Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 195: 170-181, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36640684

RESUMEN

Cottonseed is the main coproduct of cotton production. The carbohydrate metabolism provides carbon substrate for the accumulation of cottonseed kernel biomass which was the basis of cottonseed kernel development. However, the responses of drought stress on carbohydrate metabolism in kernels are still unclear. To address this, two cotton cultivars (Dexiamian 1 and Yuzaomian 9110) were cultivated under three water treatments including soil relative water content (SRWC) at (75 ± 5)% (control), (60 ± 5)% (mild drought) and (45 ± 5)% (severe drought) to investigate the effects of soil drought on cottonseed kernel carbohydrate metabolism and kernel biomass accumulation. Results suggested that drought restrained the accumulation of cottonseed kernel biomass which eventually decreased cottonseed kernel biomass at maturity. In detail, the down-regulation of sucrose phosphate synthase (SPS) activity led to the inhibition of sucrose synthesis, while the up-regulation of invertase (INV) promoted the sucrose decomposite, which reduced the sucrose content eventually under drought. Though hexose content was increased, phosphoenolpyruvic acid (PEP) content was decreased under drought by downregulating 6-phosphofructokinase (PFK) and pyruvate kinase (PK) activities, which hindered the conversion of hexose to PEP. The large decrease of sucrose and PEP contents hindered the accumulation of kernel biomass. The related substances contents and enzyme activities in carbohydrate metabolism of Yuzaomian 9110 were more susceptible to drought stress than Dexiamian 1.


Asunto(s)
Aceite de Semillas de Algodón , Sequías , Biomasa , Suelo , Metabolismo de los Hidratos de Carbono , Sacarosa/metabolismo , Gossypium/metabolismo
2.
J Sci Food Agric ; 100(8): 3445-3455, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32167162

RESUMEN

BACKGROUND: Using nutrient-rich animal wastes as organic fertilizers in agricultural practices is a sustainable method for soil amendment and avoiding environmental pollution. In order to evaluate their practical effect, we applied different proportions of animal waste as fertilizers to wet or dry soils that were either planted or not planted with young walnut trees. RESULTS: The results showed that animal waste could increase soil C accumulation and carbon to nitrogen (C/N) ratio and reduce soil organic nitrogen and total nitrogen contents as well as the nitrogen to phosphorus (N/P) ratio in the planted group soil. This framework of soil C and N composition (a high C/N ratio) resulted in high N and Mg contents as well as high Cu and Zn contents in the leaves of the young trees as well as a high dry matter weight/leaf N ratio, causing increased leaf photosynthesis, reduced transpiration and relatively high water use efficiency under soil drought conditions. Also, animal wastes as fertilizers caused the branching of walnut to switch from elongation growth to thickening growth under soil drought conditions. CONCLUSIONS: Principal component analysis and redundancy analysis demonstrated the mechanism by which the soil C/N ratio mediates the flux of available nutrients from the soil to the plant and thereby regulates plant dry matter accumulation and branching architecture under soil drought conditions. The results of this study provide new insights into the improvement of hilly soils using animal waste. © 2020 Society of Chemical Industry.


Asunto(s)
Fertilizantes/análisis , Juglans/crecimiento & desarrollo , Animales , Carbono/análisis , Carbono/metabolismo , Sequías , Juglans/metabolismo , Estiércol/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Fósforo/análisis , Fósforo/metabolismo , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Suelo/química , Árboles/crecimiento & desarrollo , Árboles/fisiología
3.
J Plant Physiol ; 215: 30-38, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28527336

RESUMEN

To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK2Oha-1, respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions.


Asunto(s)
Gossypium/metabolismo , Nitrógeno/metabolismo , Potasio/farmacología , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/efectos de los fármacos , Ósmosis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA