducted with 80 FC patients and 28 healthy controls (HCs). FC patients randomly received 16 acupuncture (n = 40) or sham acupuncture (n = 40) sessions over 4 weeks; HCs received no treatment. The change in the proportion of patients with mean weekly complete spontaneous bowel movements (CSBMs) was considered as the primary outcome measure. Moreover, the composition and the predictive metabolic function of the gut microbiota from feceal samples were analyzed by 16S rRNA gene sequencing, while feceal SCFAs were identified via gas chromatography-mass spectrometry (GC-MS). Results: Compared to sham acupuncture, acupuncture significantly increased the proportion of CSBM responders, and improved spontaneous bowel movements (SBMs), straining, stool consistency, and quality of life. Moreover, Sequencing of 16S rRNA genes revealed that acupuncture improved ß-diversity and restored the composition of gut microbiota. Specifically, the abundance of beneficial bacteria such as g_Lactobacillus increased while that of pathogenic bacteria such as g_Pseudomonas decreased after acupuncture, which were significantly correlated with alleviated symptoms. Moreover, ten microbes including g_Coprobacter, g_Lactobacillus, and g_Eubacterium_coprostanoligenes_group might be considered acupuncture-specific microbes, and formed a stable interaction network. Additionally, GC-MS analysis indicated that acupuncture increased the content of butyrate acid in the gut, which was positively correlated with an increase in defecation frequency and a decrease in acupuncture-related pathogens. Finally, acupuncture specific-microbes including g_Coprobacter, g_Lactobacillus, g_Pseudomonas, g_Eubacterium_coprostanoligenes_group, g_Erysipelotrichaceae_UCG.003, g_Prevotellaceae_UCG.001, and g_Rolstonia could accurately predict the clinical efficacy of acupuncture (AUC = 0.918). Conclusion: Acupuncture could effectively improve clinical symptoms in FC patients, and was associated with gut microbiota reshaping and increased butyrate acid levels. Moreover, key microbial genera such as g_Coprobacter and g_Lactobacillus was predictive of acupuncture efficacy in treating FC. Future studies are required to validate the causal relationship between key microbial genera and acupuncture clinical efficacy, and should explore further metabolic pathways for designing personalized treatment strategies. Clinical Trial Registration: http://www.chictr.org.cn, Identifier: ChiCTR2100048831.

13.
Food Res Int ; 172: 113163, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689914

RESUMEN

Accumulating evidences strongly support the correlations between the compositions of gut microbiome and therapeutic effects on Type 2 diabetes (T2D). Notably, gut microbes such as Akkermansia muciniphila are found able to regulate microecological balance and alleviate dysmetabolism of mice bearing T2D. In order to search out similarly functional bacteria, bacteriophage MS2 with a good specificity to bacteria carrying fertility (F) factor were used to treat T2D mice. Based on multi-omics analysis of microbiome and global metabolism of mice, we observed that gavage of bacteriophage MS2 and metformin led to a significant increase in the abundance of Corynebacterium glutamicum and A. muciniphila, respectively. Consequently, the gut microbiota were remodeled, leading to variations in metabolites and a substantial increase in short-chain fatty acids (SCFAs). In which, the amount of acetate, propionate, and butyrate presented negative correlations to that of proinflammatory cytokines, which was beneficial to repairing the intestinal barriers and improving their functions. Moreover, main short fatty acid (SCFA) producers exhibited positive interactions, further facilitating the restoration of gut eubiosis. These findings revealed that C. glutamicum and its metabolites may be potential dietary supplements for the treatment of T2D. Moreover, our research contributes to a novel understanding of the underlying mechanism by which functional foods exert their anti-diabetic effects.


Asunto(s)
Corynebacterium glutamicum , Diabetes Mellitus Tipo 2 , Animales , Ratones , Ácidos Grasos Volátiles , Butiratos , Bacterias , Levivirus
14.
Phytother Res ; 37(12): 5958-5973, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776121

RESUMEN

Disturbances in lipid metabolism and dysbiosis of the gut microbiota play an important role in the progression of hyperlipidemia. Previous study indicated that Ilicis Rotundae Cortex possesses anti-hyperlipidemic activity, and rotundic acid (RA) identified as a key active compound to be incorporated into the body. The study aimed to evaluate the anti-hyperlipidemia effects of RA and explored its impact on gut microbiota and lipid metabolism, as well as its possible mechanisms for improving hyperlipidemia. The study methodology included a comprehensive evaluation of the effects of RA on steatosis markers of hyperlipidemia, lipid metabolism, and gut microbiota by assessing biochemical parameters and histopathology, lipidomics, 16S rRNA gene sequencing, and short-chain fatty acid (SCFA) assays. The results showed that RA effectively reduced body weight and the steatosis markers in serum and liver. Moreover, the lipidomic analysis revealed significant changes in plasmatic and hepatic lipid levels, and these were restored by RA. According to the results of 16S rRNA gene sequencing, RA supplementation raised the relative abundance of Bacteroidetes and Proteobacteria while decreasing the relative abundance of Firmicutes. RA significantly boosted the relative abundance of SCFAs by increasing SCFAs-producing bacteria such as Bacteroides, Alloprevotella, Desulfovibrio, etc. In summary, RA could regulate triglyceride metabolism and glycerophospholipid metabolism, restore gut microbiota structure, and increase the relative abundance of SCFAs-producing bacteria to exert its hypolipidemic effects. These findings suggest RA to be a promising therapeutic agent for hyperlipidemia.


Asunto(s)
Microbioma Gastrointestinal , Hiperlipidemias , Ratas , Animales , Metabolismo de los Lípidos , Hiperlipidemias/tratamiento farmacológico , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Bacterias
15.
Nutrients ; 15(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37764746

RESUMEN

The present study assessed the changes in faecal microbial activity in obese Wistar rats fed high-fat or low-fat diets supplemented with various forms of chromium (picolinate or nanoparticles). The 18-week study was divided into two phases: an introductory period (9 weeks; obesity status induction via a high-fat diet) and an experimental period (9 weeks; maintained on a high-fat diet or switched to a low-fat diet and Cr supplementation). During the experimental period (10-18 weeks of feeding), samples of fresh faeces were collected on chosen days. The bacterial enzymatic activity and short-chain fatty acids (SCFAs) concentration were assessed to characterise the dynamism of the changes in faecal microbial metabolic activity under the applied dietary treatments. The results indicated that faecal microbial metabolic activity displayed several adaptation mechanisms in response to modifications in dietary conditions, and a beneficial outcome resulted from a pro-healthy dietary habit change, that is, switching from a high-fat to a low-fat diet. Dietary supplementation with chromium nanoparticles further modulated the aforementioned microbial activity, i.e., diminished the extracellular and total enzymatic activities, while the effect of chromium picolinate addition was negligible. Both the high-fat diet and the addition of chromium nanoparticles reduced SCFA concentrations and increased the faecal pH values.


Asunto(s)
Cromo , Dieta Alta en Grasa , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Ratas Wistar , Ácidos Grasos Volátiles/metabolismo , Obesidad , Suplementos Dietéticos , Heces/microbiología
16.
Antioxidants (Basel) ; 12(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37760063

RESUMEN

An adequate intestinal environment before weaning may contribute to diarrhea predisposition and piglet development. This study evaluates how the dietary supplementation of vitamin E (VE) (100 mg/kg), hydroxytyrosol (HXT) (1.5 mg/kg) or the combined administration (VE + HXT) given to Iberian sows from gestation affects the piglet's faecal characteristics, short chain fatty acids (SCFAs), fatty acid profile or intestinal morphology as indicators of gut health; and quantify the contribution of the oxidative status and colostrum/milk composition to the piglet's SCFAs content and intestinal health. Dietary VE increased isobutyric acid (iC4), butyric acid (C4), isovaleric acid (iC5), and ∑SCFAs, whereas HXT increased iC4 and tended to decrease ∑SCFAs of faeces. Piglets from HXT-supplemented sows also tended to have higher faecal C20:4n-6/C20:2 ratio C22:6 proportion and showed lower occludin gene expression in the duodenum. The combination of both antioxidants had a positive effect on iC4 and iC5 levels. Correlation analyses and regression equations indicate that faecal SCFAs were related to oxidative status (mainly plasma VE) and colostrum and milk composition (mainly C20:2, C20:3, C20:4 n-6). This study would confirm the superiority of VE over HXT supplementation to improve intestinal homeostasis, gut health, and, consequently piglet growth.

17.
Mar Life Sci Technol ; 5(3): 400-414, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37637259

RESUMEN

Many marine bacteria are difficult to culture because they are dormant, rare or found in low-abundances. Enrichment culturing has been widely tested as an important strategy to isolate rare or dormant microbes. However, many more mechanisms remain uncertain. Here, based on 16S rRNA gene high-throughput sequencing and metabolomics technology, it was found that the short-chain fatty acids (SCFAs) in metabolites were significantly correlated with uncultured bacterial groups during enrichment cultures. A pure culture analysis showed that the addition of SCFAs to media also resulted in high efficiency for the isolation of uncultured strains from marine sediments. As a result, 238 strains belonging to 10 phyla, 26 families and 82 species were successfully isolated. Some uncultured rare taxa within Chlorobi and Kiritimatiellaeota were successfully cultured. Amongst the newly isolated uncultured microbes, most genomes, e.g. bacteria, possess SCFA oxidative degradation genes, and these features might aid these microbes in better adapting to the culture media. A further resuscitation analysis of a viable but non-culturable (VBNC) Marinilabiliales strain verified that the addition of SCFAs could break the dormancy of Marinilabiliales in 5 days, and the growth curve test showed that the SCFAs could shorten the lag phase and increase the growth rate. Overall, this study provides new insights into SCFAs, which were first studied as resuscitation factors in uncultured marine bacteria. Thus, this study can help improve the utilisation and excavation of marine microbial resources, especially for the most-wanted or key players. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00187-w.

18.
Chemosphere ; 340: 139969, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37634589

RESUMEN

Tris (2-chloroethyl) phosphate (TCEP) has been widely used, and its health risk has received increasing attention. However, the rare research has been conducted on the effects of TCEP exposure on changes in the structure of the human gut microbiome and metabolic functions. In this experiment, Simulator of the human intestinal microbial ecosystem (SHIME) was applied to explore the influences of TCEP on the human gut bacteria community and structure. The results obtained from high-throughput sequencing of 16S rRNA gene have clearly revealed differences among control and exposure groups. High-dose TCEP exposure increased the Shannon and Simpson indexes in the results of α-diversity of the gut microbiome. At phylum level, Firmicutes occupied a higher proportion of gut microbiota, while the proportion of Bacteroidetes decreased. In the genus-level analysis, the relative abundance of Bacteroides descended with the TCEP exposure dose increased in the ascending colon, while the abundances of Roseburia, Lachnospira, Coprococcus and Lachnoclostridium were obviously correlated with exposure dose in each colon. The results of short chain fatty acids (SCFAs) showed a remarkable effect on the distribution after TCEP exposure. In the ascending colon, the control group had the highest acetate concentration (1.666 ± 0.085 mg⋅mL-1), while acetate concentrations in lose-dose medium-dose and high-doseTCEP exposure groups were 1.119 ± 0.084 mg⋅mL-1, 0.437 ± 0.053 mg⋅mL-1 and 0.548 ± 0.106 mg⋅mL-1, respectively. TCEP exposure resulted in a decrease in acetate and propionate concentrations, while increasing butyrate concentrations in each colon. Dorea, Fusicatenibacter, Kineothrix, Lachnospira, and Roseburia showed an increasing tendency in abundance under TCEP exposure, while they had a negatively correlation with acetate and propionate concentrations and positively related with butyrate concentrations. Overall, this study confirms that TCEP exposure alters both the composition and metabolic function of intestinal microbial communities, to arouse public concern about its negative health effects.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Propionatos , ARN Ribosómico 16S/genética , Clostridiales , Butiratos , Fosfatos
19.
Neoplasia ; 43: 100928, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37579688

RESUMEN

We have previously demonstrated abnormal gut microbial composition in castration-resistant prostate cancer (CRPC) patients, here we revealed the mechanism of gut microbiota-derived short-chain fatty acids (SCFAs) as a mediator linking CRPC microbiota dysbiosis and prostate cancer (PCa) progression. By using transgenic TRAMP mouse model, PCa patient samples, in vitro PCa cell transwell and macrophage recruitment assays, we examined the effects of CRPC fecal microbiota transplantation (FMT) and SCFAs on PCa progression. Our results showed that FMT with CRPC patients' fecal suspension increased SCFAs-producing gut microbiotas such as Ruminococcus, Alistipes, Phascolarctobaterium in TRAMP mice, and correspondingly raised their gut SCFAs (acetate and butyrate) levels. CRPC FMT or SCFAs supplementation significantly accelerated mice's PCa progression. In vitro, SCFAs enhanced PCa cells migration and invasion by inducing TLR3-triggered autophagy that further activated NF-κB and MAPK signalings. Meanwhile, autophagy of PCa cells released higher level of chemokine CCL20 that could reprogramme the tumor microenvironment by recruiting more macrophage infiltration and simultaneously polarizing them into M2 type, which in turn further strengthened PCa cells invasiveness. Finally in a cohort of 362 PCa patients, we demonstrated that CCL20 expression in prostate tissue was positively correlated with Gleason grade, pre-operative PSA, neural/seminal vesical invasion, and was negatively correlated with post-operative biochemical recurrence-free survival. Collectively, CRPC gut microbiota-derived SCFAs promoted PCa progression via inducing cancer cell autophagy and M2 macrophage polarization. CCL20 could become a biomarker for prediction of prognosis in PCa patients. Intervention of SCFAs-producing microbiotas may be a useful strategy in manipulation of CRPC.


Asunto(s)
Autofagia , Bacteroidetes , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Macrófagos , Neoplasias de la Próstata Resistentes a la Castración , Ruminococcus , Veillonellaceae , Ácidos Grasos Volátiles/metabolismo , Progresión de la Enfermedad , Macrófagos/patología , Polaridad Celular , Ruminococcus/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/microbiología , Neoplasias de la Próstata Resistentes a la Castración/patología , Ratones Transgénicos , Bacteroidetes/metabolismo , Veillonellaceae/metabolismo , Trasplante de Microbiota Fecal , Humanos , Masculino , Animales , Ratones
20.
Int J Biol Macromol ; 248: 125785, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451376

RESUMEN

Achyranthes bidentata (A. bidentata) is a famous traditional Chinese medicine (TGM) for treatment osteoporosis. Polysaccharides, a major factor for shaping the gut microbiota, are the primary ingredients of A. bidentata. However, bioactivity of A. bidentata polysaccharide on human gut microbiota (HGM) remains unknown. Here, a homogeneous pectic polysaccharide A23-1 with average molecular weight of 93.085 kDa was extracted and purified from A. bidentata. And A23-1 was compsed of rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose in a molar ratio of 7.26: 0.76: 5.12: 2.54: 23.51: 60.81. GC-MS, partial acid hydrolysis and NMR results indicated the backbone of A23-1 was composed of 1, 2, 4-Rhap and 1, 4-GlapA, while the branches were composed of galactose, arabinose, glucose and glucuronic acid. Further, A23-1 was found to be degraded into monosaccharides and fragments. Taking Bacteroides thetaiotaomicron (BT) as a model, we suggested three polysaccharide utilization loci (PULs) might be involved in the A23-1 degradation. Degraded products generated by BO might not support the growth of probiotics. Besides, acetate and propionate as the main end products were generated by Bacteroides spp. and probiotics utilizing A23-1. These findings suggested A23-1 was possible one of food sources of human gut Bacteroides spp.


Asunto(s)
Achyranthes , Bacteroides thetaiotaomicron , Humanos , Pectinas , Achyranthes/química , Galactosa , Arabinosa/metabolismo , Polisacáridos/química , Bacteroides thetaiotaomicron/metabolismo , Glucosa , Ácido Glucurónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA