RESUMEN
Radicular pain, a common and complex form of neuropathic pain, presents significant challenges in treatment. Acupuncture, a therapy originating from ancient traditional Chinese medicine and widely utilized for various pain types, including radicular pain, has shown promising outcomes in the management of lumbar radicular pain, cervical radicular pain, and radicular pain due to spinal stenosis. Despite its efficacy, the exact mechanisms through which acupuncture achieves analgesia are not fully elucidated and are the subject of ongoing research. This review sheds light on the current understanding of the analgesic mechanisms of acupuncture for radicular pain, offering valuable perspectives for both clinical application and basic scientific research. Acupuncture is postulated to relieve radicular pain by several mechanisms: peripherally, it reduces muscle spasms, lessens mechanical pressure on nerve roots, and improves microcirculation; at the molecular level, it inhibits the HMGB1/RAGE and TLR4/NF-κB signaling pathways, thereby decreasing the release of pro-inflammatory cytokines; within the spinal cord, it influences synaptic plasticity; and centrally, it modulates brain function, particularly affecting the medial prefrontal cortex, anterior cingulate cortex, and thalamus within the default mode network. By acting across these diverse biological domains, acupuncture presents an effective treatment modality for radicular pain, and deepening our understanding of the underlying mechanisms regarding analgesia for radicular pain is crucial for enhancing its clinical efficacy and advancement in pain management.
RESUMEN
Human neural progenitor cells (hNPCs) hold promise for treating spinal cord injury. Studies to date have focused on improving their regenerative potential and therapeutic effect. Equally important is ensuring successful delivery and engraftment of hNPCs at the injury site. Unfortunately, no current imaging solution for cell tracking is compatible with long-term monitoring in vivo. The objective of this study was to apply a novel bright-ferritin magnetic resonance imaging (MRI) mechanism to track hNPC transplants longitudinally and on demand in the rat spinal cord. We genetically modified hNPCs to stably overexpress human ferritin. Ferritin-overexpressing (FT) hNPCs labeled with 0.2 mM manganese provided significant T1-induced bright contrast on in vitro MRI, with no adverse effect on cell viability, morphology, proliferation, and differentiation. In vivo, 2 M cells were injected into the cervical spinal cord of Rowett nude rats. MRI employed T1-weighted acquisitions and T1 mapping on a 3 T scanner. Conventional short-term cell tracking was performed using exogenous Mn labeling prior to cell transplantation, which displayed transient bright contrast on MRI 1 day after cell transplantation and disappeared after 1 week. In contrast, long-term cell tracking using bright-ferritin allowed on-demand signal recall upon Mn supplementation and precise visualization of the surviving hNPC graft. In fact, this new cell tracking technology identified 7 weeks post-transplantation as the timepoint by which substantial hNPC integration occurred. Spatial distribution of hNPCs on MRI matched that on histology. In summary, bright-ferritin provides the first demonstration of long-term, on-demand, high-resolution, and specific tracking of hNPCs in the rat spinal cord.
Asunto(s)
Rastreo Celular , Ferritinas , Imagen por Resonancia Magnética , Células-Madre Neurales , Médula Espinal , Animales , Humanos , Ratas , Diferenciación Celular , Rastreo Celular/métodos , Ferritinas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Células-Madre Neurales/metabolismo , Ratas Desnudas , Médula Espinal/citología , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Trasplante de Células MadreRESUMEN
Background: An intricate physiological and pathophysiological connection exists between the heart and lungs, which is especially important in individuals with spinal cord injury (SCI). While an exercise intervention may seem the best approach to leverage this relationship, the prior work has shown that, despite numerous health benefits, regular exercise training does not improve cardiorespiratory control in individuals with SCI. Breath training presents an alternative intervention that is uniquely accessible, with yogic breathing directly engaging linked fluctuations in respiration and cardiovascular control. In addition, there is evidence across a range of populations that regular yogic breathing reduces cardiovascular disease risk. It is possible that the chronic decrease in breathing frequency associated with regular yogic breathing, rather than the specific yogic breathing techniques themselves, is the primary contributor to the observed risk reduction. Methods: Therefore, in 12 individuals with traumatic SCI from C4 to T8, the authors compared Unpaced and conventional 0.083 Hz (Slow) paced breathing with various yogic breathing techniques including: (1) inspiratory-expiratory breath holds (i.e., Kumbhaka or "Box Breathing"), (2) extended exhalation (1:2 duty cycle), and (3) expiratory resistance via throat constriction (i.e., Ujjayi). Beat-to-beat heart rate and blood pressure were measured as well as end-tidal CO2 and O2 saturation were measured. Statistical analysis was performed using a one-way repeated-measures analysis of variance with post hoc pairwise t tests corrected for multiple comparisons. Results: As expected, all slow breathing patterns markedly increased respiratory sinus arrhythmia (RSA) compared with Unpaced in all (n = 12) individuals. More importantly, Ujjayi breathing appeared to improve ventilatory efficiency over Unpaced breathing in individuals with SCI by increasing O2 saturation (97.6% vs. 96.1%; p = 0.042) and tended to decrease end-tidal CO2 (32 mmHg vs. 35 mmHg; p = 0.08). While other slow breathing patterns demonstrated similar effects, only Ujjayi improved RSA while increasing heart rate and improving ventilatory efficiency. Conclusions: Hence, slow breathing per se can result in important cardiorespiratory changes, but the yogic breathing practice of Ujjayi, with glottic throat resistance, may hold the greatest promise for improving cardiorespiratory control in individuals with SCI (CTR ID No. NCT05480618).
Asunto(s)
Ejercicios Respiratorios , Frecuencia Cardíaca , Traumatismos de la Médula Espinal , Yoga , Humanos , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/rehabilitación , Masculino , Adulto , Femenino , Ejercicios Respiratorios/métodos , Persona de Mediana Edad , Frecuencia Cardíaca/fisiología , Estudios de Cohortes , Respiración , Presión Sanguínea/fisiologíaRESUMEN
BACKGROUND AND AIMS: Water-soluble vitamins play an essential coenzyme role in the nervous system. Acquired vitamin deficiencies are easily treatable, however, without treatment, they can lead to irreversible complications. This study aimed to provide clinical, laboratory parameters and neuroimaging data on vitamin deficiencies in an attempt to facilitate early diagnosis and prompt supplementation. METHODS: From July 1998 to July 2023, patients at Necker-Enfants-Malades Hospital presenting with acute neurological symptoms attributed to acquired vitamin deficiency were included. Clinical data were extracted from Dr Warehouse database. Neuroimaging, biochemical and electrophysiological data were reviewed. RESULTS: Patients with vitamin B1 deficiency exhibited abnormal eye movements (n = 4/4), fluctuations in consciousness (n = 3/4), and ataxia (n = 3/4). Brain MRI showed alterations of fourth ventricle region (n = 4/4), periaqueductal region (n = 4/4), tectum (n = 3/4), and median thalami (n = 3/4). Patients with vitamin B2 deficiency presented with early onset hypotonia (n = 3/4), hyperlactatemia (n = 4/4), and hyperammonemia (n = 4/4). Plasma acylcarnitines revealed a multiple acyl-coA dehydrogenase deficiency-like profile (n = 4/4). In vitamin B12 deficiency, young children presented with developmental delay (n = 7/7) and older children with proprioceptive ataxia (n = 3/3). Brain MRI revealed atrophy (n = 7/7) and spinal MRI hyperintensity in posterior cervical columns (n = 3/3). Metabolic findings showed elevated methylmalonic acid (n = 6/7) and hyperhomocysteinemia (n = 6/7). Patients with vitamin C deficiency exhibited gait disturbances and muscle weakness (n = 2/2). CONCLUSIONS: Acquired vitamin deficiencies may display reversible clinical symptoms mimicking inherited metabolic disorders. Some situations raise suspicion for diagnosis: concordant clinical presentation, suggestive neuroimaging findings, and/or biochemical evidence. Any acute neurological condition should be treated without waiting for definitive biochemical confirmation.
Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Humanos , Masculino , Femenino , Preescolar , Neuroimagen/métodos , Lactante , Niño , Avitaminosis/complicaciones , Avitaminosis/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Adolescente , Estudios RetrospectivosRESUMEN
In the context of treating spinal cord injury (SCI), the modulation of inflammatory responses, and the creation of a suitable region for tissue regeneration may present a promising approach. This study aimed to evaluate the effects of curcumin (Cur)-loaded bovine serum albumin nanoparticles (Cur-BSA NPs) cross-linked with an acellular spinal cord scaffold (ASCS) on the functional recovery in a rat model of SCI. We developed an ASCS using chemical and physical methods. Cur-BSA, and blank (B-BSA) NPs were fabricated and cross-linked with ASCS via EDC-NHS, resulting in the production of Cur-ASCS and B-ASCS. We assessed the properties of scaffolds and NPs as well as their cross-links. Finally, using a male rat hemisection model of SCI, we investigated the consequences of the resulting scaffolds. The inflammatory markers, neuroregeneration, and functional recovery were evaluated. Our results showed that Cur was efficiently entrapped at the rate of 42% ± 1.3 in the NPs. Compared to B-ASCS, Cur-ASCS showed greater effectiveness in the promotion of motor recovery. The implantation of both scaffolds could increase the migration of neural stem cells (Nestin- and GFAP-positive cells) following SCI with the superiority of Cur-ASCS. Cur-ASCS was successful to regulate the gene expression and protein levels of NLRP3, ASC, and Casp1in the spinal cord lesion. Our results indicate that using ASCS can lead to the entrance of cells into the scaffold and promote neurogenesis. However, Cur-ASCS had greater effects in terms of inflammation relief and enhanced neurogenesis.
Asunto(s)
Curcumina , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Neurogénesis , Ratas Sprague-Dawley , Recuperación de la Función , Traumatismos de la Médula Espinal , Médula Espinal , Andamios del Tejido , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/terapia , Curcumina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Neurogénesis/efectos de los fármacos , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Recuperación de la Función/efectos de los fármacos , Andamios del Tejido/química , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Nanopartículas/química , Preparaciones de Acción Retardada/farmacología , Modelos Animales de Enfermedad , Albúmina Sérica Bovina/químicaRESUMEN
On demand and localized treatment for excessive muscle tone after spinal cord injury (SCI) is currently not available. Here, we examine the reduction in leg hypertonus in a person with mid-thoracic, motor complete SCI using a commercial transcutaneous electrical stimulator (TES) applied at 50 or 150 Hz to the lower back and the possible mechanisms producing this bilateral reduction in leg tone. Hypertonus of knee extensors without and during TES, with both cathode (T11-L2) and anode (L3-L5) placed over the spinal column (midline, MID) or 10 cm to the left of midline (lateral, LAT) to only active underlying skin and muscle afferents, was simultaneously measured in both legs with the pendulum test. Spinal reflexes mediated by proprioceptive (H-reflex) and cutaneomuscular reflex (CMR) afferents were examined in the right leg opposite to the applied LAT TES. Hypertonus disappeared in both legs but only during thoracolumbar TES, and even during LAT TES. The marked reduction in tone was reflected in the greater distance both lower legs first dropped to after being released from a fully extended position, increasing by 172.8% and 94.2% during MID and LAT TES, respectively, compared with without TES. Both MID and LAT (left) TES increased H-reflexes but decreased the first burst, and lengthened the onset of subsequent bursts, in the cutaneomuscular reflex of the right leg. Thoracolumbar TES is a promising method to decrease leg hypertonus in chronic, motor complete SCI without activating spinal cord structures and may work by facilitating proprioceptive inputs that activate excitatory interneurons with bilateral projections that in turn recruit recurrent inhibitory neurons.NEW & NOTEWORTHY We present proof of concept that surface stimulation of the lower back can reduce severe leg hypertonus in a participant with motor complete, thoracic spinal cord injury (SCI) but only during the applied stimulation. We propose that activation of skin and muscle afferents from thoracolumbar transcutaneous electrical stimulation (TES) may recruit excitatory spinal interneurons with bilateral projections that in turn recruit recurrent inhibitory networks to provide on demand suppression of ongoing involuntary motoneuron activity.
Asunto(s)
Hipertonía Muscular , Traumatismos de la Médula Espinal , Vértebras Torácicas , Humanos , Pierna/fisiopatología , Hipertonía Muscular/fisiopatología , Hipertonía Muscular/etiología , Hipertonía Muscular/terapia , Músculo Esquelético/fisiopatología , Piel/inervación , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/complicaciones , Raíces Nerviosas Espinales/fisiopatología , Raíces Nerviosas Espinales/fisiología , Estimulación Eléctrica Transcutánea del Nervio/métodosRESUMEN
BACKGROUND: Spinal cord injury (SCI) is a traumatic injury to the central nervous system and can cause lipid peroxidation in the spinal cord. Ferroptosis, an iron-dependent programmed cell death, plays a key role in the pathophysiology progression of SCI. Celastrol, a widely used antioxidant drug, has potential therapeutic value for nervous system. PURPOSE: To investigate whether celastrol can be a reliable candidate for ferroptosis inhibitor and the molecular mechanism of celastrol in repairing SCI by inhibiting ferroptosis. METHODS: First, a rat SCI model was constructed, and the recovery of motor function was observed after treatment with celastrol. The regulatory effect of celastrol on ferroptosis pathway Nrf2-xCT-GPX4 was detected by Western blot and immunofluorescence. Finally, the ferroptosis model of neurons and oligodendrocytes was constructed in vitro to further verify the mechanism of inhibiting ferroptosis by celastrol. RESULTS: Our results demonstrated that celastrol promoted the recovery of spinal cord tissue and motor function in SCI rats. Further in vitro and in vivo studies showed that celastrol significantly inhibited ferroptosis in neurons and oligodendrocytes and reduced the accumulation of ROS. Finally, we found that celastrol could inhibit ferroptosis by up-regulating the Nrf2-xCT-GPX4 axis to repair SCI. CONCLUSION: Celastrol effectively inhibits ferroptosis after SCI by upregulating the Nrf2-xCT-GPX4 axis, reducing the production of lipid ROS, protecting the survival of neurons and oligodendrocytes, and improving the functional recovery.
Asunto(s)
Ferroptosis , Neuronas , Oligodendroglía , Triterpenos Pentacíclicos , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Triterpenos , Ferroptosis/efectos de los fármacos , Animales , Traumatismos de la Médula Espinal/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Oligodendroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Triterpenos/farmacología , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Médula Espinal/efectos de los fármacos , Recuperación de la Función/efectos de los fármacosRESUMEN
Background: Osteoporotic fractures occur in almost half of patients with a spinal cord injury (SCI) and are associated with significant morbidity and excess mortality. Paralyzed Veterans Administration (PVA) guidelines suggest that adequate calcium and vitamin D intake is important for skeletal health, however, the association of these supplements with osteoporotic fracture risk is unclear. Objectives: To determine the association of filled prescriptions for calcium and vitamin D with fracture risk in Veterans with an SCI. Methods: The 5897 persons with a traumatic SCI of at least 2 years' duration (96% male; 4% female) included in the VSSC SCI/D Registry in FY2014 were followed from FY2014 to FY2020 for incident upper and lower extremity fractures. Filled daily prescriptions for calcium or vitamin D supplements for ≥6 months with an adherence ≥80% were examined. Results: Filled prescriptions for calcium (hazard ratio [HR] 0.65; 95% CI, 0.54-0.78) and vitamin D (HR 0.33; 95% CI, 0.29-0.38) supplements were associated with a significantly decreased risk for incident fractures. Conclusion: Calcium and vitamin D supplements are associated with decreased risk of fracture, supporting PVA guidelines that calcium and vitamin D intake are important for skeletal health in persons with an SCI.
Asunto(s)
Fracturas Óseas , Traumatismos de la Médula Espinal , Humanos , Femenino , Masculino , Vitamina D , Calcio , Traumatismos de la Médula Espinal/complicaciones , Suplementos Dietéticos , Fracturas Óseas/etiologíaRESUMEN
The activation of proinflammatory M1-type macrophages in the injured lesion accelerates the progression of a spinal cord injury (SCI). However, adverse side effects during systemic treatments targeting M1 macrophages have limited their applications. Nanoplatforms are novel carriers of traditional Chinese medicine because of their great efficiency to deliver and accumulation in the lesion. Herein, we synthesized a modified zeolitic imidazolate framework-8 (ZIF-8) nanoplatform for internalization and accumulation in the injured spinal cord and effective administration for SCI. In vitro and in vivo experiments suggested that Prussian blue and Schisandrin B modified ZIF-8 effectively accumulated in M1 macrophages, inhibited reactive oxygen species (ROS), and polarized the macrophage from proinflammatory M1 to anti-inflammatory M2 for rapid tissue infiltration by reprogramming the metabolic macrophages phenotype. This nanoplatform achieves a synergistic therapeutic effect of immunomodulation and neuroprotection, thereby shedding new light on the application of ZIF-8, and provides great potential for SCI.
Asunto(s)
Nanopartículas , Traumatismos de la Médula Espinal , Zeolitas , Humanos , Zeolitas/farmacología , Macrófagos , Traumatismos de la Médula Espinal/metabolismo , Antiinflamatorios/uso terapéuticoRESUMEN
OBJECTIVES: To observe the effect of electroacupuncture (EA) stimulation of "Jiaji"(EX-B2) on motor function, histomorphology, and expression of NOD-like receptor protein 3 (NLRP3) and N-terminal domain of gasdermin D (GSDMD-N) in the spinal cord tissue of rats with spinal cord injury (SCI), so as to explore its mechanism underlying improvement of SCI. METHODS: Forty eight female SD rats were randomly divided into sham surgery (sham), SCI model (model), EA, and NLRP3 agonist (monosodium urate, MSU) combined with Jiaji EA (MSU+EA) groups, with 12 rats in each group which were further divided into 3 d and 7 d subgroups, with 6 rats at each time point. Two EA groups received EA stimulation of EX-B2 with a frequency of 100 Hz, electrical current of 1-2 mA for 30 min, once a day for 3 or 7 days. After 5 min, 6 h, and 24 h of modeling, rats of the MSU+EA group received intraperitoneal injection of MSU (200 µg/kg, 200 µg/mL) . The motor function was evaluated using Basso-Beattie-Bresnahan (BBB) scale, the morphological structure of rat spinal cord tissue was observed by H.E. staining. The expression of pyroptosis related factors NLRP3, cleaved Caspase-1 and GSDMD-N of the spinal cord was observed by using immunohistochemistry and Western blot separately, the expression and localization of Iba-1 and GSDMD-N in the spinal cord tissue were observed using immunofluorescence double staining method. RESULTS: Compared with the sham group, the BBB scores after modeling and on day 3 and 7 were decreased (P<0.05), while the average OD values (immunoactivity) and expression levels of NLRP3, cleaved Caspase-1 and GSDMD-N proteins, and the immunofluorescence intensity of Iba-1/GSDMD-N (co-expression) of the spinal cord tissues on day 3 and 7 were significantly increased in the model group (P<0.05). In comparison with the model group, the BBB scores on day 3 and 7 were obviously increased (P<0.05), while the immunoactivity and expression levels of NLRP3, cleaved Caspase-1 and GSDMD proteins, and the immunofluorescence intensity of Iba-1/GSDMD-N on day 3 and 7 significantly down-regulated in the EA group (P<0.05) but not in the MSU+EA group (P>0.05), suggesting an elimination of the effects of EA after administration of NLRP3 agonist (MSU). H.E. staining showed obvious bleeding area in the spinal cord tissue, loose tissue and inflammatory cell infiltration on day 3 after modeling, and basic absorption of the bleeding, loose tissue, obvious vacuolar changes of the white matter area, loss and contraction of neurons with infiltration of a large number of inflammatory cells, which was milder in the EA group but not in the MSU+EA group. CONCLUSIONS: EA of EX-B2 can improve the motor function of SCI rats, which may be related to its functions in inhibiting pyroptosis of microglia mediated by NLRP3/Caspase-1 signaling pathway.
Asunto(s)
Electroacupuntura , Traumatismos de la Médula Espinal , Animales , Femenino , Ratas , Caspasa 1 , Caspasas , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis , Ratas Sprague-Dawley , Médula Espinal , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapiaRESUMEN
OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Dazhui" (GV14) and "Jizhong"(GV6) of the Governor Vessel (GV) on mitochondrial fusion and neural stem cell (NSC) proliferation and differentiation in the spinal cord of rats with spinal cord injury (SCI), so as to investigate its mechanisms underlying improvement of SCI. METHODS: SD rats were randomly divided into sham operation, model and EA groups, with 15 rats in each group. The SCI model was established by using a precision impactor. EA (20 Hz/100 Hz, 1-2 mA) was applied to GV14 and GV6 for 30 min, once daily for 14 days. The rats' hindlimb locomotor function in each group was assessed using the Basso-Beattie-Bresnahan (BBB) locomotor scale. Histopathological changes of the injured spinal cord tissue and the number of neurons were evaluated after H.E. staining and Nissl staining. The expressions of Nestin, mitochondrial fusion-related protein optic atrophy-1 (OPA1) and NSC markers sex-determining region Y-box 2 (SOX2) in the injured spinal cord tissue were detected by immunofluorescence staining. The protein and mRNA expression levels of Nestin in the spinal cord tissue were detected by quantitative real-time PCR and Western blot, separately. RESULTS: Compared with the sham operation group, the BBB scores after modeling, and the number of neurons were significantly decreased (P<0.001), while the mean fluorescence intensity values of Nestin, SOX2 and OPA1, and the expressions of Nestin mRNA and protein considerably increased (P<0.001, P<0.01, P<0.05) in the model group. After EA intervention and in comparison with the model group, the BBB scores at the 7th and 14th day, the number of neurons, the mean fluorescence intensity values of Nestin, SOX2 and OPA1, and the expressions of Nestin mRNA and protein were strikingly increased (P<0.05, P<0.01, P<0.001) in the EA group. H.E. staining showed swollen, ruptured and necrotic neurons of the spinal cord, with a large number of vacuoles and severe inflammatory cell infiltration after modeling, which was relatively milder in the EA group. CONCLUSIONS: EA stimulation of GV14 and GV6 can promote the recovery of motor function in rats with SCI, which may be related to its effects in promoting mitochondrial fusion and enhancing the proliferation and differentiation of NSCs.
Asunto(s)
Electroacupuntura , Células-Madre Neurales , Traumatismos de la Médula Espinal , Ratas , Animales , Nestina , Ratas Sprague-Dawley , Dinámicas Mitocondriales , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Médula Espinal , Proliferación Celular , ARN MensajeroRESUMEN
BACKGROUND/AIM: This study aimed to investigate the role of NOTCH receptor 1 (NOTCH1)-mediated activation of microglia in the L5-S2 spinal dorsal horn in chronic prostatitis pain. MATERIALS AND METHODS: Rats were divided into chronic prostatitis (CP) group and control group. Complete Freund's adjuvant was injected into the prostate, and prostate pathology and pain-related behavior were monitored to assess the successful establishment of the CP-related pain model. The dorsal horn of the L5-S2 spinal cord was collected for the detection of ionized calcium-binding adapter molecule 1 (IBA-1) and NOTCH1 expression by quantitative real time polymerase chain reaction and the detection of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) by enzyme-linked immunosorbent assay. Electrical excitability was assessed with whole-cell patch clamp. In addition, NOTCH1 receptor inhibitor or inhibitor of microglial cell activation was injected into the subarachnoid space, and the pro-inflammatory cytokines in the spinal cord were detected. RESULTS: In the CP group, the expression of NOTCH1, IBA-1, TNF-α and IL-1ß began to increase at 4 days, peaked at 12 days, and began to decline at 24 days, and it was significantly higher than in the control group (p<0.01). Inhibition of microglia or NOTCH1 receptor markedly reduced the content of TNF-α and IL-1ß in the spinal cord (p<0.05). At 4, 12 and 24 days, the amplitude and frequency of neuronal action potential increased and the threshold decreased markedly as compared to the control group (p<0.05), and spontaneous action potential was noted. CONCLUSION: NOTCH1 mediates the activation of microglia in the L5-S2 spinal cord, leading to the secretion of inflammatory factors and enhanced electrical excitability of neurons, which is related to persistent and refractory chronic prostatitis-related pain.
Asunto(s)
Prostatitis , Animales , Humanos , Masculino , Ratas , Enfermedad Crónica , Microglía/metabolismo , Dolor , Prostatitis/terapia , Prostatitis/metabolismo , Prostatitis/patología , Receptor Notch1/genética , Receptor Notch1/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
The International Neuromodulation Society defines therapeutic neuromodulation as the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body. Neuromodulation for the treatment of migraine is an evolving field offering further insight into the pathophysiology of migraine as well as advanced therapeutics. Central and peripheral neuronal targets have been explored in the efforts to reduce the frequency and severity of attacks. Invasive and noninvasive techniques have been developed, targeting either the central or peripheral nervous system. Noninvasive central neuromodulation techniques have the benefit of a low side effect profile in addition to higher level of evidence for use thanks to sham-controlled trials; however, these modalities are less clinically available for use. Noninvasive transcutaneous neuromodulation techniques that target the peripheral nervous system have provided devices that are available over the counter or by prescription. Several of these devices are effective for abortive and preventive treatment of migraine. Invasive techniques such as cranial nerve stimulation with implanted stimulator devices or spinal cord stimulation may be used for more aggressive management in patients refractory to other treatments. Overall, neuromodulation techniques can be particularly beneficial for medically complex or refractory patients, those that prefer nonmedication options, and those that have experienced adverse effects from medications.
Asunto(s)
Terapia por Estimulación Eléctrica , Trastornos Migrañosos , Estimulación Eléctrica Transcutánea del Nervio , Humanos , Trastornos Migrañosos/terapia , Estimulación Eléctrica Transcutánea del Nervio/métodos , Sistema Nervioso Periférico , Estimulación Magnética Transcraneal/métodosRESUMEN
Spinal cord injury (SCI) occurs as a result of traumatic events that damage the spinal cord, leading to motor, sensory, or autonomic function impairment. Sarsasapogenin (SA), a natural steroidal compound, has been reported to have various pharmacological applications, including the treatment of inflammation, diabetic nephropathy, and neuroprotection. However, the therapeutic efficacy and underlying mechanisms of SA in the context of SCI are still unclear. This research aimed to investigate the therapeutic effects and mechanisms of SA against SCI by integrating network pharmacology analysis and experimental verification. Network pharmacology results suggested that SA may effectively treat SCI by targeting key targets such as TNF, RELA, JUN, MAPK14, and MAPK8. The underlying mechanism of this treatment may involve the MAPK (JNK) signaling pathway and inflammation-related signaling pathways such as TNF and Toll-like receptor signaling pathways. These findings highlight the therapeutic potential of SA in SCI treatment and provide valuable insights into its molecular mechanisms of action. In vivo experiments confirmed the reparative effect of SA on SCI in rats and suggested that SA could repair SCI by modulating the immune microenvironment. In vitro experiments further investigated how SA regulates the immune microenvironment by inhibiting the MAPK/NF-kB pathways. Overall, this study successfully utilized a combination of network pharmacology and experimental verification to establish that SA can regulate the immune microenvironment via the MAPK/NF-kB signaling pathway, ultimately facilitating functional recovery from SCI. Furthermore, these findings emphasize the potential of natural compounds from traditional Chinese medicine as a viable therapy for SCI treatment.
RESUMEN
BACKGROUND: Spinal cord injury (SCI) remained one of the challenges to treat due to its complicated mechanisms. Photobiomodulation therapy (PBMT) accelerates neuronal regeneration. Cerium oxide nanoparticles (CeONPs) also eliminate free radicals in the environment. The present study aims to introduce a combined treatment method of making PCL scaffolds as microenvironments, seeded with CeONPs and the PBMT technique for SCI treatment. METHODS: The surgical hemi-section was used to induce SCI. Immediately after the SCI induction, the scaffold (Sc) was loaded with CeONPs implanted. PBMT began 30 min after SCI induction and lasted for up to 4 weeks. Fifty-six male rats were randomly divided into seven groups. Glial fibrillary acidic protein (GFAP) (an astrocyte marker), Connexin 43 (Con43) (a member of the gap junction), and gap junctions (GJ) (a marker for the transfer of ions and small molecules) expressions were evaluated. The behavioral evaluation was performed by BBB, Acetone, Von Frey, and radiant heat tests. RESULT: The SC + Nano + PBMT group exhibited the most remarkable recovery outcomes. Thermal hyperalgesia responses were mitigated, with the combined approach displaying the most effective relief. Mechanical allodynia and cold allodynia responses were also attenuated by treatments, demonstrating potential pain management benefits. CONCLUSION: These findings highlight the potential of PBMT, combined with CeONPs-loaded scaffolds, in promoting functional motor recovery and alleviating pain-related responses following SCI. The study underscores the intricate interplay between various interventions and their cumulative effects, informing future research directions for enhancing neural repair and pain management strategies in SCI contexts.
Asunto(s)
Cerio , Terapia por Luz de Baja Intensidad , Traumatismos de la Médula Espinal , Ratas , Masculino , Animales , Terapia por Luz de Baja Intensidad/efectos adversos , Dolor/complicaciones , Traumatismos de la Médula Espinal/radioterapia , Traumatismos de la Médula Espinal/complicaciones , HiperalgesiaRESUMEN
OBJECTIVES: To examine the feasibility of individuals with spinal cord injury or disease (SCI/D) to perform combined oropharyngeal and respiratory muscle training (RMT) and determine its impact on their respiratory function. METHODS: A prospective study at a single Veterans Affairs (VA) Medical Center. Inclusion criteria included: 1) Veterans with chronic SCI/D (>6 months postinjury and American Spinal Injury Association (ASIA) classification A-D) and 2) evidence of OSA by apnea-hypopnea index (AHI ≥5 events/h). Eligible participants were randomly assigned to either an experimental (exercise) group that involved performing daily inspiratory, expiratory (using POWERbreathe and Expiratory Muscle Strength Trainer 150 devices, respectively), and tongue strengthening exercises or a control (sham) group that involved using a sham device, for a 3-month period. Spirometry, maximal expiratory pressure (MEP), maximal inspiratory pressure (MIP), polysomnography, and sleep questionnaires were assessed at baseline and at 3 months. RESULTS: Twenty-four individuals were randomized (12 participants in each arm). A total of eight (67%) participants completed the exercise arm, and ten (83%) participants completed the sham arm. MIP was significantly increased (p < 0.05) in the exercise group compared with the baseline. CONCLUSIONS: Combined oropharyngeal and RMT are feasible for individuals with SCI/D. Future studies are needed to determine the clinical efficacy of these respiratory muscle exercises.
Asunto(s)
Apnea Obstructiva del Sueño , Traumatismos de la Médula Espinal , Humanos , Proyectos Piloto , Estudios Prospectivos , Estudios de Factibilidad , Traumatismos de la Médula Espinal/terapia , Ejercicios Respiratorios , Músculos Respiratorios , Fuerza Muscular/fisiologíaRESUMEN
The microenvironment after traumatic spinal cord injury (SCI) involves complex pathological processes, including elevated oxidative stress, accumulated reactive aldehydes from lipid peroxidation, excessive immune cell infiltration, etc. Unfortunately, most of current neuroprotection therapies cannot cope with the intricate pathophysiology of SCI, leading to scant treatment efficacies. Here, we developed a facile in situ reaction-induced self-assembly method to prepare aldehyde-scavenging polypeptides (PAH)-curcumin conjugate nanoassemblies (named as PFCN) for combined neuroprotection in SCI. The prepared PFCN could release PAH and curcumin in response to oxidative and acidic SCI microenvironment. Subsequently, PFCN exhibited an effectively neuroprotective effect through scavenging toxic aldehydes as well as reactive nitrogen and oxygen species in neurons, modulating microglial M1/M2 polarization, and down-regulating the expression of inflammation-related cytokines to inhibit neuroinflammation. The intravenous administration of PFCN could significantly ameliorate the malignant microenvironment of injured spinal cord, protect the neurons, and promote the motor function recovery in the contusive SCI rat model.
Asunto(s)
Curcumina , Traumatismos de la Médula Espinal , Ratas , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Aldehídos/metabolismo , Aldehídos/farmacología , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula EspinalRESUMEN
OBJECTIVE: To summarize and evaluate evidence regarding the efficacy of interventions for depressive symptoms in adults living with spinal cord injury (SCI) and comorbid major depressive disorder or significant depressive symptoms to inform the development of clinical practice guidelines. DATA SOURCES: Articles published since 2013 and available in Medline, The Cochrane Library, Embase, Scopus, CINAHL, or PsycINFO. Databases were searched in June 2022 and updated November 2023. STUDY SELECTION: Inclusion criteria: age 18 years or older, traumatic SCI, and clinically significant depression (Population), mental health interventions including behavioral, pharmacologic, and complementary and alternative medicine (Intervention), inclusion of a control group (Comparator), with a primary outcome of depression symptom reduction (Outcome). Criteria were applied by multiple reviewers and disagreements were reconciled via unanimous decision among the entire research team. Eight articles of 2780 screened met the selection criteria. DATA EXTRACTION: Data were extracted independently by multiple reviewers. Two reviewers independently assigned a quality score using the guidelines described by Hawker and associates and independently evaluated the risk of bias of each article using version 2 of the Cochrane risk-of-bias tool. DATA SYNTHESIS: All studies assessed depressive symptoms during participant recruitment, screening, and/or at a baseline assessment stage. Pharmacotherapy with venlafaxine XR and several behavioral interventions appear promising, including an online mindfulness course and eye movement desensitization and reprocessing therapy. Remote interventions may be effective in reaching individuals who are unable to travel to in-person therapy sessions. CONCLUSIONS: This systematic review provides valuable information for clinicians who treat individuals with SCI and comorbid major depressive disorder or significant depressive symptoms. It highlights the importance of considering a variety of interventions and individualizing treatment to meet individuals' needs and preferences. Future research should aim to identify effective interventions for treating depressive symptoms in individuals with SCI and optimal delivery methods for these interventions.
Asunto(s)
Depresión , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/complicaciones , Depresión/etiología , Depresión/terapia , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/terapia , Antidepresivos/uso terapéutico , Terapia Conductista/métodosRESUMEN
BACKGROUND: Therapeutic strategies based on scavenging reactive oxygen species (ROS) and suppressing inflammatory cascades are effective in improving functional recovery after spinal cord injury (SCI). However, the lack of targeting nanoparticles (NPs) with powerful antioxidant and anti-inflammatory properties hampers the clinical translation of these strategies. Here, CD44-targeting hyaluronic acid-selenium (HA-Se) NPs were designed and prepared for scavenging ROS and suppressing inflammatory responses in the injured spinal cord, enhancing functional recovery. RESULTS: The HA-Se NPs were easily prepared through direct reduction of seleninic acid in the presence of HA. The obtained HA-Se NPs exhibited a remarkable capacity to eliminate free radicals and CD44 receptor-facilitated internalization by astrocytes. Moreover, the HA-Se NPs effectively mitigated the secretion of proinflammatory cytokines (such as IL-1ß, TNF-α, and IL-6) by microglia cells (BV2) upon lipopolysaccharide-induced inflammation. In vivo experiments confirmed that HA-Se NPs could effectively accumulate within the lesion site through CD44 targeting. As a result, HA-Se NPs demonstrated superior protection of axons and neurons within the injury site, leading to enhanced functional recovery in a rat model of SCI. CONCLUSIONS: These results highlight the potential of CD44-targeting HA-Se NPs for SCI treatment.
Asunto(s)
Selenio , Traumatismos de la Médula Espinal , Animales , Ratas , Ácido Hialurónico , Especies Reactivas de Oxígeno , Recuperación de la FunciónRESUMEN
OBJECTIVE: To identify mediating roles of mindfulness, self-efficacy, social support, and functional independence in the relationship between pain and quality of life (QOL) in persons with spinal cord injury (SCI). METHODS: A cross-sectional descriptive study was conducted using a sample of 272 persons with SCI living in the United States. The participants completed self-report standardized questionnaires on a Qualtrics survey. A parallel mediation analysis adjusting for covariates was performed to test the hypotheses. RESULTS: Findings showed significant direct effects of pain on functional independence, self-efficacy, mindfulness, and social support. Self-efficacy, mindfulness, and social support had significant direct effects on QOL. In the mediation analysis, mindfulness, self-efficacy, and social support significantly mediated the relationship between pain and QOL, controlling for other variables in the model. CONCLUSIONS: This study adds to the extant literature by providing evidence that mindfulness, self-efficacy, and social support not only directly contribute to QOL but are likely to mitigate the negative effect of pain on QOL in persons with SCI. Identifying these potential factors that can assuage the adverse effects of pain on QOL is a first step toward active intervention to facilitate the adjustment of persons with SCI.