Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Environ Toxicol ; 39(7): 3872-3882, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38558324

RESUMEN

Platycodi radix is a widely used herbal medicine that contains numerous phytochemicals beneficial to health. The health and biological benefits of P. radix have been found across various diseases. The utilization of umbilical cord stromal stem cells, derived from Wharton's jelly of the human umbilical cord, has emerged as a promising approach for treating degenerative diseases. Nevertheless, growing evidence indicates that the function of stem cells declines with age, thereby limiting their regenerative capacity. The primary objective in this study is to investigate the beneficial effects of P. radix in senescent stem cells. We conducted experiments to showcase that diminished levels of Lamin B1 and Sox-2, along with an elevation in p21, which serve as indicative markers for the senescent stem cells. Our findings revealed the loss of Lamin B1 and Sox-2, coupled with an increase in p21, in umbilical cord stromal stem cells subjected to a low-dose (0.1 µM) doxorubicin (Dox) stimulation. However, P. radix restored the Dox-damage in the umbilical cord stromal stem cells. P. radix reversed the senescent conditions when the umbilical cord stromal stem cells exposed to Dox-induced reactive oxygen species (ROS) and mitochondrial membrane potential are significantly changed. In Dox-challenged aged umbilical cord stromal stem cells, P. radix reduced senescence, increased longevity, prevented mitochondrial dysfunction and ROS and protected against senescence-associated apoptosis. This study suggests that P. radix might be as a therapeutic and rescue agent for the aging effect in stem cells. Inhibition of cell death, mitochondrial dysfunction and aging-associated ROS with P. radix provides additional insights into the underlying molecular mechanisms.


Asunto(s)
Senescencia Celular , Doxorrubicina , Mitocondrias , Extractos Vegetales , Especies Reactivas de Oxígeno , Cordón Umbilical , Humanos , Especies Reactivas de Oxígeno/metabolismo , Senescencia Celular/efectos de los fármacos , Cordón Umbilical/citología , Cordón Umbilical/efectos de los fármacos , Extractos Vegetales/farmacología , Doxorrubicina/toxicidad , Doxorrubicina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Platycodon/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Cultivadas
2.
Biomed Pharmacother ; 174: 116592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615608

RESUMEN

Multiple epigenetic factors play a regulatory role in maintaining the homeostasis of cutaneous components and are implicated in the aging process of the skin. They have been associated with the activation of the senescence program, which is the primary contributor to age-related decline in the skin. Senescent species drive a series of interconnected processes that impact the immediate surroundings, leading to structural changes, diminished functionality, and heightened vulnerability to infections. Geroprotective medicines that may restore the epigenetic balance represent valid therapeutic alliances against skin aging. Most of them are well-known Western medications such as metformin, nicotinamide adenine dinucleotide (NAD+), rapamycin, and histone deacetylase inhibitors, while others belong to Traditional Chinese Medicine (TCM) remedies for which the scientific literature provides limited information. With the help of the Geroprotectors.org database and a comprehensive analysis of the referenced literature, we have compiled data on compounds and formulae that have shown potential in preventing skin aging and have been identified as epigenetic modulators.


Asunto(s)
Epigénesis Genética , Envejecimiento de la Piel , Humanos , Epigénesis Genética/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/genética , Animales , Piel/metabolismo , Piel/efectos de los fármacos , Medicina Tradicional China/métodos , Sustancias Protectoras/farmacología
3.
Phytomedicine ; 129: 155567, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579644

RESUMEN

BACKGROUND: Sarcopenia, an age-related disease, is characterized by a gradual loss of muscle mass, strength, and function. It has been linked to abnormal organelle function in myotubes, including the mitochondria and endoplasmic reticulum (ER). Recent studies revealed that mitochondria-associated membranes (MAM), the sites connecting mitochondria and the ER, may be implicated in skeletal muscle aging. In this arena, the potential of Polygonatum sibiricum polysaccharide (PSP) emerges as a beacon of hope. PSP, with its remarkable antioxidant and anti-senescence properties, is on the cusp of a therapeutic revolution, offering a promising strategy to mitigate the impacts of sarcopenia. PURPOSE: The objective of this research is to explore the effects of PSP on age-related muscle dysfunction and the underlying mechanisms involved both in vivo and in vitro. METHODS: In this investigation, we used in vitro experiments using D-galactose (D-gal)-induced aging in C2C12 myotubes and in vivo experiments on aged mice. Key indices were assessed, including reactive oxygen species (ROS) levels, mitochondrial function, the expression of aging-related markers, and the key proteins of mitochondria and MAM fraction. Differentially expressed genes (DEGs) related to mitochondria and ER were identified, and bioinformatic analyses were performed to explore underlying mechanisms. Muscle mass and function were determined to evaluate the quantity and quality of skeletal muscle in vivo. RESULTS: PSP treatment effectively mitigated oxidative stress and mitochondrial malfunction caused by D-gal in C2C12 myotubes, preserving mitochondrial fitness and reducing MAM formation. Besides, PSP attenuated D-gal-induced increases in Ca2+ concentrations intracellularly by modulating the calcium-related proteins, which were also confirmed by gene ontology (GO) analysis of DEGs. In aged mice, PSP increased muscle mass and improved grip strength, hanging time, and other parameters while reducing ROS levels and increasing antioxidant enzyme activities in skeletal muscle tissue. CONCLUSION: PSP offers protection against age-associated muscle impairments. The proposed mechanism suggests that modulation of calcium homeostasis via regulation of the MAM results in a favorable functional outcome during skeletal muscle aging. The results of this study highlight the prospect of PSP as a curative intervention for sarcopenia and affiliated pathological conditions, warranting further investigation.


Asunto(s)
Envejecimiento , Calcio , Homeostasis , Músculo Esquelético , Polygonatum , Polisacáridos , Especies Reactivas de Oxígeno , Animales , Polisacáridos/farmacología , Polygonatum/química , Ratones , Homeostasis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Envejecimiento/efectos de los fármacos , Masculino , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Sarcopenia/tratamiento farmacológico , Membranas Mitocondriales/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular , Ratones Endogámicos C57BL , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Antioxidantes/farmacología , Membranas Asociadas a Mitocondrias
4.
Adv Exp Med Biol ; 1446: 203-215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625530

RESUMEN

Aging is often associated with chronic inflammation and declining health. Both veterinarians and owners of aging dogs and cats are interested in nutritional solutions and strategies to prevent signs of age-related disease, increase longevity, and improve quality of life. Physiological decreases in muscle mass, decreased immunity, and a decrease in sense acuity are some of the changes often seen in otherwise healthy senior pets; however, there may also be an increase in risk for pathologies such as renal, cardiovascular, musculoskeletal, and neoplastic diseases. Aging may also lead to cognitive decline and even cognitive dysfunction. Some nutritional strategies that may be helpful with the prevention and treatment of age-related diseases include supplementation with ω3 polyunsaturated fatty acids and antioxidant nutrients that can help modulate inflammation and benefit osteoarthritis, renal disease, cancer, and more. Supplementation with medium-chain triglycerides shows promise in the treatment of canine cognitive dysfunction as these may be metabolized to ketone bodies that are utilized as an alternative energy source for the central nervous system. Additionally, a high intake of dietary phosphorus in soluble and bioavailable forms can lead to renal disease, which is of greater concern in senior pets. There are no published guidelines for nutritional requirements specific to senior pets and as a result, products marketed for senior dogs and cats are highly variable.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Gatos , Perros , Animales , Enfermedades de los Gatos/prevención & control , Calidad de Vida , Enfermedades de los Perros/prevención & control , Envejecimiento , Inflamación
5.
Plant Cell Rep ; 43(5): 125, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647720

RESUMEN

KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metabolómica , Pinellia , Reguladores del Crecimiento de las Plantas , Hojas de la Planta , Transcriptoma , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Pinellia/genética , Pinellia/metabolismo , Pinellia/fisiología , Pinellia/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma/genética , Senescencia de la Planta/genética , Perfilación de la Expresión Génica , Azúcares/metabolismo , Metaboloma/genética , Redes Reguladoras de Genes , Metabolismo de los Hidratos de Carbono/genética
6.
Curr Med Chem ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38644711

RESUMEN

The anti-aging effects of alpha-lipoic acid (αLA), a natural antioxidant synthesized in human tissues, have attracted a growing interest in recent years. αLA is a short- -chain sulfur-containing fatty acid occurring in the mitochondria of all kinds of eukaryotic cells. Both the oxidized disulfide of αLA and its reduced form (dihydrolipoic acid, DHLA) exhibit prominent antioxidant function. The amount of αLA inside the human body gradually decreases with age resulting in various health disorders. Its lack can be compensated by supplying from external sources such as dietary supplements or medicinal dosage forms. The primary objectives of this study were the analysis of updated information on the latest two-decade research regarding the use of αLA from an anti-aging perspective. The information was collected from PubMed, Wiley Online Library, Scopus, ScienceDirect, SpringerLink, Google Scholar, and clinicaltrials.gov. Numerous in silico, in vitro, in vivo, and clinical studies revealed that αLA shows a protective role in biological systems by direct or indirect reactive oxygen/nitrogen species quenching. αLA demonstrated beneficial properties in the prevention and treatment of many age-related disorders such as neurodegeneration, metabolic disorders, different cancers, nephropathy, infertility, and skin senescence. Its preventive effects in case of Alzheimer's and Parkinson's diseases are of particular interest. Further mechanistic and clinical studies are highly recommended to evaluate the wide spectrum of αLA therapeutic potential that could optimize its dietary intake for prevention and alleviation disorders related to aging.

7.
Aging (Albany NY) ; 16(5): 4541-4562, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38428403

RESUMEN

Ningxin-Tongyu-Zishen formula (NTZF) is a clinical experience formula for the treatment of premature ovarian insufficiency (POI) in traditional Chinese medicine (TCM), and the potential mechanism is unknown. For in vivo experiments, POI mouse models (C57BL/6 mice), were constructed by subcutaneous injection of D-galactose (D-gal, 200 mg/kg). After treatment of NTZF (10.14, 20.27, 40.54 g/kg;) or estradiol valerate (0.15 mg/kg), ovarian function, oxidative stress (OS) and protein expression of Sirt1/p53 were evaluated. For in vitro experiments, H2O2 (200 µM) was used to treat KGN to construct ovarian granulosa cells (OGCs) cell senescence model. Pretreatment with NTZF (1.06 mg/mL) or p53 inhibitor (Pifithrin-α, 1 µM) was performed before induction of senescence, and further evaluated the cell senescence, OS, mRNA and protein expression of Sirt1/p53. In vivo, NTZF improved ovarian function, alleviated OS and Sirt1/p53 signaling abnormalities in POI mice. In vitro experiments showed that NTZF reduced the level of OS and alleviated the senescence of H2O2-induced KGN. In addition, NTZF activated the protein expression of Sirt1, inhibited the mRNA transcription and protein expression of p53 and p21. Alleviating OGCs senescence and protecting ovarian function through Sirt1/p53 is one of the potential mechanisms of NTZF in the treatment of POI.


Asunto(s)
Galactosa , Insuficiencia Ovárica Primaria , Humanos , Femenino , Ratones , Animales , Galactosa/toxicidad , Sirtuina 1/genética , Sirtuina 1/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ratones Endogámicos C57BL , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/genética , Células de la Granulosa/metabolismo , Senescencia Celular , ARN Mensajero/metabolismo
8.
Ecotoxicol Environ Saf ; 274: 116232, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493701

RESUMEN

Fine particulate matter (PM2.5) exposure is strongly associated with vascular endothelial senescence, a process implicated in cardiovascular diseases. While there is existing knowledge on the impact of Lycium barbarum polysaccharide (LBP) on vascular endothelial damage, the protective mechanism of LBP against PM2.5-induced vascular endothelial senescence remains unclear. In this study, we investigated the impact of PM2.5 exposure on vascular endothelial senescence and explored the intervention effects of LBP in human umbilical vein endothelial cells (HUVECs). We found that PM2.5 exposure dose-dependently reduced cell viability and proliferation in HUVECs while increasing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Additionally, PM2.5 exposure inhibited the activity of superoxide dismutase (SOD). Notably, PM2.5 exposure induced autophagy impairments and cellular senescence. However, LBP mitigated PM2.5-induced cell damage. Further studies demonstrated that correcting autophagy impairment in HUVECs reduced the expression of the senescence markers P16 and P21 induced by PM2.5. This suggests the regulatory role of autophagy in cellular senescence and the potential of LBP in improving HUVECs senescence. These findings provide novel insights into the mechanisms underlying PM2.5-induced cardiovascular toxicity and highlight the potential of LBP as a therapeutic agent for improving vascular endothelial health.


Asunto(s)
Medicamentos Herbarios Chinos , Peróxido de Hidrógeno , Lycium , Humanos , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno/metabolismo , Material Particulado/metabolismo , Senescencia Celular
9.
Mar Drugs ; 22(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38535468

RESUMEN

The extracts of Corydalis heterocarpa, a salt-tolerant plant, exhibit diverse physiological properties, including anti-inflammatory, anticancer, and antiadipogenic effects. However, the anti-aging effects of C. heterocarpa extract (CHE) on human skin cells have not yet been investigated. In the present study, we determined that CHE inhibited senescence-associated ß-galactosidase (SA-ß-gal)-stained senescent human dermal fibroblasts (HDFs). Furthermore, CHE markedly suppressed the expression of major regulatory proteins involved in senescence, including p53, p21, and caveolin-1. Interestingly, CHE promoted autophagic flux, as confirmed by the formation of microtubule-associated protein 1 light chain 3B (LC3B) puncta and lysosomal activity. Notably, using RNA sequencing (RNA-seq), we showed that CHE selectively regulated the gene expression of leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1), an important regulator of autophagy. The adenosine-monophosphate activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway, which is essential for autophagy regulation, was also modulated by CHE. LRSAM1 depletion not only inhibited LC3B expression but also decreased the autophagy flux induced by CHE. Moreover, the knockdown of LRSAM1 suppressed the reversal of CHE-induced senescence in old HDFs. Collectively, our study has revealed the rejuvenating effects and molecular mechanisms of CHE, suggesting that CHE may be a promising anti-aging agent.


Asunto(s)
Corydalis , Humanos , Autofagia , Piel , Envejecimiento , Extractos Vegetales , Ubiquitina-Proteína Ligasas
10.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474153

RESUMEN

Cell fate instability is a crucial characteristic of aging and appears to contribute to various age-related pathologies. Exploring the connection between bioactive substances and cell fate stability may offer valuable insights into longevity. Therefore, the objective of this study was to investigate the potential beneficial effects of ginseng oligopeptides (GOPs) isolated from Panax ginseng C. A. Meyer at the cellular level. Disruption of homeostasis of human umbilical vein endothelial cells (HUVECs) and PC-12 was achieved by culturing them in the growth medium supplemented with 200 µM of H2O2, and 25, 50, and 100 µg/mL GOPs for 4 h. Then, they were cultured in a H2O2-free growth medium containing different concentration of GOPs. We found that GOP administration retards the oxidative stress-induced cell instability in HUVECs by increasing cell viability, inhibiting the cell cycle arrest, enhancing telomerase (TE) activity, suppressing oxidative stress and an inflammatory attack, and protecting mitochondrial function. Furthermore, we hypothesized that GOPs may promote mitochondrial biosynthesis by upregulating PGC-1α expression. Similarly, GOPs positively regulated cell stability in PC-12; notably, the protective effect of GOPs on PC-12 mainly occurred through the inhibition of autophagic cell death of neuronal cells, while the protective effect on mitochondria was weak. In conclusion, it is evident that GOPs demonstrate potential beneficial effects in maintaining cell fate stability, thereby potentially contributing to an enhanced health span and overall well-being.


Asunto(s)
Antioxidantes , Panax , Humanos , Antioxidantes/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Panax/química , Peróxido de Hidrógeno/metabolismo , Extractos Vegetales/farmacología , Estrés Oxidativo , Oligopéptidos/farmacología
11.
ACS Appl Mater Interfaces ; 16(12): 15457-15478, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483821

RESUMEN

The surface modification of magnetite nanoparticles (Fe3O4 NPs) is a promising approach to obtaining biocompatible and multifunctional nanoplatforms with numerous applications in biomedicine, for example, to fight cancer. However, little is known about the effects of Fe3O4 NP-associated reductive stress against cancer cells, especially against chemotherapy-induced drug-resistant senescent cancer cells. In the present study, Fe3O4 NPs in situ coated by dextran (Fe3O4@Dex) and glucosamine-based amorphous carbon coating (Fe3O4@aC) with potent reductive activity were characterized and tested against drug-induced senescent breast cancer cells (Hs 578T, BT-20, MDA-MB-468, and MDA-MB-175-VII cells). Fe3O4@aC caused a decrease in reactive oxygen species (ROS) production and an increase in the levels of antioxidant proteins FOXO3a, SOD1, and GPX4 that was accompanied by elevated levels of cell cycle inhibitors (p21, p27, and p57), proinflammatory (NFκB, IL-6, and IL-8) and autophagic (BECN1, LC3B) markers, nucleolar stress, and subsequent apoptotic cell death in etoposide-stimulated senescent breast cancer cells. Fe3O4@aC also promoted reductive stress-mediated cytotoxicity in nonsenescent breast cancer cells. We postulate that Fe3O4 NPs, in addition to their well-established hyperthermia and oxidative stress-mediated anticancer effects, can also be considered, if modified using amorphous carbon coating with reductive activity, as stimulators of reductive stress and cytotoxic effects in both senescent and nonsenescent breast cancer cells with different gene mutation statuses.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Hipertermia Inducida , Nanopartículas de Magnetita , Nanopartículas , Humanos , Femenino , Línea Celular Tumoral , Carbono/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Compuestos Férricos/farmacología , Antineoplásicos/farmacología , Autofagia , Nanopartículas Magnéticas de Óxido de Hierro
12.
Redox Biol ; 71: 103124, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503216

RESUMEN

OBJECTIVE: Cardiomyocyte senescence is an important contributor to cardiovascular diseases and can be induced by stressors including DNA damage, oxidative stress, mitochondrial dysfunction, epigenetic regulation, etc. However, the underlying mechanisms for the development of cardiomyocyte senescence remain largely unknown. Sulfur dioxide (SO2) is produced endogenously by aspartate aminotransferase 2 (AAT2) catalysis and plays an important regulatory role in the development of cardiovascular diseases. The present study aimed to explore the effect of endogenous SO2 on cardiomyocyte senescence and the underlying molecular mechanisms. APPROACH AND RESULTS: We interestingly found a substantial reduction in the expression of AAT2 in the heart of aged mice in comparison to young mice. AAT2-knockdowned cardiomyocytes exhibited reduced SO2 content, elevated expression levels of Tp53, p21Cip/Waf, and p16INk4a, enhanced SA-ß-Gal activity, and elevated level of γ-H2AX foci. Notably, supplementation with a SO2 donor ameliorated the spontaneous senescence phenotype and DNA damage caused by AAT2 deficiency in cardiomyocytes. Mechanistically, AAT2 deficiency suppressed the sulphenylation of signal transducer and activator of transcription 3 (STAT3) facilitated its nuclear translocation and DNA-binding capacity. Conversely, a mutation in the cysteine (Cys) 259 residue of STAT3 blocked SO2-induced STAT3 sulphenylation and subsequently prevented the inhibitory effect of SO2 on STAT3-DNA-binding capacity, DNA damage, and cardiomyocyte senescence. Additionally, cardiomyocyte (cm)-specific AAT2 knockout (AAT2cmKO) mice exhibited a deterioration in cardiac function, cardiomegaly, and cardiac aging, whereas supplementation with SO2 donors mitigated the cardiac aging and remodeling phenotypes in AAT2cmKO mice. CONCLUSION: Downregulation of the endogenous SO2/AAT2 pathway is a crucial pathogenic mechanism underlying cardiomyocyte senescence. Endogenous SO2 modifies STAT3 by sulphenylating Cys259, leading to the inhibition of DNA damage and the protection against cardiomyocyte senescence.


Asunto(s)
Enfermedades Cardiovasculares , Cisteína , Ratones , Animales , Cisteína/metabolismo , Miocitos Cardíacos/metabolismo , Dióxido de Azufre/farmacología , Enfermedades Cardiovasculares/metabolismo , Factor de Transcripción STAT3/metabolismo , Epigénesis Genética , ADN/metabolismo , Senescencia Celular
13.
Sci Rep ; 14(1): 6618, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503783

RESUMEN

Lettuce is a highly perishable horticultural crop with a relatively short shelf-life that limits its commercial value and contributes to food waste. Postharvest senescence varies with influences of both environmental and genetic factors. From a larger pool of romaine lettuce genotypes, we identified three genotypes with variable shelf lives and evaluated their leaf morphology characteristics and transcriptomic profiles at preharvest to predict postharvest quality. Breeding line 60184 had the shortest shelf-life (SSL), cultivar 'Manatee' had an intermediate shelf-life (ISL), and 'Okeechobee' had the longest shelf-life (LSL). We observed significantly larger leaf lamina thickness and higher stomatal index in the SSL genotypes relative to the LSL cultivar. To identify molecular indicators of shelf-life, we used a transcriptional approach between two of the contrasting genotypes, breeding line 60184 and cultivar 'Okeechobee' at preharvest. We identified 552 upregulated and 315 downregulated differentially expressed genes between the genotypes, from which 27% of them had an Arabidopsis thaliana ortholog previously characterized as senescence associated genes (SAGs). Notably, we identified several SAGs including several related to jasmonate ZIM-domain jasmonic acid signaling, chlorophyll a-b binding, and cell wall modification including pectate lyases and expansins. This study presented an innovative approach for identifying preharvest molecular factors linked to postharvest traits for prolonged shelf.


Asunto(s)
Lactuca , Eliminación de Residuos , Lactuca/genética , Clorofila A , Alimentos , Fitomejoramiento
14.
Int Wound J ; 21(2): e14756, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38339818

RESUMEN

The primary objective of this meta-analysis was to provide the comprehensive understanding of the intricate correlation that existed between immune senescence and its effects on the advancement of lung cancer as well as recovery of cutaneous wounds. By conducting this systematic review of six rigorous studies utilizing databases such as PubMed and Web of Science, this research examined the multitude of facets pertaining to immune aging and consequences it bear on the health outcomes. The incorporated studies encompassed wide range of geographical and methodological viewpoints, with the specific emphasis on non-small-cell lung cancer and diverse scenarios related to wound recovery. This analysis synthesized discoveries regarding therapeutic responses, cellular and molecular mechanisms and impact of lifestyle factors on immune senescence. The findings suggested that immune senescence has substantial impact on the effectiveness of treatments for lung cancer and cutaneous wounds healing process; therefore, targeted therapies and holistic approaches may be able to mitigate these effects. By following the revised PRISMA guidelines, this meta-analysis guarantee thorough and ethically sound methodology for amalgamating pre-existing literature. The study concluded by emphasizing the critical nature of comprehending immune senescence in the context of clinical practice and proposed avenues for further investigation to enhance health results among the elderly.


Asunto(s)
Neoplasias Pulmonares , Cicatrización de Heridas , Humanos , Neoplasias Pulmonares/inmunología , Anciano , Masculino , Femenino , Progresión de la Enfermedad , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Persona de Mediana Edad , Inmunosenescencia , Anciano de 80 o más Años , Adulto
15.
Aging (Albany NY) ; 16(5): 4250-4269, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38407978

RESUMEN

Lei's formula (LSF), a traditional Chinese herbal remedy, is recognized for its remarkable clinical effectiveness in treating osteoarthritis (OA). Despite its therapeutic potential, the exact molecular mechanisms underlying LSF's action in OA have remained enigmatic. Existing research has shed light on the role of the mTOR signaling pathway in promoting chondrocyte senescence, a central factor in OA-related cartilage degeneration. Consequently, targeting mTOR to mitigate chondrocyte senescence presents a promising avenue for OA treatment. The primary objective of this study is to establish LSF's chondroprotective potential and confirm its anti-osteoarthritic efficacy through mTOR inhibition. In vivo assessments using an OA mouse model reveal substantial articular cartilage degeneration. However, LSF serves as an effective guardian of articular cartilage, evidenced by reduced subchondral osteosclerosis, increased cartilage thickness, improved surface smoothness, decreased OARSI scores, elevated expression of cartilage anabolic markers (Col2 and Aggrecan), reduced expression of catabolic markers (Adamts5 and MMP13), increased expression of the chondrocyte hypertrophy marker (Col10), and decreased expression of chondrocyte senescence markers (P16 and P21). In vitro findings demonstrate that LSF shields chondrocytes from H2O2-induced apoptosis, inhibits senescence, enhances chondrocyte differentiation, promotes the synthesis of type II collagen and proteoglycans, and reduces cartilage degradation. Mechanistically, LSF suppresses chondrocyte senescence through the mTOR axis, orchestrating the equilibrium between chondrocyte anabolism and catabolism, ultimately leading to reduced apoptosis and decelerated OA cartilage degradation. LSF holds significant promise as a therapeutic approach for OA treatment, offering new insights into potential treatments for this prevalent age-related condition.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratones , Animales , Condrocitos/metabolismo , Peróxido de Hidrógeno/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Cartílago Articular/metabolismo
16.
Ageing Res Rev ; 95: 102238, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38382678

RESUMEN

BACKGROUND: Cellular senescence has been regarded as a therapeutic target for ageing and age-related diseases. Several senotherapeutic agents have been proposed, including compounds derived from natural products which hold the translational potential to promote healthy ageing. This systematic review examined the association of dietary ingredients with cellular senescence in animals and humans, with an intent to identify dietary ingredients with senotherapeutic potential. METHODS: This systematic review was registered at PROSPERO International prospective register of systematic reviews (Reg #: CRD42022338885). The databases PubMed and Embase were systematically searched for key terms related to cellular senescence, senescence markers, diets, nutrients and bioactive compounds. Intervention and observational studies on human and animals investigating the effects of dietary ingredients via oral administration on cellular senescence load were included. The SYRCLE's risk of bias tool and Cochrane risk of bias tool v2.0 were used to assess the risk of bias for animal and human studies respectively. RESULTS: Out of 5707 identified articles, 83 articles consisting of 78 animal studies and 5 human studies aimed to reduce cellular senescence load using dietary ingredients. In animal studies, the most-frequently used senescence model was normative ageing (26 studies), followed by D-galactose-induced models (17 studies). Resveratrol (8 studies), vitamin E (4 studies) and soy protein isolate (3 studies) showed positive effects on reducing the level of senescence markers such as p53, p21, p16 and senescence-associated ß-galactosidase in various tissues of physiological systems. In three out of five human studies, ginsenoside Rg1 had no positive effect on reducing senescence in muscle tissues after exercise. The risk of bias for both animal and human studies was largely unclear. CONCLUSION: Resveratrol, vitamin E and soy protein isolate are promising senotherapeutics studied in animal models. Studies testing dietary ingredients with senotherapeutic potential in humans are limited and translation is highly warranted.


Asunto(s)
Senescencia Celular , Proteínas de Soja , Animales , Humanos , Resveratrol , Proteínas de Soja/farmacología , Revisiones Sistemáticas como Asunto , Dieta , Vitamina E/farmacología
17.
Exp Ther Med ; 27(3): 123, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38410190

RESUMEN

As the proportion of the elderly population grows rapidly, the senescence-delaying effects of Traditional Chinese Medicine is being investigated. The aim of the present study was to investigate the senescence-delaying effects of saffron in naturally aging mice. The active ingredients in an aqueous saffron extract were determined using high-performance liquid chromatography (HPLC). Mice were divided into saffron (8- and 16-months-old) and control groups (3-, 8-, and 16-months-old), and saffron extract was administered to the former groups for 8 weeks. The open field test and Barnes maze test were used to evaluate the locomotor activity, learning and memory function of the mice. The levels of inflammatory factors in the brain were determined by ELISA. In addition, the activities of acetylcholinesterase (AChE) and superoxide dismutase, and the contents of malondialdehyde and nicotinamide adenine dinucleotide (NAD+) were detected by enzyme immunoassay, and the content of NAMPT was detected by ELISA, western blotting and reverse transcription-quantitative PCR. The cellular distribution of NAMPT and synaptic density were evaluated by immunofluorescence, and the pathological morphologies of the liver, skin, kidneys were observed by hematoxylin and eosin staining. HPLC revealed that the crocin and picrocrocin contents of the saffron extract were 19.56±0.14 and 12.00±0.13%, respectively. Saffron exhibited the potential to improve the learning and memory function in aging mice as it increased synaptic density and decreased AChE activity. Also, saffron ameliorated the pathological changes associated with organ aging, manifested by increasing the number of hepatocytes and the thickness of the skin, and preventing the aging-induced ballooning and bleeding in the kidneys. Furthermore, saffron increased the contents of NAMPT and NAD+ in the brain and decreased the content of NAMPT in the serum. In addition, it changed the cellular distribution of NAMPT in aging mice, manifested as reduced NAMPT expression in microglia and astrocytes, and increased NAMPT expression in neurons. Saffron also decreased the contents of proinflammatory cytokines and oxidative stress factors in aging mice. Altogether, these findings indicate that saffron exerts senescence-delaying effects in naturally aging mice, which may be associated with the NAMPT-NAD+ pathway.

18.
Cancer Cell Int ; 24(1): 79, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374035

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) cells usually show strong resistance to chemotherapy, which not only reduces the efficacy of chemotherapy but also increases the side effects. Regulation of autophagy plays an important role in tumor treatment. Cell senescence is also an important anti-cancer mechanism, which has become an important target for tumor treatment. Therefore, it is of great clinical significance to find anti-HCC drugs that act through this new mechanism. Platycodin D2 (PD2) is a new saponin compound extracted from the traditional Chinese medicine Platycodon grandiflorum. PURPOSE: Our study aimed to explore the effects of PD2 on HCC and identify the underlying mechanisms. METHODS: First, the CCK8 assay was used to detect the inhibitory effect of PD2 on HCC cells. Then, different pathways of programmed cell death and cell cycle regulators were measured. In addition, we assessed the effects of PD2 on the autophagy and senescence of HCC cells by flow cytometry, immunofluorescence staining, and Western blotting. Finally, we studied the in vivo effect of PD2 on HCC cells by using a mouse tumor-bearing model. RESULTS: Studies have shown that PD2 has a good anti-tumor effect, but the specific molecular mechanism has not been clarified. In this study, we found that PD2 has no obvious toxic effect on normal hepatocytes, but it can significantly inhibit the proliferation of HCC cells, induce mitochondrial dysfunction, enhance autophagy and cell senescence, upregulate NIX and P21, and downregulate CyclinA2. Gene silencing and overexpression indicated that PD2 induced mitophagy in HCC cells through NIX, thereby activating the P21/CyclinA2 pathway and promoting cell senescence. CONCLUSIONS: These results indicate that PD2 induces HCC cell death through autophagy and aging. Our findings provide a new strategy for treating HCC.

19.
Heliyon ; 10(3): e24586, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322899

RESUMEN

Background: Advancing age is one of the independent risk factors for cardiovascular disorders. The Compendium of Materia Medica, a classic book on traditional Chinese medicine, states that ginseng "harmonizes the five internal organs, calming the spirit and prolonging the years of life." Considered one of the primary bioactive compounds derived from Panax ginseng, ginsenoside Rb1 (g-Rb1) has been scientifically suggested to possess anti-senescence efficacy. More research is needed to explore the vascular pharmacological activity and potential clinical application value of g-Rb1. Aims of the study: Our previous study demonstrated that g-Rb1 could mitigate cellular senescence via the SIRT1/eNOS pathway. This study was performed to explore the exact mechanisms by which g-Rb1 modulates the SIRT1/eNOS pathway. Materials and methods: We used human primary umbilical vein endothelial cells (HUVECs) to establish a replicative ageing model. Real-time (RT‒PCR), western blotting, small interfering RNA (siRNA), and immunoprecipitation were conducted to detect the effect of g-Rb1 on the SIRT1/caveolin-1/eNOS axis. Results: G-Rb1 increased NO production and alleviated replicative senescence of HUVECs. The application of g-Rb1 elevated the mRNA and protein abundance of both SIRT1 and eNOS while concomitantly suppressing the expression of caveolin-1. Inhibition of SIRT1 and eNOS by siRNAs suppressed the anti-senescence function of g-Rb1, while caveolin-1 siRNA could enhance it. G-Rb1 decreased the acetylation level of caveolin-1 and increased NO production, which was suppressed by SIRT1 siRNA. Both g-Rb1 and caveolin-1 siRNA could reduce the acetylation level of eNOS and increase NO production. Conclusion: G-Rb1 prevents age-related endothelial senescence by modulating the SIRT1/caveolin-1/eNOS signaling pathway.

20.
Heliyon ; 10(4): e25253, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38404901

RESUMEN

Vascular aging is an independent risk factor for age-related diseases and a specific type of organic aging. Endothelial progenitor cells (EPCs), a type of bone marrow stem cell, has been linked to vascular aging. The purpose of this study is to investigate if Ginseng-Sanqi-Chuanxiong (GSC) extract, a traditional Chinese medicine, can delay aortic aging in mice by enhancing the performance and aging of EPCs in vivo and to analyze the potential mechanisms through a d-Galactose (D-gal)-induced vascular aging model in mice. Our study revealed that GSC extracts not only enhanced the aortic structure, endothelial function, oxidative stress levels, and aging in mice, but also enhanced the proliferation, migration, adhesion, and secretion of EPCs in vivo, while reducing the expression of p53, p21, and p16. To conclude, GSC can delay vascular senescence by enhancing the function and aging of EPCs, which could be linked to a decrease in p16 and p53/p21 signaling. Consequently, utilizing GSC extracts to enhance the function and senescence of autologous EPCs may present a novel avenue for enhancing autologous stem cells in alleviating senescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA