Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 543
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8989, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637687

RESUMEN

In mammals reproduction is regulated by many factors, among others by the peptides belonging to the RFamide peptide family. However, the knowledge concerning on the impact of recently identified member of this family (QRFP43) on the modulation of the gonadotrophic axis activity is still not fully understood and current research results are ambiguous. In the present study we tested the in vivo effect of QRFP43 on the secretory activity of the gonadotrophic axis at the hypothalamic-pituitary level in Polish Merino sheep. The animals (n = 48) were randomly divided into three experimental groups: controls receiving an icv infusion of Ringer-Locke solution, group receiving icv infusion of QRFP43 at 10 µg per day and 50 µg per day. All sheep received four 50 min icv infusions at 30 min intervals, on each of three consecutive days. Hypothalamic and pituitaries were collected and secured for further immunohistochemical and molecular biological analysis. In addition, during the experiment a blood samples have been collected for subsequent RIA determinations. QRFP43 was found to downregulate Kiss mRNA expression in the MBH and reduce the level of IR material in ME. This resulted in a reduction of GnRH IR material in the ME. QRFP43 increased plasma FSH levels while decreasing LH levels. Our findings indicate that QRFP43 inhibits the activity of the gonadotropic axis in the ovine at the level of the hypothalamus and may represent another neuromodulator of reproductive processes in animals.


Asunto(s)
Gonadotrofos , Hormona Luteinizante , Femenino , Ovinos , Animales , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hipófisis/metabolismo , Gonadotrofos/metabolismo , Hormona Folículo Estimulante , Mamíferos/metabolismo
2.
Animals (Basel) ; 14(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612237

RESUMEN

The aim of this study was to investigate if the supplementation of folic acid and taurine can relieve the adverse effects of different levels of heat stress (HS) on growth performance, physiological indices, antioxidative capacity, immunity, rumen fermentation and microbiota. A total of 24 Dorper × Hu crossbred lambs (27.51 ± 0.96 kg) were divided into four groups: control group (C, 25 °C), moderate HS group (MHS, 35 °C), severe HS group (SHS, 40 °C), and the treatment group, under severe HS (RHS, 40 °C, 4 and 40 mg/kg BW/d coated folic acid and taurine, respectively). Results showed that, compared with Group C, HS significantly decreased the ADG of lambs (p < 0.05), and the ADG in the RHS group was markedly higher than in the MHS and SHS group (p < 0.05). HS had significant detrimental effects on physiological indices, antioxidative indices and immune status on the 4th day (p < 0.05). The physiological indices, such as RR and ST, increased significantly (p < 0.05) with the HS level and were significantly decreased in the RHS group, compared to the SHS group (p < 0.05). HS induced the significant increase of MDA, TNF-α, and IL-ß, and the decrease of T-AOC, SOD, GPx, IL-10, IL-13, IgA, IgG, and IgM (p < 0.05). However, there was a significant improvement in these indices after the supplementation of folic acid and taurine under HS. Moreover, there were a significant increase in Quinella and Succinivibrio, and an evident decrease of the genera Rikenellaceae_RC9_gut_group and Asteroleplasma under HS (p < 0.05). The LEfSe analysis showed that the genera Butyrivibrio, Eubacterium_ventriosum_group, and f_Bifidobacteriaceae were enriched in the MHS, SHS and RHS groups, respectively. Correlated analysis indicated that the genus Rikenellaceae_RC9_gut_group was positively associated with MDA, while it was negatively involved in IL-10, IgA, IgM, and SOD (p < 0.05); The genus Anaeroplasma was positively associated with the propionate and valerate, while the genus Succinivibrio was negatively involved in TNF-α (p < 0.05). In conclusion, folic acid and taurine may alleviate the adverse effects of HS on antioxidant capacity, immunomodulation, and rumen fermentation of lambs by inducing changes in the microbiome that improve animal growth performance.

3.
Toxicon ; 242: 107692, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38513828

RESUMEN

The aim was to report cases and risk factors for hepatogenous photosensitization in lambs kept on Brachiaria spp. pastures and supplemented with levels of extruded urea (EU). The herd consisted of 69 Texel crossbred lambs with known parentage (fathers and mothers adapted to the consumption of forage of the genus Brachiaria), randomly divided into 5 groups and distributed in individual paddocks for each group. The animals were supplemented with increasing levels of EU (Amireia® 200S): 0, 6, 12, 18, and 24 g of EU per 100 kg-1 of body weight (BW). The concentration of protodioscin was estimated in the mixed pastures of Brachiaria spp. (cv. Marandu and cv. Basilisk), structural components (leaf, stem, and dead material), samples of each cultivar, and in the months of December (2018), February, and April (2019). The animals were examined daily, and when behavioral changes were identified, they underwent clinical examinations and anamnesis. Weighing was performed every 14 days, followed by necropsy and serum biochemical analysis, including gamma-glutamyltransferase (GGT). The highest concentrations of protodioscin (p < 0.0001) were found in the pastures used by animals supplemented without extruded urea (7.07 ± 0.56), in the Basilisk cultivar (11.35 ± 0.06), in the leaf blade components (2.08 ± 0.05), and thatch (2.20 ± 0.00), and in the month of April (7.34 ± 0.29) (the month with the lowest rainfall), respectively. Fourteen (20.29%) cases of photosensitization were observed in lambs, of which six recovered, and eight died. Serum GGT levels ranged from 42.2 to 225 IU/L; however, in animals that died, values ranged from 209.4 to 225 IU/L. The use of levels 12 g and 18 g per 100 kg-1 of body weight of extruded urea may contribute to the lower occurrence of photosensitization, as the animals selected pastures with lower protodioscin content, presenting a smaller number of cases.


Asunto(s)
Brachiaria , Diosgenina , Urea , Animales , Masculino , Alimentación Animal/análisis , Brasil , Suplementos Dietéticos , Diosgenina/análogos & derivados , gamma-Glutamiltransferasa/sangre , Trastornos por Fotosensibilidad/veterinaria , Saponinas , Ovinos , Enfermedades de las Ovejas , Urea/sangre , Femenino
4.
Food Chem ; 446: 138763, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428077

RESUMEN

Calcium deficiency is prone to fractures, osteoporosis and other symptoms. In this study, sheep bone protein hydrolysates (SBPHs) were obtained by protease hydrolysis. A low-calcium-diet-induced calcium-deficiency rat model was established to investigate the effects of SBPHs on calcium absorption and intestinal flora composition. The results showed that an SBPHs + CaCl2 treatment significantly increased the bone calcium content, bone mineral density, trabecular bone volume, and trabecular thickness, and reduced trabecular separation, and changed the level of bone turnover markers (P < 0.05). Supplementation of SBPHs + CaCl2 can remarkably enhance the bone mechanical strength, and the microstructure of bone was improved, and the trabecular network was more continuous, complete, and thicker. Additionally, SBPHs + CaCl2 dietary increased the abundance of Firmicutes and reduced the abundance of Proteobacteria and Verrucomicrobiota, and promoted the production of short chain fatty acids. This study indicated that SBPHs promoted calcium absorption and could be applied to alleviate osteoporosis.


Asunto(s)
Calcio , Osteoporosis , Ratas , Animales , Ovinos , Calcio/metabolismo , Hidrolisados de Proteína/farmacología , Cloruro de Calcio/farmacología , Calcio de la Dieta , Densidad Ósea , Osteoporosis/metabolismo , Dieta
5.
Anim Biotechnol ; 35(1): 2320726, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38436999

RESUMEN

Colostrum is the initial secretion of the mammary glands following parturition, which offers main food, protection, and biological active substances for the new born. The most threatening episode of neonate's life is the initial two weeks after birth. This period is associated with high neonatal mortality and morbidity. These worthwhile losses lead to a poor prolificacy rate, low profitability, and ultimately poor performance in animal production. Hence, both diseases and mortality cause valuable losses in terms of production and economic losses. The survival of neonate is correlated with their immune status and passive immune transfer (PIT). Colostrum provides the primary source of nutrition and immunity (PIT) that protects neonates against infections. It must be given as soon as possible after birth since its immunoglobulins are absorbed within the first 16-27 hours after birth, ideally within 2-4 hours. As a result, immunoglobulin (PIT) is the most important component of distressing infectious immunity, and a passable concentration of immunoglobulin in the blood of newborn lambs is linked to their health and survival rate. In this review, we summarized the importance of colostrum in early life and its association with neonatal lamb's survival, profitability and productivity of sheep farming.


Asunto(s)
Calostro , Inmunoglobulina G , Embarazo , Femenino , Animales , Ovinos , Animales Recién Nacidos
6.
Animals (Basel) ; 14(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38540025

RESUMEN

Oxidative stress (OS) in ruminants is closely associated with disease; thus, improving antioxidant capacity is an important strategy for maintaining host health. Bupleuri Radix (BR) could significantly improve host health and stress levels. However, the clear antioxidant mechanism of the function of BR remains unknown. In the current study, LC-MS metabolomics combined with 16S rRNA gene sequencing was employed to explore the effects of BR on rumen microbiota and metabolites in Shanbei Fine-Wool Sheep (SFWS), and Spearman correlation analyses of rumen microbiota, metabolites, and OS were performed to investigate the mechanism of antioxidant function of BR. Our results indicated that as SFWS grows, levels of OS and antioxidant capacity increase dramatically, but providing BR to SFWS enhances antioxidant capacity while decreasing OS. Rumen microbiota and OS are strongly correlated, with total antioxidant capacity (T-AOC) showing a significant negative correlation with Succiniclasticum and a positive correlation with Ruminococcus. Importantly, the Chao1 index was significantly negatively correlated with malondialdehyde (MDA) and positively correlated with superoxide dismutase (SOD) and T-AOC. Two biomarkers connected to the antioxidant effects of BR, 5,6-DHET and LPA (a-25:0/0:0), were screened according to the results of metabolomics and Spearman analysis of rumen contents, and a significant relationship between the concentration of rumen metabolites and OS was found. Five metabolic pathways, including glycerolipid, glutathione, nucleotide, D-amino acid, and inositol phosphate metabolism, may have a role in OS. The integrated results indicate that rumen microbiota and metabolites are strongly related to OS and that BR is responsible for reducing OS and improving antioxidant capacity in post-weaned SFWS. These findings provide new strategies to reduce OS occurring during SFWS growth.

7.
Animals (Basel) ; 14(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540045

RESUMEN

Reactive oxygen species (ROS) are important factors that lead to a decline in sperm quality during semen preservation. Excessive ROS accumulation disrupts the balance of the antioxidant system in sperm and causes lipid oxidative damage, destroying its structure and function. Curcumin is a natural plant extract that neutralizes ROS and enhances the function of endogenous antioxidant enzymes. The effect of curcumin on the preservation of sheep semen has not been reported. This study aims to determine the effects of curcumin on refrigerated sperm (4 °C) and analyze the effects of curcumin on sperm metabolism from a Chinese native sheep (Hu sheep). The results showed that adding curcumin significantly improved (p < 0.05) the viability of refrigerated sperm at an optimal concentration of 20 µmol/L, and the plasma membrane and acrosome integrity in semen were significantly improved (p < 0.05). Adding curcumin to refrigerated semen significantly increased (p < 0.05) the levels of antioxidant enzymes (T-AOC, CAT, and SOD) and significantly decreased (p < 0.05) ROS production. A total of 13,796 metabolites in sperm and 20,581 metabolites in negative groups and curcumin-supplemented groups were identified using liquid chromatography-mass spectrometry. The proportion of lipids and lipid-like molecules among all metabolites in the sperm was the highest, regardless of treatment. We identified 50 differentially expressed metabolites (DEMs) in sperm between the negative control and curcumin-treated groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEMs were mainly enriched in the calcium signaling pathway, phospholipase D signaling pathway, sphingolipid metabolism, steroid hormone biosynthesis, 2-oxocarboxylic acid metabolism, and other metabolic pathways. The findings indicate that the addition of an appropriate concentration (20 µm/L) of curcumin to sheep semen can effectively suppress reactive oxygen species (ROS) production and extend the duration of cryopreservation (4 °C) by modulating the expression of sphingosine-1-phosphate, dehydroepiandrosterone sulfate, phytosphingosine, and other metabolites of semen. This discovery offers a novel approach to enhancing the cryogenic preservation of sheep semen.

8.
Front Vet Sci ; 11: 1334026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379922

RESUMEN

Plant extracts have shown promise as natural feed additives to improve animal health and growth. Ellagic acid (EA), widely present in various plant tissues, offers diverse biological benefits. However, limited research has explored its effects on ruminants. This study aimed to investigate the effects of dietary addition EA on rumen metabolism, apparent digestibility of nutrients, and growth performance in Kazakh sheep. Ten 5-month-old Kazakh sheep with similar body weight (BW), fitted with rumen fistulas, were randomly assigned to two groups: the CON group (basal diet) and the EA group (basal diet + 30 mg/kg BW EA). The experiment lasted 30 days, and individual growth performance was assessed under identical feeding and management conditions. During the experimental period, rumen fluid, fecal, and blood samples were collected for analysis. The results indicated a trend toward increased average daily gain in the EA group compared to the CON group (p = 0.094). Compared with the CON group, the rumen contents of acetic acid and propionic acid were significantly increased in the EA group and reached the highest value at 2 h to 4 h after feeding (p < 0.05). Moreover, the relative abundances of specific rumen microbiota (Ruminococcaceae, uncultured_rumen_bacterium, unclassified_Prevotella, Bacteroidales, Bacteroidota, Bacteroidia, unclassified_Rikenellaceae, and Prevotella_spBP1_145) at the family and genus levels were significantly higher in the EA group (p < 0.05) compared to the CON group. The EA group exhibited significantly higher dry matter intake (p < 0.05) and increased the digestibility of neutral detergent fiber and ether extract when compared with the CON group (p < 0.05). Additionally, the plasma activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly higher, while malondialdehyde (MDA) concentration was significantly lower in the EA group compared to the CON group (p < 0.05). In conclusion, dietary supplementation with 30 mg/kg BW EA in 5-month-old Kazakh sheep increased the dry matter intakQ16e, apparent digestibility of neutral detergent fiber, and ether extract, as well as the contents of acetic acid and propionic acid in rumen fluid. Moreover, EA supplementation regulated the ruminal microbiota, enhanced antioxidant capacity, and improved daily weight gain.

9.
BMC Genomics ; 25(1): 220, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413895

RESUMEN

BACKGROUND: The appropriate mineral nutrients are essential for sheep growth and reproduction. However, traditional grazing sheep often experience mineral nutrient deficiencies, especially copper (Cu), due to inadequate mineral nutrients from natural pastures. RESULTS: The results indicated that dietary Cu deficiency and supplementation significantly reduced and elevated liver concentration of Cu, respectively (p < 0.05). FOXO3, PLIN1, ACTN2, and GHRHR were identified as critical genes using the weighted gene co-expression network analysis (WGCNA), quantitative real-time polymerase chain reaction (qRT-PCR), and receiver operating characteristic curve (ROC) validation as potential biomarkers for evaluating Cu status in grazing sheep. Combining these critical genes with gene functional enrichment analysis, it was observed that dietary Cu deficiency may impair liver regeneration and compromise ribosomal function. Conversely, dietary Cu supplementation may enhance ribosomal function, promote lipid accumulation, and stimulate growth and metabolism in grazing sheep. Metabolomics analysis indicated that dietary Cu deficiency significantly decreased the abundance of metabolites such as cholic acid (p < 0.05). On the other hand, dietary Cu supplementation significantly increased the abundance of metabolites such as palmitic acid (p < 0.05). Integrative analysis of the transcriptome and metabolome revealed that dietary Cu deficiency may reduce liver lipid metabolism while Cu supplementation may elevate it in grazing sheep. CONCLUSIONS: The Cu content in diets may have an impact on hepatic lipid metabolism in grazing sheep. These findings provide new insights into the consequences of dietary Cu deficiency and supplementation on sheep liver and can provide valuable guidance for herders to rationalize the use of mineral supplements.


Asunto(s)
Cobre , Hígado , Ovinos , Animales , Cobre/farmacología , Hígado/metabolismo , Suplementos Dietéticos , Minerales/metabolismo , Perfilación de la Expresión Génica , Expresión Génica
10.
Front Vet Sci ; 11: 1301852, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322168

RESUMEN

Objective: The objective of this study was to investigate the impact of dietary deficiency and supplementation of calcium, zinc, copper, cobalt, manganese or selenium on minerals content in the longissimus dorsi (LD), biceps femoris (BF) and triceps brachii (TB) of grazing Mongolian sheep. Methods: We randomly divided 98 sheep into 7 treatment groups and fed them specific diets for 60 days: a total mineral nutrition diet (LCG), a calcium deficiency diet (LCa), a zinc deficiency diet (LZn), a copper deficiency diet (LCu), a cobalt deficiency diet (LCo), a manganese deficiency diet (LMn) and a selenium deficiency diet (LSe). Then 7 sheep from each group were slaughtered and samples of LD, BF and TB were collected for mineral content analysis. The remaining sheep in each group were subsequently fed specific diets for an additional 41 days: a total mineral nutrition diet (SCG), a calcium supplementation diet (SCa), a zinc supplementation diet (SZn), a copper supplementation diet (SCu), a cobalt supplementation diet (SCo), a manganese supplementation diet (SMn) and a selenium supplementation diet (SSe). Afterward, all sheep were slaughtered, and muscle samples were collected and analyzed. Results: Significant findings emerged that LCa decreased sulfur (S) content in BF and increased Ca content in LD and BF, while SCa increased S and Ca content in BF and TB, respectively (P < 0.05). LZn decreased Zn, S, and potassium (K) content in LD and BF, while SZn increased Zn and S content in LD and BF, respectively (P < 0.05). LCu decreased Cu and iron (Fe) content in LD and TB, while SCu increased Fe content in TB (P < 0.05). LCo decreased phosphorus, S, K, Ca, Mn, Fe, Cu, and Zn content in LD (P < 0.05). LMn decreased Mn content and increased K content in TB, while SMn decreased K content in BF and TB (P < 0.05). LSe and SSe decreased and increased Se content in LD, BF, and TB, respectively (P < 0.05). Conclusion: Dietary mineral levels have varying effects on lamb meat minerals content. It is important to ensure an adequate intake of minerals in the diet to enhance the mineral nutrition of lamb meat.

11.
Front Vet Sci ; 11: 1332457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384949

RESUMEN

Introduction: This study evaluated the effects of Isatis Leaf (ISL) on the growth performance, gastrointestinal tissue morphology, rumen and intestinal microbiota, rumen, serum and urine metabolites, and rumen epithelial tissue transcriptome of fattening sheep. Methods: Twelve 3.5-month-old healthy fattening sheep were randomly divided into two groups, each with 6 replicates, and fed with basal diet (CON) and basal diet supplemented with 80 g/kg ISL for 2.5 months. Gastrointestinal tract was collected for histological analysis, rumen fluid and feces were subjected to metagenomic analysis, rumen fluid, serum, and urine for metabolomics analysis, and rumen epithelial tissue for transcriptomics analysis. Results: The results showed that in the ISL group, the average daily gain and average daily feed intake of fattening sheep were significantly lower than those of the CON group (P < 0.05), and the rumen ammonia nitrogen level was significantly higher than that of the CON group (P < 0.01). The thickness of the reticulum and abomasum muscle layer was significantly increased (P < 0.05). At the genus level, the addition of ISL modified the composition of rumen and fecal microorganisms, and the relative abundance of Methanobrevibacter and Centipeda was significantly upregulated in rumen microorganisms, The relative abundance of Butyrivibrio, Saccharofermentans, Mogibacterium, and Pirellula was significantly downregulated (P < 0.05). In fecal microorganisms, the relative abundance of Papillibacter, Pseudoflavonifractor, Butyricicoccus, Anaerovorax, and Methanocorpusculum was significantly upregulated, while the relative abundance of Roseburia, Coprococcus, Clostridium XVIII, Butyrivibrio, Parasutterella, Macellibacteroides, and Porphyromonas was significantly downregulated (P < 0.05). There were 164, 107, and 77 different metabolites in the rumen, serum, and urine between the ISL and CON groups (P < 0.05). The differential metabolic pathways mainly included thiamine metabolism, niacin and nicotinamide metabolism, vitamin B6 metabolism, taurine and taurine metabolism, beta-Alanine metabolism and riboflavin metabolism. These metabolic pathways were mainly involved in the regulation of energy metabolism and immune function in fattening sheep. Transcriptome sequencing showed that differentially expressed genes were mainly enriched in cellular physiological processes, development, and immune regulation. Conclusion: In summary, the addition of ISL to the diet had the effect of increasing rumen ammonia nitrogen levels, regulating gastrointestinal microbiota, promoting body fat metabolism, and enhancing immunity in fattening sheep.

12.
Front Vet Sci ; 11: 1347151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384955

RESUMEN

Anthelmintic drug resistance has proliferated across Europe in sheep gastrointestinal nematodes (GINs). Sheep welfare and health are adversely impacted by these phenomena, which also have an impact on productivity. Finding alternatives for controlling GINs in sheep is thus of utmost importance. In this study, the anthelmintic effectiveness (AE) of a Calabrian ethnoveterinary aqueous macerate based on Punica granatum (whole fruits) was assessed in Comisana pregnant sheep. Furthermore, an examination, both qualitative and quantitative, was conducted on milk. Forty-five sheep were selected for the investigation. The sheep were divided by age, weight, physiological state (pluripara at 20 days before parturition), and eggs per gram of feces (EPG) into three homogeneous groups of 15 animals each: PG received a single oral dosage of P. granatum macerate at a rate of 50 mL per sheep; AG, treated with albendazole, was administered orally at 3.75 mg/kg/bw; and CG received no treatment. Timelines were as follows: D0, treatments, group assignment, fecal sampling, and AE assessment; D7, D14, D21, fecal sampling, and AE evaluation. The FLOTAC technique was used to evaluate the individual GIN fecal egg count (FEC) using a sodium chloride flotation solution (specific gravity = 1.20) and 100 × (1-[T2/C2]) as the formula for evaluating FEC reduction. Following the lambs' weaning, milk was collected on the following days (DL) in order to quantify production: DL35, DL42, DL49, DL56, DL63, DL70, DL77, and DL84. The amount of milk produced by every animal was measured and reported in milliliters (ml) for quantitative evaluations. Using MilkoScan TM fT + foss electric, Denmark, the quality of the milk (casein, lactose, protein concentration, and fat, expressed as a percentage) was assessed. The macerate demonstrated a considerable AE (51.8%). Moreover, its use has resulted in higher milk production rates quantitatively (15.5%) and qualitatively (5.12% protein, 4.12% casein, 4.21% lactose, and 8.18% fat). The study showed that green veterinary pharmacology could be the easiest future approach to counteracting anthelmintic resistance in sheep husbandry.

13.
Theriogenology ; 216: 168-176, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185016

RESUMEN

Testicular size is an excellent proxy for selecting high-fertility rams. The hypothalamus-pituitary-gonadal (HPG) axis plays an important role in regulating reproductive capacity in vertebrates, while key genes and regulatory pathways within the HPG axis associated with testicular size remain largely unknown in sheep. This study comprehensively compared the transcriptomic profiles in the hypothalamus, pituitary and testis of rams after sexual maturity between the large-testis group (LTG, testicular weight = 454.29 ± 54.24 g) and the small-testis group (STG, testicular weight = 77.29 ± 10.76 g). In total, 914, 795 and 10518 differentially expressed genes (DEGs) were identified in the hypothalamus, pituitary and testis between LTG and STG, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DEGs were mainly involved in the biological processes of reproduction, biological regulation, and development process. Notably, the neuroactive ligand-receptor interaction and cAMP signaling pathways, commonly enriched by the DEGs in the hypothalamus and pituitary between two groups, were considered as two key signal pathways regulating testicular development through the HPGs axis. Weighted gene co-expression network analysis (WGCNA) identified two modules that were significantly associated with testicular size, and 97 key genes were selected with high module membership (MM) and gene significance (GS) in these two modules. Finally, a protein-protein interaction (PPI) network was constructed, and ten genes with the highest degree were represented as hub genes, including FOS, NPY, SST, F2, AGT, NTS, OXT, EDN1, VIP and TAC1. Taken together, these results provide new insights into the molecular mechanism underlying the HPG axis regulating testicular size of Hu sheep.


Asunto(s)
Perfilación de la Expresión Génica , Eje Hipotálamico-Pituitario-Gonadal , Masculino , Ovinos/genética , Animales , Perfilación de la Expresión Génica/veterinaria , Perfilación de la Expresión Génica/métodos , Mapas de Interacción de Proteínas/genética , Transcriptoma , Hipotálamo , Redes Reguladoras de Genes
14.
Vet Res Commun ; 48(1): 279-290, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37667094

RESUMEN

Coccidiosis is an intestinal protozoan disease of sheep, that causes substantial economic losses in the industry due to its intestinal protozoan origins. Many anti-protozoan drugs including ionophores, triazines, and sulfonamides have been widely used to treat sheep coccidiosis. Still, anticoccidial resistance and drug residues in edible tissues have prompted an urgent search for alternatives. In this study, the anti-coccidial effectiveness of the Radix dichroae extract was compared to that of the conventional anti-coccidial drug diclazuril. Here, eighteen 45-day-old lambs naturally-infected with Eimeria spp. were randomly allocated in three groups: control group, Radix dichroae extract group and diclazuril group. The results showed that the body weight gain (BWG) during the treatment and withdrawal periods was considerably improved in the coccidiosis-infected sheep treated with Radix dichroae extract and diclazuril compared to the control group, respectively. Additionally, the Radix dichroae extract and diclazuril had fewer oocysts per gram (OPG) than the control group, showing similar anti-coccidial effects on days 14, 21, 28, 35 and 78, respectively. Furthermore, Radix dichroae extract and diclazuril treatment altered the structure and composition of gut microbiota, promoting the relative abundance of Actinobacteriota, Firmicutes, Alistipes, and Bifidobacterium, while decreasing the abundance of Bacteroidota, Marinilaceae, Helicobacteraceae, and Prevotella. Moreover, Spearman's correlation analysis further revealed a correlation between the OPG and BWG and gut microorganisms. Collectively, the results indicated that Radix dichroae extract had similar anti-coccidial effects as diclazuril, and could regulate gut microbiota balance in growing lambs.


Asunto(s)
Coccidiosis , Coccidiostáticos , Nitrilos , Triazinas , Animales , Coccidiosis/tratamiento farmacológico , Coccidiosis/veterinaria , Coccidiostáticos/farmacología , Coccidiostáticos/uso terapéutico , Suplementos Dietéticos , Microbioma Gastrointestinal , Oocistos , Ovinos , Oveja Doméstica , Aumento de Peso
15.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 470-479, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38014916

RESUMEN

The objective of this study was to evaluate various wheat supplementation levels on rumen microbiota and fermentation parameter in Tibetan sheep. A total of ninety ram with an average 12.37 ± 0.92 kg at the age of 2 months were randomly allocated to three treatments: 0% wheat diet (CW, N = 30), 10% wheat diet (LW, N = 30), and 15% wheat diet (HW, N = 30) on a dry matter basis. The experiment was conducted over a period of 127 days, including 7 days of adaption to the diets. Our results showed that sheep fed 10% wheat exhibited optimal average daily gain and feed gain ratio compared with HW group (p < 0.05). The serum alkaline phosphatase concentration was the lowest when fed the 10% wheat diet (p < 0.05), whereas serum aspartate aminotransferase concentration was the highest (p < 0.05). Both acetate and propionate increased with increase in dietary wheat ratio (p < 0.05), while a greater decrease in concentrations of NH3 -N was observed (p < 0.05). In rumen fluid, 3413 OTUs were obtained with 97% consistency. Phylum Firmicutes was the predominant bacteria and accounted for 49.04%. The CW groups supported significantly increased the abundance of Bacteroidetes (p < 0.05), as compared with the HW group. The abundance of Bacteroidales_UCG-001, Ruminococcus, and Mitsuokella possessed a higher relative abundance in HW group (p < 0.05). No differences in the bacterial community and fermentation parameters were observed between the sheep fed 0% and 10% wheat (p > 0.05). Ruminal bacterial community structure was significantly correlated with isobutyrite (r2 = 0.4878, p = 0.035) and valerate (r2 = 0.4878, p = 0.013). In conclusion, supplementation of 10% wheat in diet promoted the average daily gain and never altered microbial community structure and fermentation pattern, which can be effectively replace partial corn in Chinese Tibetan Sheep.


Asunto(s)
Rumen , Triticum , Animales , Ovinos , Masculino , Fermentación , Rumen/metabolismo , Tibet , Alimentación Animal/análisis , Dieta/veterinaria , Bacterias , Suplementos Dietéticos , Digestión
16.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 252-263, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37773023

RESUMEN

Xylanase, an exogenous enzyme that plays an essential role in energy metabolism by hydrolysing xylan into xylose, has been shown to positively influence nutrient digestion and utilisation in ruminants. The objective of this study was to evaluate the effects of xylanase supplementation on the back-fat thickness, fatty acid profiles, antioxidant capacity, and differentially expressed genes (DEGs) in the subcutaneous fat of Tibetan sheep. Sixty three-month-old rams with an average weight of 19.35 ± 2.18 kg were randomly assigned to control (no enzyme added, WH group) and xylanase (0.2% of diet on a dry matter basis, WE group) treatments. The experiment was conducted over 97 d, including 7 d of adaption to the diets. The results showed that xylanase supplementation in the diet increased adipocyte volume of subcutaneous fat (p < 0.05), shown by hematoxylin and eosin (H&E) staining. Gas chromatography showed greater concentrations of C14:0 and C16:0 in the subcutaneous fat of controls compared with the enzyme-treated group (p < 0.05), while opposite trend was seen for the absolute contents of C18:1n9t, C20:1, C18:2n6c, C18:3, and C18:3n3 (p < 0.05). Compared with controls, supplementation with xylanase increased the activity of T-AOC significantly (p < 0.05). Transcriptomic analysis showed the presence of 1630 DEGs between the two groups, of which 1023 were up-regulated and 607 were down-regulated, with enrichment in 4833 Gene Ontology terms, and significant enrichment in 31 terms (p < 0.05). The common DEGs were enriched in 295 pathways and significantly enriched in 26 pathways. Additionally, the expression of lipid-related genes, including fatty acid synthase, superoxide dismutase, fatty acid binding protein 5, carnitine palmytoyltransferase 1 A, and peroxisome proliferator-activated receptor A were verified via quantitative reverse-transcription polymerase chain reaction. In conclusion, dietary xylanase supplementation was found to reduce subcutaneous fat deposition in Tibetan sheep, likely through modulating the expression of lipid-related genes.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos , Animales , Ovinos , Masculino , Suplementos Dietéticos/análisis , Ácidos Grasos/metabolismo , Antioxidantes/farmacología , Triticum/metabolismo , Tibet , Alimentación Animal/análisis , Endo-1,4-beta Xilanasas/farmacología , Digestión , Dieta/veterinaria , Grasa Subcutánea/metabolismo
17.
Front Microbiol ; 14: 1305772, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107864

RESUMEN

This study delves into the impact of yeast culture (YC) on rumen epithelial development, microbiota, and metabolome, with the aim of investigating YC's mechanism in regulating rumen fermentation. Thirty male lambs of Hu sheep with similar age and body weight were selected and randomly divided into three groups with 10 lambs in each group. Lambs were fed a total mixed ration [TMR; rough: concentrate (R:C) ratio ≈ 30:70] to meet their nutritional needs. The experiment adopted completely randomized design (CRD). The control group (CON) was fed the basal diet with high concentrate, to which 20 g/d of YC was added in the low dose YC group (LYC) and 40 g/d of YC in the high dose YC group (HYC). The pretrial period was 14 days, and the experimental trial period was 60 days. At the end of a 60-day trial, ruminal epithelial tissues were collected for histomorphological analysis, and rumen microorganisms were analyzed by 16S rDNA sequencing and rumen metabolites by untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics techniques. The results showed that YC improved rumen papilla development and increased rumen papilla length (p < 0.05), while decreased cuticle thickness (p < 0.05). The 16S rDNA sequencing results showed that YC reduced the relative abundance of Prevotella_1 (p < 0.05), while significantly increased the relative abundance of Ruminococcaceae_UCG-005, uncultured_bacterium_f_Lachnospiraceae, and Ruminococcus_1 genus (p < 0.05). Metabolomics analysis showed that YC changed the abundance of metabolites related to amino acid metabolism, lipid metabolism and vitamin metabolism pathways in the rumen. In summary, YC might maintain rumen health under high-concentrate diet conditions by changing rumen microbiota structure and fermentation patterns, thereby affecting rumen metabolic profiles and repairing rumen epithelial injury.

18.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003630

RESUMEN

GNAQ, a member of the alpha subunit encoding the q-like G protein, is a critical gene in cell signaling, and multiple studies have shown that upregulation of GNAQ gene expression ultimately inhibits the proliferation of gonadotropin-releasing hormone (GnRH) neurons and GnRH secretion, and ultimately affects mammalian reproduction. Photoperiod is a key inducer which plays an important role in gene expression regulation by affecting epigenetic modification. However, fewer studies have confirmed how photoperiod induces epigenetic modifications of the GNAQ gene. In this study, we examined the expression and epigenetic changes of GNAQ in the hypothalamus in ovariectomized and estradiol-treated (OVX+E2) sheep under three photoperiod treatments (short photoperiod treatment for 42 days, SP42; long photoperiod treatment for 42 days, LP42; 42 days of short photoperiod followed by 42 days of long photoperiod, SP-LP42). The results showed that the expression of GNAQ was significantly higher in SP-LP42 than in SP42 and LP42 (p < 0.05). Whole genome methylation sequencing (WGBS) results showed that there are multiple differentially methylated regions (DMRs) and loci between different groups of GNAQ. Among them, the DNA methylation level of DMRs at the CpG1 locus in SP42 was significantly higher than that of SP-LP42 (p < 0.01). Subsequently, we confirmed that the core promoter region of the GNAQ gene was located with 1100 to 1500 bp upstream, and the DNA methylation level of all eight CpG sites in SP42 was significantly higher than those in LP42 (p < 0.01), and significantly higher than those in SP-LP42 (p < 0.01), except site 2 and site 4 in the first sequencing fragment (p < 0.05) in the core promoter region. The expression of acetylated GNAQ histone H3 was significantly higher than that of the control group under three different photoperiods (p < 0.01); the acetylation level of sheep hypothalamic GNAQ genomic protein H3 was significantly lower under SP42 than under SP-LP42 (p < 0.05). This suggests that acetylated histone H3 binds to the core promoter region of the GNAQ gene, implying that GNAQ is epigenetically regulated by photoperiod through histone acetylation. In summary, the results suggest that photoperiod can induce DNA methylation in the core promoter region and histone acetylation in the promoter region of the GNAQ gene, and hypothesize that the two may be key factors in regulating the differential expression of GNAQ under different photoperiods, thus regulating the hypothalamus-pituitary-gonadal axis (HPGA) through the seasonal estrus in sheep. The results of this study will provide some new information to understand the function of epigenetic modifications in reproduction in sheep.


Asunto(s)
Epigénesis Genética , Fotoperiodo , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Histonas/genética , Histonas/metabolismo , Hipotálamo/metabolismo , Mamíferos/metabolismo , Ovinos/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11
19.
BMC Vet Res ; 19(1): 247, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008716

RESUMEN

Dietary selenium (Se) sources affects the structure of the rumen microbial community and rumen fermentation. This study evaluated the effects of sodium selenite (SS) and bio-nanostructured selenium (SeNSM) on rumen fermentation and structure of rumen microbial community of lactating Barki ewes. Twenty one lactating Barki ewes were assigned into three groups based on their body weight and milk yield. The experiment lasted for 50 days, whenever, the control group was fed basal diet; group SS received basal diets plus sodium selenite as inorganic source of Se; and group SeNSM received basal diet plus organic selenium bio-nanostructured. Ruminal pH and volatile Fatty Acids (VFA) was lower (P < 0.05) in SeNSM group compared to control. Principle Coordinate Analysis separated the microbial communities into three clusters based on feeding treatment. The bacterial community was dominated by phylum Bacteroidetes and Firmicutes that were affected (P < 0.05) by Se sources. Specifically Bacteriodetes was higher (P < 0.05) in SS and SeNSM groups; and Firmicutes was higher (P < 0.05) in the control group. Moreover, the predominant bacterial genera were Prevotella, Rikenellaceae RC9 gut group, Unclassified_Bacteroidales, which were higher (P < 0.05) in SeNSM group. The methanogenic community belonged to phylum Euryarchaeota and was significantly decreased (P < 0.05) by Se supplementation. Principal component analysis based on rumen fermentation parameters, and relative abundances of bacteria and methanogens revealed three distinct clusters. These findings suggest that Se supplementation affected the relative abundances of dominant bacterial groups, declined rumen methanogens and SeNSM supplementation showed some positive impacts on some fibrolytic bacteria.


Asunto(s)
Microbiota , Selenio , Ovinos , Animales , Femenino , Selenito de Sodio/farmacología , Suplementos Dietéticos/análisis , Selenio/farmacología , Selenio/metabolismo , Rumen/metabolismo , Lactancia , Fermentación , Dieta/veterinaria , Bacterias , Firmicutes
20.
Front Microbiol ; 14: 1273714, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029081

RESUMEN

Prickly Ash Seeds (PAS), as a traditional Chinese medicinal herb, have pharmacological effects such as anti-asthma, anti-thrombotic, and anti-bacterial, but their impact on gut microbiota is still unclear. This study used a full-length 16 s rRNA gene sequencing technique to determine the effect of adding PAS to the diet on the structure and distribution of gut microbiota in Hu sheep. All lambs were randomly divided into two groups, the CK group was fed with a basal ration, and the LZS group was given a basal diet with 3% of PAS added to the ration. The levels of inflammatory factors (IL-10, IL-1ß, and TNF-α) in intestinal tissues were measured by enzyme-linked immunosorbent assay (ELISA) for Hu sheep in the CK and LZS group. The results indicate that PAS can increase the diversity and richness of gut microbiota, and can affect the community composition of gut microbiota. LEfSe analysis revealed that Verrucomicrobiota, Kiritimatiella, WCHB 41, and uncultured_rumen_bacterium were significantly enriched in the LZS group. KEGG pathway analysis found that LZS was significantly higher than the CK group in the Excretory system, Folding, sorting and degradation, and Immune system pathways (p < 0.05). The results of ELISA assay showed that the level of IL-10 was significantly higher in the LZS group than in the CK group (p < 0.05), and the levels of TNF-α and IL-1ß were significantly higher in the CK group than in the LZS group (p < 0.05). LEfSe analysis revealed that the dominant flora in the large intestine segment changed from Bacteroidota and Gammaproteobacteria to Akkermansiaceae and Verrucomicrobiae after PAS addition to Hu sheep lambs; the dominant flora in the small intestine segment changed from Lactobacillales and Aeriscardovia to Kiritimatiellae and WCHB1 41. In conclusion, the addition of PAS to sheep diets can increase the number and types of beneficial bacteria in the intestinal tract, improve lamb immunity, and reduce intestinal inflammation. It provides new insights into healthy sheep production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA