Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(5): 122, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642121

RESUMEN

KEY MESSAGE: Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.


Asunto(s)
Lagerstroemia , Transcriptoma , Triterpenos , Transcriptoma/genética , Lagerstroemia/genética , Lagerstroemia/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica
2.
Prostate ; 84(7): 666-681, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38444115

RESUMEN

BACKGROUND: Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) leads to severe discomfort in males and loss of sperm quality. Current therapeutic options have failed to achieve satisfactory results. Sodium butyrate (NaB) plays a beneficial role in reducing inflammation, increasing antioxidant capacities, and improving organ dysfunction; additionally NaB has good safety prospects and great potential for clinical application. The purpose of the current research was to study the effect of NaB on CP/CPPS and the underlying mechanisms using a mouse model of experimental autoimmune prostatitis (EAP) mice. METHODS: The EAP mouse model was successfully established by subcutaneously injecting a mixture of prostate antigen and complete Freund's adjuvant. Then, EAP mice received daily intraperitoneal injections of NaB (100, 200, or 400 mg/kg/day) for 16 days, from Days 26 to 42. We then explored anti-inflammatory potential mechanisms of NaB by studying the effects of Nrf2 inhibitor ML385 and HO-1 inhibitor zinc protoporphyrin on prostate inflammation and pelvic pain using this model. On Day 42, hematoxylin-eosin staining and dihydroethidium staining were used to evaluate the histological changes and oxidative stress levels of prostate tissues. Chronic pelvic pain was assessed by applying Von Frey filaments to the lower abdomen. The levels of inflammation-related cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor were detected by enzyme-linked immunosorbent assay. The regulation of Nrf2/HO-1 signaling pathway and the expression of NLRP3 inflammasome-related protein in EAP mice were detected by western blot analysis assay. RESULTS: Compared with the EAP group, chronic pain development, histological manifestations, and cytokine levels showed that NaB reduced the severity of EAP. NaB treatment could inhibit NLRP3 inflammasome activation. Mechanism studies showed that NaB intervention could alleviate oxidative stress in EAP mice through Nrf2/HO-1 signal pathway. Nrf2/HO-1 pathway inhibitors can inhibit NaB -mediated oxidative stress. The inhibitory effect of NaB on the activation of NLRP3 inflammasome and anti-inflammatory effect can also be blocked by Nrf2/HO-1 pathway. CONCLUSIONS: NaB treatment can alleviates prostatic inflammation and pelvic pain associated with EAP by inhibiting oxidative stress and NLRP3 inflammasome activation via the Nrf2/HO-1 pathway. NaB has the potential as an effective agent in the treatment of EAP.


Asunto(s)
Ácido Butírico , Prostatitis , Animales , Masculino , Antiinflamatorios/uso terapéutico , Ácido Butírico/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Inflamación , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Dolor Pélvico/tratamiento farmacológico , Prostatitis/patología
3.
Front Nutr ; 11: 1372982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533461

RESUMEN

A growing body of literature underlines the fundamental role of gut microbiota in the occurrence, treatment, and prognosis of cancer. In particular, the activity of gut microbial metabolites (also known as postbiotics) against different cancer types has been recently reported in several studies. However, their in-depth molecular mechanisms of action and potential interactions with standard chemotherapeutic drugs remain to be fully understood. This research investigates the antiproliferative activities of postbiotics- short-chain fatty acid (SCFA) salts, specifically magnesium acetate (MgA), sodium propionate (NaP), and sodium butyrate (NaB), against the AGS gastric adenocarcinoma cells. Furthermore, the potential synergistic interactions between the most active SCFA salt-NaB and the standard drug dexamethasone (Dex) were explored using the combination index model. The molecular mechanisms of the synergy were investigated using reactive oxygen species (ROS), flow cytometry and biochemometric and liquid chromatography-mass spectrometry (LC-MS)-driven proteomics analyses. NaB exhibited the most significant inhibitory effect (p < 0.05) among the tested SCFA salts against the AGS gastric cancer cells. Additionally, Dex and NaB exhibited strong synergy at a 2:8 ratio (40 µg/mL Dex + 2,400 µg/mL NaB) with significantly greater inhibitory activity (p < 0.05) compared to the mono treatments against the AGS gastric cancer cells. MgA and NaP reduced ROS production, while NaB exhibited pro-oxidative properties. Dex displayed antioxidative effects, and the combination of Dex and NaB (2,8) demonstrated a unique pattern, potentially counteracting the pro-oxidative effects of NaB, highlighting an interaction. Dex and NaB individually and in combination (Dex:NaB 40:2400 µg/mL) induced significant changes in cell populations, suggesting a shift toward apoptosis (p < 0.0001). Analysis of dysregulated proteins in the AGS cells treated with the synergistic combination revealed notable downregulation of the oncogene TNS4, suggesting a potential mechanism for the observed antiproliferative effects. These findings propose the potential implementation of NaB as an adjuvant therapy with Dex. Further investigations into additional combination therapies, in-depth studies of the molecular mechanisms, and in vivo research will provide deeper insights into the use of these postbiotics in cancer, particularly in gastric malignancies.

4.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338851

RESUMEN

The most commonly used chemotherapy for colorectal cancer (CRC) is the application of 5-fluorouracil (5-FU). Inhibition of thymidylate synthase (TYMS) expression appears to be a promising strategy to overcome the decreased sensitivity to 5-FU caused by high expression of TYMS, which can be induced by 5-FU treatment. Several compounds have been shown to potentially inhibit the expression of TYMS, but it is unclear whether short-chain fatty acids (SCFAs), which are naturally produced by bacteria in the human intestine, can regulate the expression of TYMS. Sodium butyrate (NaB) is the most widely known SCFA for its beneficial effects. Therefore, we investigated the enhancing effects on inhibition of cell viability and induction of apoptosis after co-treatment of NaB with 5-FU in two CRC cell lines, HCT116 and LoVo. This study suggests that the effect of NaB in improving therapeutic sensitivity to 5-FU in CRC cells may result from a mechanism that strongly inhibits the expression of TYMS. This study also shows that NaB inhibits the migration of CRC cells and can cause cell cycle arrest in the G2/M phase. These results suggest that NaB could be developed as a potential therapeutic adjuvant to improve the therapeutic effect of 5-FU in CRC.


Asunto(s)
Neoplasias Colorrectales , Timidilato Sintasa , Humanos , Ácido Butírico/farmacología , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Apoptosis
5.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38285605

RESUMEN

This study was conducted to investigate the effects of sodium butyrate (SB) supplementation on growth performance, intestinal barrier functions, and intestinal bacterial communities in sucking lambs. Forty lambs of 7 d old, with an average body weight (BW) of 4.46 ±â€…0.45 kg, were allocated into the control (CON) or SB group, with each group having five replicate pens (n = 5). Lambs were orally administered SB at 1.8 mL/kg BW in the SB group or the same volume of saline in the CON group. Treatments were administered from 7 to 35 d of age, when one lamb from each replicate was slaughtered to obtain intestinal tissues and contents. The results showed that supplementation with SB tended to increase the BW (P = 0.079) and the starter intake (P = 0.089) of lambs at 35 d of age. The average daily gain of lambs in the SB group was significantly greater than that in the CON group (P < 0.05). The villus height of jejunum in the SB group was markedly higher (P < 0.05) than that in the CON group. In ileum, lambs in the SB group had lower (P < 0.05) crypt depth and greater (P < 0.05) villus-to-crypt ratio than those in the CON group. Compared with the CON group, the mRNA and protein expressions of Claudin-1 and Occludin were increased (P < 0.05) in the SB group. Supplementation with SB decreased the relative abundances of pathogenic bacteria, including Clostridia_UCG-014 (P = 0.094) and Romboutsia (P < 0.05), which were negatively associated with the intestinal barrier function genes (P < 0.05). The relative abundance of Succiniclasticum (P < 0.05) was higher in the SB group, and it was positively correlated with the ratio of villi height to crypt depth in the jejunum (P < 0.05). Compared with the CON group, the function "Metabolism of Cofactors and Vitamins" was increased in the SB group lambs (P < 0.05). In conclusion, SB orally administration during suckling period could improve the small intestine development and growth performance of lambs by inhibiting the harmful bacteria (Clostridia_UCG-014, Romboutsia) colonization, and enhancing intestinal barrier functions.


It is well known that butyrate and its derivatives have various benefits for the rumen development of ruminants, whereas its effects on the small intestine in preweaned lambs have received little attention. Therefore, the present study investigated the effects of sodium butyrate (SB) supplementation on growth performance, intestinal barrier functions, and intestinal bacterial communities in sucking lambs. The results indicated that SB dietary treatment has beneficial effects on the small intestine development and growth performance of suckling lambs.


Asunto(s)
Intestino Delgado , Intestinos , Animales , Ovinos , Ácido Butírico/farmacología , Mucosa Intestinal/metabolismo , Oveja Doméstica , Peso Corporal , Alimentación Animal/análisis , Suplementos Dietéticos , Dieta/veterinaria
6.
Fish Physiol Biochem ; 50(2): 745-755, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38261258

RESUMEN

This study investigated the effects of dietary sodium butyrate (NaB) on growth, serum biochemical indices, intestine histology, and gut microbiota of largemouth bass (Micropterus salmoides). A basal diet was formulated and used as the control diet (Con), and five additional diets were prepared by supplementing NaB (50%) in the basal diet at 2.0, 4.0, 8.0, 12.0, and 16.0 g/kg inclusion (NaB-2, NaB-4, NaB-8, NaB-12, and NaB-16 diets). Then, the six diets were fed to triplicate groups of largemouth bass juveniles (2.4 ± 0.1 g) for 8 weeks. NaB supplementation linearly and quadratically affected weight gain (WG) and feed intake (FI) (P < 0.05). The NaB-16 group displayed lower WG (- 6.8%) and FI than the Con group (P < 0.05), while no differences were found in WG and feed conversion ratio between the other NaB groups and Con group (P > 0.05). Serum alkaline phosphatase and lysozyme activities were higher in the NaB groups (P < 0.05), and D-lactate content was lower in the NaB-12 group (P < 0.05) than the control. Intestinal lipase activity in NaB-2, NaB-4 group, and villi width in NaB-8 group were also higher than those in the Con group (P < 0.05). Compared to the Con group, the intestinal abundances of Firmicutes and Mycoplasma were increased and the abundances of Proteobacteria, Achromobacter and Plesiomonas were decreased in NaB-4 and NaB-16 groups (P < 0.05). In conclusion, dietary NaB did not promote the growth of juvenile largemouth bass, but positively modulated the intestinal microbial community.


Asunto(s)
Lubina , Microbiota , Sodio en la Dieta , Animales , Ácido Butírico/farmacología , Sodio en la Dieta/metabolismo , Dieta/veterinaria , Intestinos
7.
J Sci Food Agric ; 104(7): 4058-4069, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270478

RESUMEN

BACKGROUND: Intestinal development and function are critical to maintaining sustained broiler growth. The present study aimed to evaluate the effects of coated sodium butyrate (CSB) and vitamin D3 (VD3) on the intestinal immunity, barrier, oxidative stress and microflora in early-stage broilers. In total, 192 one-day-old broilers were assigned to a 2 × 2 factorial design including two dietary supplements at two different levels, in which the main effects were VD3 (3000 or 5000 IU kg-1) and CSB (0 or 1 g kg-1). RESULTS: The results showed that CSB supplementation increased ileal goblet cells (GCs) numbers, villus height and decreased crypt depth in broilers. CSB increased ileal proliferating cell nuclear antigen expression and high-level VD3 decreased cluster of differentiation 3 expression. CSB reduced serum d-lactate, endotoxin (ET), adrenocorticotropic hormone, corticosterone and malondialdehyde (MDA) concentrations and increased total antioxidant capacity (T-AOC) level. Meanwhile, high-level VD3 decreased serum ET concentration. Furthermore, CSB increased ileal T-AOC, lysozyme (LYZ) and transforming growth factor (TGF)-ß and decreased MDA, whereas high-level VD3 decreased ileal MDA and increased secretory immunoglobulin A. CSB up-regulated ileal claudin1, superoxide dismutase 1, TGF-ß and LYZ mRNA expression and down-regulated interleukin-1ß mRNA expression. CSB combined with high-level VD3 increased ileal Faecalibaculum abundance. Spearman correlation analysis showed that Faecalibaculum was related to the immune and barrier function. CONCLUSION: Dietary supplementation with CSB and high-level VD3 improved early gut health in broilers by promoting intestinal development, enhancing antioxidant capacity, strengthening barrier function and enhancing the favorable composition of the gut bacterial flora. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Dieta , Animales , Dieta/veterinaria , Antioxidantes/metabolismo , Pollos/metabolismo , Ácido Butírico/metabolismo , Colecalciferol/farmacología , Suplementos Dietéticos/análisis , ARN Mensajero/metabolismo , Alimentación Animal/análisis
8.
Fish Physiol Biochem ; 50(1): 273-293, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38099983

RESUMEN

Investigated mitigating effects of sodium butyrate (SB) on the inflammatory response, oxidative stress, and growth inhibition of common carp (Cyprinus carpio) (2.94 ± 0.2 g) are caused by glycinin. Six isonitrogenous and isoenergetic diets were prepared, in which the basal diet was the control diet and the Gly group diet contained 80 g/kg glycinin, while the remaining 4 diets were supplemented with 0.75, 1.50, 2.25, and 3.00 g/kg SB, respectively. The feeding trial lasted for 8 weeks, and the results indicated that supplementing the diet with 1.50-2.25 g/kg of SB significantly improved feed efficiency and alleviated the growth inhibition induced by glycinin. Hepatopancreas and intestinal protease activities and the content of muscle crude protein were significantly decreased by dietary glycinin, but supplement 1.50-2.25 g/kg SB partially reversed this result. SB (1.50-2.25 g/kg) increased the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the hepatopancreas and reduced the activities of AST and ALT in the serum. Glycinin significantly reduced immune and antioxidant enzyme activities, whereas 1.50-2.25 g/kg SB reversed these adverse effects. Furthermore, compared with the Gly group, supplement 1.50-2.25 g/kg SB eminently up-regulated the TGF-ß and IL-10 mRNA, and down-regulated the IL-1ß, TNF-α, and NF-κB mRNA in hepatopancreas, mid-intestine (MI), and distal intestine (DI). Meanwhile, supplement 1.50-2.25 g/kg SB activated the Keap1-Nrf2-ARE signaling pathway and upregulate CAT, SOD, and HO-1 mRNA expression in hepatopancreas, MI, and DI. Summarily, glycinin induced inflammatory response, and oxidative stress of common carp ultimately decreased the digestive function and growth performance. SB partially mitigated these adverse effects by activating the Keap1-Nrf2-ARE signaling pathway and inhibiting the NF-κB signaling pathway.


Asunto(s)
Carpas , Globulinas , Proteínas de Soja , Animales , Carpas/metabolismo , Ácido Butírico/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , Antioxidantes/farmacología , Antioxidantes/metabolismo , Estrés Oxidativo , ARN Mensajero/metabolismo , Alimentación Animal/análisis
9.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139420

RESUMEN

This study aimed to investigate the effects of low-protein (LP) diets supplemented with sodium butyrate (SB), medium-chain fatty acids (MCT), or n-3 polyunsaturated fatty acids (n-3 PUFA) on the growth performance, immune function, and the microbiome of weaned piglets. A total of 120 healthy weaned piglets ((Landrace × Large White × Duroc); 7.93 ± 0.7 kg initial body weight), were randomly divided into five groups. Each group consisted of six replications with four piglets per replication. Dietary treatments included control diet (CON); LP diet (LP); LP + 0.2% SB diet (LP + SB); LP + 0.2% MCT diet (LP + MCT); and LP + PUFA diet (LP + PUFA). The experimental period lasted for 4 weeks. Compared with the CON diet, LP, LP + SB, LP + MCT, and LP + PUFA diets decreased the final weight and average daily gain (ADG) of piglets (p < 0.05). There were lower (p < 0.05) concentrations of IL-8 and higher (p < 0.05) Glutathione peroxidase (GSH-Px) activity in the plasma of piglets fed with LP + SB, LP + MCT, and LP + PUFA diets than those fed with the LP diet. The piglets in the LP + SB and LP + PUFA groups had lower IKK-alpha (IKKa) mRNA expression in the colonic mucosa compared with those in the CON and LP groups (p < 0.05). The mRNA expression of TLR4 in the colonic mucosa of piglets in the LP + SB, LP + MCT, and LP + PUFA groups was decreased when compared with the CON and LP groups (p < 0.05). The LP + MCT diets increased the gene expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosa of piglets compared with CON, LP, and LP + SB diets (p < 0.05). The abundance of Erysipelotrichaceae in the colonic microbiome of piglets in the LP group was higher than that in the other four groups (p < 0.05). Collectively, this study showed that LP diets supplemented with SB, MCT, or n-3 PUFA reduced plasma inflammatory factor levels, increased plasma GSH-Px activity, and declined mRNA expression of TLR4 and IKKa in the colonic epithelium, whereas it reduced the abundance of Erysipelotrichaceae in the colon of piglets.


Asunto(s)
Ácidos Grasos Omega-3 , Microbiota , Animales , Porcinos , Ácido Butírico , Dieta con Restricción de Proteínas , Ácidos Grasos Omega-3/farmacología , Receptor Toll-Like 4/genética , Ácidos Grasos , Antioxidantes/metabolismo , ARN Mensajero , Inmunidad
10.
Front Immunol ; 14: 1265963, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022555

RESUMEN

The aim of this study was to investigate the effects of sodium butyrate (SB) supplementation on growth performance, antioxidant enzyme activities, inflammatory factors, and hypoxic stress in largemouth bass (Micropterus salmoides). Diets were supplemented with different doses of SB at 0 (SB0), 0.5 (SB1), 1.0 (SB2) and 2.0 (SB3) g/kg. The hypoxic stress experiment was performed after 56 days of culture. The results showed that compared with the SB0 group, the final body weight, weight gain rate and protein deposition rate of the SB3 group were significantly increased (P<0.05), while FCR was significantly decreased (P<0.05). The contents of dry matter, crude lipids, and ash in the SB2 group were significantly higher than those in the SB0 group (P<0.05). The urea level was significantly decreased (P<0.05), and the glucose content was significantly increased (P<0.05) in the SB supplement group. Compared with the SB0 group, the SB2 group had significant reductions in the levels of serum triglyceride, cholesterol, elevated-density lipoprotein cholesterol, and low-density lipoprotein (P<0.05), and significant reductions in the levels of liver alkaline phosphatase and malondialdehyde (P<0.05). The total antioxidant capacity of the SB1 group was higher than that of other groups (P<0.05). Compared with the SB0 group, the mRNA expression of TLR22, MyD88, TGF-ß1, IL-1ß and IL-8 in the SB2 group significantly decreased (P<0.05). The cumulative mortality rate was significantly decreased in the SB2 and SB3 groups in comparison with that in the SB0 group after three hours of hypoxic stress (P<0.05). In a 56-day feeding trial, SB enhanced largemouth bass growth by increasing antioxidant enzyme activity and inhibiting TLR22-MyD88 signaling, therefore increasing cumulative mortality from hypoxic stress in largemouth bass.


Asunto(s)
Antioxidantes , Lubina , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Lubina/metabolismo , Ácido Butírico/farmacología , Suplementos Dietéticos , Factor 88 de Diferenciación Mieloide/metabolismo
11.
Front Cell Infect Microbiol ; 13: 1271912, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886667

RESUMEN

The Chinese soft-shelled turtle (Pelodiscus sinensis) has become increasingly susceptible to frequent diseases with the intensification of farming, which severely impacts the development of the aquaculture industry. Sodium butyrate (SB) is widely used as a feed additive due to its promotion of growth, enhancement of immune function, and antioxidative properties. This study aimed to investigate the effects of dietary SB on the growth performance, immune function, and intestinal microflora of Chinese soft-shelled turtles. A total of 300 Chinese soft-shelled turtles (mean weight: 11.36 ± 0.21g) were randomly divided into four groups with three parallel sets in each group. Each group was fed a diet supplemented with 0%, 0.005%, 0.01%, or 0.02% SB for 60 days. The results demonstrated an upward trend in weight gain rate (WGR) and specific growth rate (SGR) with increasing SB supplementation, and the experimental group fed with 0.02% SB showed a significant increase in WGR and SGR compared to other groups (P< 0.05). These levels of SB also decreased the levels of feed conversion ratio (FCR) and the total cholesterol (TC) content of Chinese soft-shelled turtles, and the 0.02% SB was significantly lower than that of other groups (P< 0.05). The activity of complement protein in vivo increased with increases in SB content, and the activities of complement C3 and C4 reached the highest level with 0.02% SB. The species abundance of the experimental group D fed with 0.02% SB was significantly higher than that of other groups (P< 0.05). Furthermore, the relative abundance of Clostridium sensu stricto 1 was significantly increased with 0.02% SB (P< 0.05). In conclusion, adding 0.02% SB to the diet improves the growth performance, feed digestion ability, and intestinal microbiota of Chinese soft-shelled turtles.


Asunto(s)
Microbioma Gastrointestinal , Sodio en la Dieta , Tortugas , Animales , Ácido Butírico/metabolismo , Tortugas/metabolismo , Sodio en la Dieta/metabolismo , Dieta/veterinaria , Inmunidad
12.
Trials ; 24(1): 489, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528450

RESUMEN

BACKGROUND: Obesity is a multifaceted disease characterized by an abnormal accumulation of adipose tissue. Growing evidence has proposed microbiota-derived metabolites as a potential factor in the pathophysiology of obesity and related metabolic conditions over the last decade. As one of the essential metabolites, butyrate affects several host cellular mechanisms related to appetite sensations and weight control. However, the effects of butyrate on obesity in humans have yet to be studied. Thus, the present study was aimed to evaluate the effects of sodium butyrate (SB) supplementation on the expression levels of peroxisome proliferator activated-receptor (PPAR) gamma coactivator-1α (PGC-1α), PPARα and uncoupling protein 1 (UCP1) genes, serum level of glucagon-like peptide (GLP1), and metabolic parameters, as well as anthropometric indices in obese individuals on a weight loss diet. METHODS: This triple-blind randomized controlled trial (RCT) will include 50 eligible obese subjects aged between 18 and 60 years. Participants will be randomly assigned into two groups: 8 weeks of SB (600 mg/day) + hypo-caloric diet or placebo (600 mg/day) + hypo-caloric diet. At weeks 0 and 8, distinct objectives will be pursued: (1) PGC-1α, PPARα, and UCP1 genes expression will be evaluated by real-time polymerase chain reaction; (2) biochemical parameters will be assayed using enzymatic methods; and (3) insulin and GLP1 serum level will be assessed by enzyme-linked immunosorbent assay kit. DISCUSSION: New evidence from this trial may help fill the knowledge gap in this realm and facilitate multi-center clinical trials with a substantially larger sample size. TRIAL REGISTRATION: Iranian Registry of Clinical Trials: IRCT20190303042905N2 . Registered on 31 January 2021.


Asunto(s)
Dieta Reductora , PPAR alfa , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/uso terapéutico , Ácido Butírico/uso terapéutico , Péptido 1 Similar al Glucagón/uso terapéutico , Proteína Desacopladora 1/genética , Factores de Transcripción , Obesidad/diagnóstico , Obesidad/tratamiento farmacológico , Obesidad/genética , Suplementos Dietéticos/efectos adversos , Ensayos Clínicos Controlados Aleatorios como Asunto
13.
J Hazard Mater ; 459: 132013, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37467604

RESUMEN

Deoxynivalenol (DON) is one of the most plentiful trichothecenes occurring in food and feed, which brings severe health hazards to both animals and humans. This study aims to investigate whether sodium butyrate (NaB) can protect the porcine intestinal barrier from DON exposure through promoting mitochondrial homeostasis. In a 4-week feeding experiment, 28 male piglets were allocated according to a 2 by 2 factorial arrangement of treatments with the main factors including supplementation of DON (< 0.8 vs. 4.0 mg/kg) and NaB (0.0 vs. 2 g/kg) in a corn/soybean-based diet. Dietary NaB supplementation mitigated the damaged mitochondrial morphology within the jejunal mucosa and the disrupted gut epithelial tight junctions irritated by DON. In IPEC-J2 cells, we found efficient recovery of the intestinal epithelial barrier occurred following NaB administration. This intestinal barrier reparation was facilitated by NaB-induced PCK2-mediated glyceroneogenesis and restoration of mitochondrial structure and function. In conclusion, we elucidated a mechanism of PCK2-mediated improvement of mitochondrial function by NaB to repair porcine intestinal barrier disruption during chronic DON exposure. Our findings highlight the promise of NaB for use in protecting against DON-induced gut epithelial tight junction disruption in piglets.


Asunto(s)
Tricotecenos , Humanos , Porcinos , Animales , Masculino , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Tricotecenos/toxicidad , Mucosa Intestinal/metabolismo , Mitocondrias , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo
14.
J Transl Med ; 21(1): 451, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420234

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) development is associated with disturbances in the gut microbiota and related metabolites. Butyric acid is one of the short-chain fatty acids (SCFAs), which has been found to possess a potential antidiabetic effect. However, whether butyrate has a role in DR remains elusive. This study aimed to investigate the effect and mechanism of sodium butyrate supplementation on DR. METHODS: C57BL/6J mice were divided into three groups: Control group, diabetic group, and diabetic with butyrate supplementation group. Type 1 diabetic mouse model was induced by streptozotocin. Sodium butyrate was administered by gavage to the experimental group daily for 12 weeks. Optic coherence tomography, hematoxylin-eosin, and immunostaining of whole-mount retina were used to value the changes in retinal structure. Electroretinography was performed to assess the retinal visual function. The tight junction proteins in intestinal tissue were evaluated using immunohistochemistry. 16S rRNA sequencing and LC-MS/MS were performed to determine the alteration and correlation of the gut microbiota and systemic SCFAs. RESULTS: Butyrate decreased blood glucose, food, and water consumption. Meanwhile, it alleviated retinal thinning and activated microglial cells but improved electroretinography visual function. Additionally, butyrate effectively enhanced the expression of ZO-1 and Occludin proteins in the small intestine. Crucially, only butyric acid, 4-methylvaleric acid, and caproic acid were significantly decreased in the plasma of diabetic mice and improved after butyrate supplementation. The deeper correlation analysis revealed nine genera strongly positively or negatively correlated with the above three SCFAs. Of note, all three positively correlated genera, including norank_f_Muribaculaceae, Ileibacterium, and Dubosiella, were significantly decreased in the diabetic mice with or without butyrate treatment. Interestingly, among the six negatively correlated genera, Escherichia-Shigella and Enterococcus were increased, while Lactobacillus, Bifidobacterium, Lachnospiraceae_NK4A136_group, and unclassified_f_Lachnospiraceae were decreased after butyrate supplementation. CONCLUSION: Together, these findings demonstrate the microbiota regulating and diabetic therapeutic effects of butyrate, which can be used as a potential food supplement alternative to DR medicine.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Microbioma Gastrointestinal , Animales , Ratones , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Retinopatía Diabética/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , ARN Ribosómico 16S , Cromatografía Liquida , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/uso terapéutico
15.
Cell Commun Signal ; 21(1): 95, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37143096

RESUMEN

The higher prevalence of metabolic syndrome (MetS) in women after menopause is associated with a decrease in circulating 17ß-oestradiol. To explore novel treatments for MetS in women with oestrogen deficiency, we studied the effect of exogenous butyrate on diet-induced obesity and metabolic dysfunctions using ovariectomized (OVX) mice as a menopause model. Oral administration of sodium butyrate (NaB) reduced the body fat content and blood lipids, increased whole-body energy expenditure, and improved insulin sensitivity. Additionally, NaB induced oestrogen receptor alpha (ERα) expression, activated the phosphorylation of AMPK and PGC1α, and improved mitochondrial aerobic respiration in cultured skeletal muscle cells. In conclusion, oral NaB improves metabolic parameters in OVX mice with diet-induced obesity. Oral supplementation with NaB might provide a novel therapeutic approach to treating MetS in women with menopause. Video Abstract.


Asunto(s)
Receptor alfa de Estrógeno , Síndrome Metabólico , Ratones , Femenino , Animales , Receptor alfa de Estrógeno/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Dieta Alta en Grasa , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Ácido Butírico/metabolismo , Ácido Butírico/farmacología , Ácido Butírico/uso terapéutico , Receptores de Estrógenos/metabolismo , Ratones Endogámicos C57BL
16.
Br Poult Sci ; 64(4): 529-533, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37133204

RESUMEN

1. A dose‒response experiment with six supplemental levels of coated sodium butyrate (CSB) (0, 250, 500, 750, 1,000, and 1,250 mg/kg) was conducted to investigate its effects on growth performance, intestinal morphology, and caecal short-chain fatty acids of growing Pekin ducks aged 14 to 35 d. A total of 288 male 14-d-old Pekin ducks were randomly allocated to six dietary treatments. Each treatment had eight replicate pens of six ducks per pen.2. The daily weight gain, daily feed intake, and feed/gain of ducks from 14 to 35 d of age were not influenced by increasing CSB levels. The relative weight and length of the duodenum, jejunum, and caecum increased linearly or quadratically as supplemental CSB increased (P < 0.05).3. For the ileum and caecum, the villus height and height/crypt depth increased linearly or quadratically, and the villus crypt depth decreased linearly as the supplemental CSB increased (P < 0.05). As supplemental CSB increased, the goblet cell numbers of the ileum increased and decreased and changed quadratically (P < 0.05), but caecal goblet cell number increased quadratically (P < 0.05). Increasing the CSB level linearly or quadratically elevated the concentrations of propionic acid and butyric acid in the caecum (P < 0.05).4. It was concluded that CSB can be used as a safe and effective feed additive to promote the intestinal integrity of growing ducks by improving intestinal morphology and increasing the concentration of caecal short-chain fatty acids.


Asunto(s)
Suplementos Dietéticos , Patos , Masculino , Animales , Ácido Butírico , Patos/fisiología , Pollos , Dieta/veterinaria , Ciego , Alimentación Animal/análisis
17.
Poult Sci ; 102(6): 102658, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37075488

RESUMEN

This study aimed to investigate the effects of dietary sodium butyrate (SB) supplementation on the reproductive performance of female broiler breeders under intensive rearing conditions and to analyze antioxidant capacity, immune function, and intestinal barrier function of the female breeders and their offspring. A total of 96,000 40-wk-old Ross308 female broiler breeders were divided into the control (CON) and SB groups, each with 6 replicates of 8,000 birds. Each house with similar production performance characteristics was considered a replicate. The experiment lasted for 20 wk, whereupon sampling took place. Results showed that SB improved the egg production performance, egg quality of broiler breeders, and hatchability (P < 0.05). Maternal supplementation with SB substantially increased serum immunoglobulin A levels in broiler breeders and offspring (both P = 0.04) and offspring immunoglobulin G (P < 0.001). The levels of interleukin-1ß (P < 0.001) and interleukin-4 (P = 0.03) in the offspring were downregulated, while the total superoxide dismutase in the offspring and the eggs increased (P < 0.05). The serum biochemical components in breeders and offspring were altered by SB, as evidenced by the reduction in triglycerides, total cholesterol, and high- and low-density lipoproteins (P < 0.05). The intestinal morphology of broiler breeders and offspring also improved by the SB with the decreasing the jejunal crypt depth (P = 0.04) and increasing villus height in offspring (P = 0.03). Maternal jejunal and ileal intestinal barrier-related genes were also shown to be significantly affected by SB. Furthermore, SB altered the microbial diversity in maternal cecal contents, thus increasing the abundance of Lachnospiraceae (P = 0.004) and Ruminococcaceae (P = 0.03). Dietary SB enhanced the reproductive performance and egg quality of broiler breeders and improved the antioxidant capacity and immune function of broiler breeders and offspring, with the benefits potentially arising from the regulation of the maternal intestinal barrier and gut microbiota by SB.


Asunto(s)
Microbiota , Sodio en la Dieta , Animales , Femenino , Antioxidantes , Ácido Butírico , Pollos/fisiología , Dieta/veterinaria , Cloruro de Sodio Dietético , Alimentación Animal/análisis , Inmunidad , Suplementos Dietéticos/análisis
18.
Appl Microbiol Biotechnol ; 107(10): 3291-3304, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37042986

RESUMEN

The objective of this study was to systematically investigate how sodium butyrate (SB) affects the gastrointestinal bacteria in newborn calves at different stages before weaning. Forty female newborn Holstein calves (4-day-old, 40 ± 5 kg of body weight) were randomly divided into four groups; each group was supplemented with four SB doses: 0, 15, 30, and 45 g/day (ten replicates) in SB0, SB15, SB30, and SB45 groups, respectively. SB was fed with milk replacer from day 4 to day 60. Rumen fluid and feces were collected on days 2, 14, 28, 42, and 60 for 16S rRNA high-throughput sequencing. Data were analyzed in a complete randomized design and analyzed on the online platform of Majorbio Cloud Platform. The results showed that SB significantly increased the α-diversity in feces, especially Shannon and Chao indices in SB45 and SB30 at day 60 more than in SB15 (P < 0.05). Additionally, SB significantly enhanced Firmicutes growth from day 2 to 28 and also increased Bacteroides abundance from day 28 to 42 in rumen and feces (P < 0.05). SB also significantly inhibited Proteobacteria abundance in rumen and feces during the study period (P < 0.05). SB also promoted some potential beneficial bacterial abundance, including Prevotella, Lachnospiraceae, Clostridium, Ruminococcus, and Muribaculaceae (P < 0.05). Additionally, Escherichia-Shigella abundance at SB0 was significantly lower than in the other groups (P < 0.05). In conclusion, this study firstly reported a dynamic curve showing of the SB effects on bacteria in calves before weaning. This study provides valuable evidence for the development of the gastrointestinal tract of the calves in the early stage of the life. SB supplementation improved the gastrointestinal health by regulating the bacterial populations. KEY POINTS: • The gastrointestinal tract of calves has been improved after the SB supplementation. • Microbes were the vital influential factor in the development of calves. • Intervention before weaning is an effective strategy for calf health.


Asunto(s)
Suplementos Dietéticos , Leche , Animales , Bovinos , Femenino , Alimentación Animal/análisis , Bacterias/genética , Peso Corporal , Ácido Butírico/farmacología , Dieta/veterinaria , ARN Ribosómico 16S/genética , Rumen/microbiología , Destete
19.
Front Immunol ; 14: 1142915, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969242

RESUMEN

Introduction: This study was conducted to assess the effects of dietary supplementation of coated sodium butyrate (CSB) on the growth performance, serum antioxidant, immune performance, and intestinal microbiota of laying ducks. Methods: A total of 120 48-week-old laying ducks were randomly divided into 2 treatment groups: the control group (group C fed a basal diet) and the CSB-treated group (group CSB fed the basal diet + 250 g/t of CSB). Each treatment consisted of 6 replicates, with 10 ducks per replicate, and the trial was conducted for 60 days. Results: Compared with the group C, the group CSB showed a significant increase in the laying rate (p<0.05) of the 53-56 week-old ducks. Additionally, the serum total antioxidant capacity, superoxide dismutase activity and immunoglobulin G level were significantly higher (p<0.05), while the serum malondialdehyde content and tumor necrosis factor (TNF)-a level were significantly lower (p<0.05) in the serum of the group CSB compared to the group C. Moreover, the expression of IL-1b and TNF-a in the spleen of the group CSB was significantly lower (p<0.05) compared to that of the group C. In addition, compared with the group C, the expression of Occludin in the ileum and the villus height in the jejunum were significantly higher in the group CSB (p<0.05). Furthermore, Chao1, Shannon, and Pielou-e indices were higher in the group CSB compared to the group C (p<0.05). The abundance of Bacteroidetes in the group CSB was lower than that in the group C (p<0.05), while the abundances of Firmicutes and Actinobacteria were higher in the group CSB compared to the group C (p<0.05). Conclusions: Our results suggest that the dietary supplementation of CSB can alleviate egg-laying stress in laying ducks by enhancing immunity and maintaining the intestinal health of the ducks.


Asunto(s)
Antioxidantes , Suplementos Dietéticos , Animales , Antioxidantes/farmacología , Patos , Ácido Butírico/farmacología , Intestinos
20.
Poult Sci ; 102(5): 102241, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36972670

RESUMEN

Sodium butyrate is a commonly used feed additive and can reduce ammonia (NH3) emissions from laying hens, but the mechanism of this effect is unknown. In this study, the sodium butyrate and cecal content of Lohmann pink laying hens were measured, and in vitro fermentation experiments and NH3-producing bacteria coculture experiments were carried out to explore the relationship between NH3 emissions and its associated microbiota metabolism. Sodium butyrate was found to significantly reduce NH3 emission from the cecal microbial fermentation of Lohmann pink laying hens (P < 0.05). The concentration of NO3--N in the fermentation broth of the sodium butyrate-supplemented group increased significantly, and the concentration of NH4+-N decreased significantly (P < 0.05). Moreover, sodium butyrate significantly reduced the abundance of harmful bacteria and increased the abundance of beneficial bacteria in the cecum. The culturable NH3-producing bacteria consisted mainly of Escherichia and Shigella, such as Escherichia fergusonii, Escherichia marmotae and Shigella flexnerii. Among them, E. fergusonii had the highest potential for NH3 production. The coculture experiment showed that sodium butyrate can significantly downregulate the expression of the lpdA, sdaA, gcvP, gcvH and gcvT genes of E. fergusonii (P < 0.05), thus reducing the NH3 emission produced by the bacteria during metabolism. In general, sodium butyrate regulated NH3-producing bacteria to reduce NH3 production in the cecum of laying hens. These results are of great significance for NH3 emission reduction in the layer breeding industry and for future research.


Asunto(s)
Amoníaco , Pollos , Animales , Femenino , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Amoníaco/metabolismo , Pollos/fisiología , Ciego/metabolismo , Bacterias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA