Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 927: 172083, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554957

RESUMEN

Anaerobic digestion can provide benefits not only from the perspective of renewable energy production but also in the form of fertilization effect and increased retention of C in soils after digestate application. This study consisted of two phases, where the first phase assessed the suitability of carbon-rich co-feedstocks for methane production via laboratory testing. The second phase assessed the balance and stability of C before and after anaerobic digestion by systematic digestate characterization, and by evaluating its carbon retention potential using a modeling approach. The results indicated that pyrolysis chars had a negligible effect on the methane production potential of cattle manure, while wheat straw expectedly increased methane production. Thus, a mixture of cattle manure and wheat straw was digested in pilot-scale leach-bed reactors and compared with undigested manure and straw. Although the total amount of C in the digestate was lower than in the untreated feedstocks, the digestion process stabilized C and was modeled to be more effective in retaining C in the soil than untreated cattle manure and wheat straw. In addition, digestion converted 23-27 % of the C into valuable methane, increasing the valorization of the total C in the feedstock. Considering anaerobic digestion processes as a strategy to optimize both carbon and nutrient valorization provides a more holistic approach to addressing climate change and improving soil health.


Asunto(s)
Carbono , Fertilizantes , Estiércol , Metano , Metano/análisis , Fertilizantes/análisis , Carbono/análisis , Anaerobiosis , Animales , Bovinos , Suelo/química , Triticum
2.
Sci Rep ; 14(1): 6533, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503773

RESUMEN

Nitrogen (N) and phosphorus (P) are vital for crop growth. However, most agricultural systems have limited inherent ability to supply N and P to crops. Biochars (BCs) are strongly advocated in agrosystems and are known to improve the availability of N and P in crops through different chemical transformations. Herein, a soil-biochar incubation experiment was carried out to investigate the transformations of N and P in two different textured soils, namely clay loam and loamy sand, on mixing with rice straw biochar (RSB) and acacia wood biochar (ACB) at each level (0, 0.5, and 1.0% w/w). Ammonium N (NH4-N) decreased continuously with the increasing incubation period. The ammonium N content disappeared rapidly in both the soils incubated with biochars compared to the unamended soil. RSB increased the nitrate N (NO3-N) content significantly compared to ACB for the entire study period in both texturally divergent soils. The nitrate N content increased with the enhanced biochar addition rate in clay loam soil until 15 days after incubation; however, it was reduced for the biochar addition rate of 1% compared to 0.5% at 30 and 60 days after incubation in loamy sand soil. With ACB, the net increase in nitrate N content with the biochar addition rate of 1% remained higher than the 0.5% rate for 60 days in clay loam and 30 days in loamy sand soil. The phosphorus content remained consistently higher in both the soils amended with two types of biochars till the completion of the experiment.


Asunto(s)
Compuestos de Amonio , Contaminantes del Suelo , Suelo/química , Fósforo , Arena , Arcilla , Nitratos , Nitrógeno , Carbón Orgánico/química , Contaminantes del Suelo/análisis
3.
Heliyon ; 10(4): e25113, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38370188

RESUMEN

The impact of integrated nutrient management seems crucial for the sustainability of crop production as revealed by studies on long-term experiments. It provided the opportunity to monitor long-term variations in crop yields and associated factors. The impacts of various nutrient management strategies on yields and soil attributes in a rice-wheat system have been researched under a long-term experiment that has been running since 1983 at Punjab Agricultural University, Ludhiana. Further, a positive correlation has been observed between crop yields and soil properties such as soil organic carbon (SOC), nitrogen (N), phosphorus (P), potassium (K) and zinc (Zn). The negative correlation with K could be attributed to soil becoming deficient in K and necessitating the application of potassium fertilizer. The treatments receiving organic manures (green manure, farmyard manure and wheat cut straw) showed a better population of soil microorganisms in comparison to the treatments receiving chemical fertilizers, thereby proving as precursors of sustaining soil health. The best soil characteristics (water-soluble aggregates, exchangeable and non-exchangeable K, fixed and total K) after rice and wheat harvesting were found where 50 % of the recommended NPK was supplemented with farmyard manure (FYM). The build-up of trace elements particularly for Fe and Zn was also noticed. In crystalline Fe oxide bound fraction (CFeOX), Fe increased between 717.1 and 984.8 mg kg-1, while Zn increased between 2.64 and 3.08 mg kg-1. Furthermore, amorphous iron oxide (AFeOX), CFeOX, carbonate (CARB), organic matter (OM) bound and exchangeable (EXCH) Fe and Zn were higher in treatments where organic manures were supplemented with 50 and 25 % N. Farmyard manure showed an incremental trend, followed by wheat cut straw and green manure (GM). The incremental trend in soil quality was noticed with FYM followed by wheat cut straw and GM.

4.
Waste Manag ; 175: 265-275, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232518

RESUMEN

Microwave hydrothermal (MHT) conversion is emerging as a promising technology for the disposal and reutilization of biowastes. This study investigated the fundamental properties and phosphorus transformation mechanism of soybean straw during the MHT conversion process. The oxygen-containing functional groups in soybean straw were stripped, and a trend of dehydration was observed as the temperature increased during the MHT process. Cellulose was identified as the major component of the MHT solid products at high temperature. Glucose and glucuronic acid in the MHT liquid products were gradually converted to formic acid and acetic acid with increasing temperature and holding time. The characteristics of the MHT products directly affected the changes in P speciation and transformation. Most of the P was distributed in liquid products and the impact of holding time was not significant on P distribution at low MHT temperature. With the increase in temperature and holding time, P gradually transferred into the solid products. The proportion of organic phosphorus and soluble inorganic phosphorus in soybean straw was high, and it decreased noticeably after the MHT process. The increase in MHT temperature promoted the conversion of OP and AP into IP and NAIP respectively. P K-edge X-ray absorption near edge structure analysis reveals that Ca5(PO4)3(OH) was the major component of soybean straw and more Ca5(PO4)3(OH) was formed at lower MHT temperature. This study provides fundamental knowledge on the property changes of soybean straw and the transformation of phosphorus during MHT conversion process, which is essential for its disposal and further utilization.


Asunto(s)
Glycine max , Fósforo , Microondas , Temperatura , Ácido Acético
5.
Int J Phytoremediation ; 26(4): 569-578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37684742

RESUMEN

To promote the selenium (Se) uptakes in fruit trees under Se-contaminated soil, the effects of water extract of Fagopyrum dibotrys (D. Don) Hara straw on the Se accumulation in peach seedlings under selenium-contaminated soil were studied. The results showed that the root biomass, chlorophyll content, activities of antioxidant enzymes, and soluble protein content of peach seedlings were increased by the F. dibotrys straw extract. The different forms of Se (total Se, inorganic Se, and organic Se) were also increased in peach seedlings following treatment with the F. dibotrys straw extract. The highest total shoot Se content was treated by the 300-fold dilution of F. dibotrys straw, which was 30.87% higher than the control. The F. dibotrys straw extract also increased the activities of adenosine triphosphate sulfurase (ATPS), and adenosine 5'-phosphosulfate reductase (APR) in peach seedlings, but decreased the activity of serine acetyltransferase (SAT). Additionally, correlation and grey relational analyses revealed that chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se content. Overall, this study shows that the water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


The water extract of Fagopyrum dibotrys (D. Don) Hara straw promoted the selenium (Se) uptake in peach seedlings under selenium-contaminated soil. The concentration of F. dibotrys straw extract showed a quadratic polynomial regression relationship with the total root and shoot Se. Furthermore, chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se. This study shows that water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


Asunto(s)
Fagopyrum , Prunus persica , Selenio , Biodegradación Ambiental , Clorofila A/análisis , Fagopyrum/metabolismo , Prunus persica/metabolismo , Plantones/química , Selenio/metabolismo , Suelo , Agua/análisis
6.
Environ Sci Pollut Res Int ; 30(55): 117624-117636, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37872341

RESUMEN

Lack of carbon source is the main limiting factor in the denitrification of low C/N ratio wastewater in the constructed wetlands (CWs). Agricultural waste has been considered as a supplementary carbon source but research is still limited. To solve this problem, ferric carbon (Fe-C) + zeolite, Fe-C + gravel, and gravel were used as substrates to build CWs in this experiment, aiming to investigate the effects of different carbon sources (rice straw, corncobs, alkali-heated corncobs) on nitrogen removal performance and microbial community structure in CWs for low C/N wastewater. The results demonstrated that the microbial community and effluent nitrogen concentration of CWs were mainly influenced by the carbon source rather than the substrate. Alkali-heated corncobs significantly enhanced the removal of NO2--N, NH4+-N, NO3-N, and TN. Carbon sources addition increased microbial diversity. Alkali-heated corncobs addition significantly increased the abundance of heterotrophic denitrifying bacteria (Proteobacteria and Bacteroidota). Furthermore, alkali-heated corncobs addition increased the copy number of nirS, nosZ, and nirK genes while greenhouse gas fluxes were lower than common corncobs. In summary, alkali-heated corncobs can be considered as an effective carbon source.


Asunto(s)
Aguas Residuales , Zea mays , Desnitrificación , Humedales , Nitrógeno/análisis , Carbono/química , Eliminación de Residuos Líquidos/métodos
7.
J Environ Manage ; 345: 118904, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659371

RESUMEN

The negative impacts of conventional agriculture and the imperative to adopt conservation tillage garnered significant attention. However, the effects of conservation tillage on soil enzyme activities still lack comprehensive cognition. Here, we collected 14,308 pairwise observations from 369 publications worldwide to systematically evaluate the effects of different conservation tillage practices (reduced tillage (T), reduced tillage with straw return (TS), reduced tillage with straw mulch return (TSO), no-tillage (NT), no-tillage with straw return (NTS), and no-tillage with straw mulch return (NTSO)) on the activities of 35 enzymes in soil. The results showed that: (1) the effect of conservation tillage on soil enzyme activity varied by enzyme type, except for peroxidase (-12.34%), which showed an overall significant positive effect (10.28-89.76%); (2) the NTS and TS demonstrated strong potential to improve soil enzyme activities by increasing a wide variety of soil enzyme activities (12-15) and efficacy (9.76-75.56%) than other conservation tillage (8.60-68.68%); (3) in addition, the effect of conservation tillage on soil enzyme activity was regulated by soil depth, crop type, years of conservation tillage, climate (mean annual precipitation and temperature), and soil physicochemical properties (e.g., pH, bulk density, electrical conductivity, organic matter, ammonium nitrogen, total phosphorus, available phosphorus, total potassium, available potassium, etc.). Overall, our quantitative analysis clearly suggests that conservation tillage is an effective measure for improving soil enzyme activity on global croplands, where combination of reduced tillage or no-till with straw return are considered to have great potential and promise. The results contribute to better comprehend the effects of conservation tillage on soil activity and provide a valuable insight for agricultural management.


Asunto(s)
Agricultura , Suelo , Clima , Fósforo , Potasio
8.
Huan Jing Ke Xue ; 44(9): 5135-5144, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699831

RESUMEN

To explore the effects of long-term balanced fertilization and straw mulching on soil nutrients and stoichiometric ratios in purple soil sloping cropland, nine plots (length 7 m×width 3 m) were established in Dianjiang County as the research sample area of long-term farmland nitrogen and phosphorus loss monitoring. The following three treatments were set up:conventional mode (CK), balanced fertilization mode (M1), and balanced fertilization+straw mulching mode (M2), with three replications for each treatment to compare the contents of carbon (C), nitrogen (N), phosphorus (P), and potassium (K) and their stoichiometric changes under different treatments from 2018 to 2020. The results showed:K contents showed significant differences among the three treatments in 2018, in the order of CK>M2>M1. NO3--N and NH4+-N contents showed significant differences among the three treatments in 2019, both in the order of M1>M2>CK. Other nutrient contents showed no significant difference among different treatments each year. Soil C and N contents showed non-significant differences among different years. The total K contents of CK, M1, and M2 in 2018 were significantly higher than that in other years and were 78.26% and 98.79%, 19.13% and 35.4%, and 54.49% and 41.76% higher than that in 2019 and 2020, respectively. The total P content in the CK and M2 treatments decreased with years, and that of CK and M2 in 2018 was 20.29% and 10.67% and 39.68% and 17.33% higher than that in 2019 and 2020, respectively. The available potassium (AK) content of the three treatments showed non-significant differences among different years, whereas the contents of nitrate nitrogen (NO3--N), ammonium nitrogen (NH4+-N), and available phosphorus (AP) showed significant differences among the different treatments, with all being the highest in 2020. Soil C:P, C:K, N:P, N:K, and P:K ratios of each treatment showed significant differences among different years (P<0.05). Soil C:K, N:K, and AN:AP ratios all showed significant differences among different fertilization modes in 2018 and 2019, respectively (P<0.05). There was a significantly linearly positive relationship between soil C and N concentration and soil P and K concentration. There were very significant linear positive correlations between soil C:K and C:P, N:K, N:P, and P:K; N:K with C:P, P:K, and N:P; and N:P with C:P, N:P, and C:P. Soil P concentration was highly significantly linearly negatively correlated with C:K and N:K ratios. There were significant positive correlations between soil NO3--N, NH4+-N, AN:AP, and AN:AK; NH4+-N, AN:AP, and AN:AK; and AN:AP and AN:AK. The results suggested that balanced fertilization and straw mulching was a more suitable management mode for purple soil sloping cropland.


Asunto(s)
Nitrógeno , Nutrientes , Fósforo , Potasio , Suelo , Fertilización
9.
Huan Jing Ke Xue ; 44(9): 5176-5185, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699835

RESUMEN

This study was conducted to explore the fertilization potential of the high-volume straw returning mode in cooperation with Bacillus and other functional flora on desertification soil and to analyze the changing characteristics of soil carbon, nitrogen, and phosphorus components and functional activities of flora, so as to provide a basis for efficiently improving desertification soil fertility. A randomized block experiment was conducted, setting straw not returning to field (CK) and high-volume straw returning of 6.00 kg·m-2 (ST1), 12.00 kg·m-2 (ST2), 24.00 kg·m-2+(ST3), 6.00 kg·m-2+Bacillus (SM1), 12.00 kg·m-2+Bacillus (SM2), and 24.00 kg·m-2+Bacillus (SM3). In this study, we conducted a randomized block experiment to investigate the effect of the treatment for soil microbial and nutrient contents using 16S rRNA high-throughput sequencing and soil biochemical properties analysis. Our results showed that:① the α diversity of the soil bacterial community was significantly reduced by the combination of high-volume straw returning and Bacillus application. ② The single mode of high-volume straw returning significantly enriched Proteobacteria and decreased the relative abundance of Actinobacteriota, and the effect of the combined application of Bacillus on the variability of bacterial community structure was more significant. At the genus level, the relative abundance of beneficial bacteria such as Pseudomonas, Rhodanobacter, and Bacillus increased significantly. ③ The functional prediction based on FAPROTAX found that the high-volume straw returning combined with Bacillus could significantly improve the decomposition potential of soil flora to organic substances and the transformation potential of nitrogen components. ④ Compared with that in the control, the application of Bacillus with high-volume straw returning significantly increased the contents of soil organic matter, total phosphorus, and available phosphorus by 31.20-32.75 g·kg-1, 0.11-0.18 g·kg-1, and 29.69-35.09 mg·kg-1, respectively. In conclusion, the application of Bacillus in the sand-blown area with a high-volume straw returning can notably improve the contents of soil organic matter and phosphorus components, the functional activity of bacteria, and the abundance of beneficial bacteria, which is of great significance to the rapid improvement of soil fertility in the middle- and low-yield fields in arid areas.


Asunto(s)
Bacillus , Suelo , Conservación de los Recursos Naturales , ARN Ribosómico 16S , Bacterias/genética , Nitrógeno , Fósforo
10.
J Food Sci ; 88(11): 4745-4772, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37751083

RESUMEN

Fritillaria cirrhosa D. Don, which can be used for medicine and food, contains a variety of chemicals including polyphenols, alkaloids, terpenoid, and others that have beneficial biological properties like antihypertension, bacteriostasis, and anti-inflammatory. The ethanolic extract of Fritillaria straw was obtained for this study using ultrasonic-aided extraction, and the amounts of total phenols and total flavonoids were 26.56 ± 1.36 mg GAE/g dw and 18.75 ± 0.80 mg RE/g dw, respectively. Ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry technology was utilized to identify 50 major chemicals in the Fritillaria straw extract (FSE). Meanwhile, the antioxidative activities of FSE were evaluated by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and Ferric reducing antioxidant power assays in vitro, which pointed out the antioxidative potential of FSE. Additionally, 0.1%, 0.5%, and 1% of FSE and 0.02% butylated hydroxyanisole (BHA) + butylated hydroxytoluene (BHT) (1:1) were separately added to Chinese-style sausage to study their effects on the lipid oxidation, protein oxidation, and quality of the sausage at different storage times. The study found that the effect of adding 1% FSE on carbonyl content, total volatile basic nitrogen, and TVC of sausage could achieve the effect of the 0.02% BHA + BHT (1:1) group on the 35th day, and the thiobarbituric acid reactive substances value and peroxide value of sausage were significantly lower than the control group. Therefore, as one of the candidates to replace synthetic antioxidants, the FSE can be used in the production of Chinese sausages, which has a positive effect on improving the product's quality and extending the shelf life. PRACTICAL APPLICATION: The antioxidative activities of 50 main compounds were identified after the ethanolic extraction of Fritillaria straw. This Fritillaria straw extract was added to Chinese sausage, effectively inhibiting the oxidation of lipids and proteins as well as the decomposition of proteins. Obviously, the Fritillaria straw extract, one of the choices to replace synthetic antioxidants, may be useful for future meat processing, because of its positive impact on the product's quality and shelf life.


Asunto(s)
Antioxidantes , Fritillaria , Productos de la Carne , Extractos Vegetales , Antioxidantes/análisis , Fritillaria/química , Lípidos , Oxidación-Reducción , Extractos Vegetales/química
11.
J Sci Food Agric ; 103(15): 7529-7538, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37406160

RESUMEN

BACKGROUND: Fresh-cut fruit are convenient ready-to-eat products increasingly demanded by consumers, but highly susceptible to oxidation. To increase the shelf life of these products, this industry is currently facing the challenge of finding sustainable natural preservatives capable of maintaining fresh-cut fruit quality while meeting consumers' expectations regarding health and environmental concerns. RESULTS: In this work, fresh-cut apple slices were treated with two antioxidant extracts derived from industrial by-products: a phenolic-rich extract produced from sugarcane straw (PE-SCS) and applied at 15 g L-1 , and a mannan-rich extract obtained from brewer's spent yeast (MN-BSY) applied at two concentrations: 1 and 5 g L-1 . PE-SCS, having a brown color, imparted a brownish hue to the fruit and increased the browning rate during storage, and not even the initial robust antioxidant response (high superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase activities), prevented oxidation. Fruit treated with MN-BSY extract at 5 g L-1 showed lower color loss rate and higher polyphenol oxidase inhibition, while at 1 g L-1 it showed lower firmness loss rate and lower lipid peroxidation after 6 days of storage. CONCLUSION: The results showed that PE-SCS triggers a potent antioxidant response in fresh-cut fruit and, despite it imparting a brown color to the fruit at 15 g L-1 , it may have potential for application at lower concentrations. Regarding MN-BSY, it generally decreased oxidative stress, but its effect on quality maintenance was dependent on the concentration and, thus, to confirm its potential as a fruit preservative more concentrations must be tested. © 2023 Society of Chemical Industry.


Asunto(s)
Malus , Saccharum , Antioxidantes , Saccharomyces cerevisiae , Mananos , Frutas , Extractos Vegetales/farmacología
12.
Chemosphere ; 334: 138936, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37182711

RESUMEN

Self-sustaining smoldering is an emerging technology for nonaqueous-phase liquid remediation; however, it is rarely applied for Cr(VI)-contaminated soil treatment. In this study, self-sustaining smoldering using rice straw (RS) as a surrogate fuel was applied to remediate Cr(VI)-contaminated soil for the first time. Thirteen one-dimensional vertical smoldering experiments were conducted to investigate the effectiveness of the smoldering method and the effects of key experimental parameters on smoldering remediation performance. Smoldering was observed to be self-sustaining within the range of RS particle size from <0.16 to 2.00-4.00 mm, airflow from 0.2 to 1 m3/h, and Cr(VI)-impacted soil/RS ratios from 2:1 to 6:1. The Cr(VI)-contaminated soil was effectively remediated, which was confirmed by lowered Cr(VI) contents in the treated samples (decreased by 52.22-86.57%) and the elevated fraction of Cr oxidizable and residual form (increased by 1.14-3.30 and 2.97-4.00 times, respectively), compared to the control. The reducing gases (CO and CxHy) generated during the smoldering played a crucial role in the remediation process. The contents of available P and K in the remediated soil containing the remaining biochar and ash increased, thus improving soil reusability. Hence, this study shows that smoldering with RS as supplemental fuel is a promising Cr(VI)-contaminated soil management technique without supplying substantial external energy.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes del Suelo , Cromo/análisis , Contaminación Ambiental , Suelo , Contaminantes del Suelo/análisis
13.
Huan Jing Ke Xue ; 44(5): 2746-2755, 2023 May 08.
Artículo en Chino | MEDLINE | ID: mdl-37177947

RESUMEN

Exploring the biogeochemical cycle characteristics of soil carbon, nitrogen, and phosphorus in farmland in the dryland of the loess plateau can provide scientific basis and technical support for efficient crop production and sustainable land use. Here, based on a long-term (24 year) straw return field experiment in Shouyang, Shanxi province, the effects of different straw return regimes, i.e., straw mulching (SM), direct straw return (DS), animal-digested straw return (AS), and non-straw return (CK), on the stoichiometric ratio of soil elements and extracellular enzyme activities were studied. The vector angle and length were calculated to indicate the resource constraints faced by microorganisms. The vector angle was greater than 45° and less than 45°, indicating that microorganisms were limited by phosphorus and nitrogen, respectively. The greater the deviation from 45°, the greater the degree of limitation, and the longer the vector length, the more severely limited by carbon. The results showed that ① the soil C/N and C/P of long-term straw returning ranged from 9.81 to 14.28 and from 14.58 to 21.92, with the mean values of 12.36 and 17.51, respectively, which were 6.0% and 4.2% lower than that at the initial stage of the experiment. The soil N/P was distributed between 1.27 and 1.57, with an average of 1.42, which was 2.2% higher than that in the initial stage. The soil C/N and C/P ratios showed a trend of first decreasing and then increasing, the soil N/P ratio basically showed a flat trend, and there was no significant difference in soil element metering ratios between different straw returning treatments. ② Compared with the 24-year long-term non-straw return treatment, the activities of ß-1,4-glucosidase (BG) and ß-1,4-N-acetylglucosaminidase (NAG) in the soil of the long-term straw mulching treatment increased by 134.4% and 107.5% (P<0.05), the activities of BG and alkaline phosphatase (AP) in the soil of the long-term straw mulching treatment decreased by 59.3% and 59.5% (P<0.05), respectively, and the activities of NAG in the soil of the long-term straw mulching treatment increased by 102.8% (P<0.05). Under the long-term straw returning treatment, soil microorganisms were faced with carbon and phosphorus limitation as a whole. Long-term straw mulching aggravated microbial carbon limitation, and animal-digested straw return could alleviate the degree of carbon limitation. Compared with that in the 24-year long-term non-straw return treatment, soil EEAC/N could be significantly reduced by the animal-digested straw return treatment, and soil EEAC/P could be increased by the direct straw return treatment. The three straw returning methods had no significant indigenous effect on soil EEAN/P. The overall vector angle was greater than 45°, and the vector length increased by 3.8%-20.1% compared with that in the initial stage. ③ Correlation analysis showed that C and N inputs were significantly negatively correlated with BG activity; available nitrogen was significantly correlated with NAG activity, AP activity, and EEAC/N; C/P was significantly positively correlated with EEAC/N; there were significant correlations between N/P and NAG activity, AP activity, EEAC/N, and EEAC/P; and there was no significant correlation between EEAN/P and any environmental factors. In conclusion, the availability of soil nitrogen and phosphorus elements and N/P ratio had significant effects on soil extracellular enzyme activity and stoichiometric characteristics under different long-term straw returning treatments. In the future, more attention should be paid to the improvement of organic carbon and the promotion of nitrogen and phosphorus availability in farmland soil in soil-efficient cultivation and agricultural production activities.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/análisis , Fósforo/análisis , Nitrógeno/análisis , Fertilizantes/análisis , Agricultura/métodos , China , Microbiología del Suelo
14.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1290-1296, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37236946

RESUMEN

Aiming at solving the problems of soil environment deterioration and the decline of both yield and quality caused by excessive application of chemical fertilizer, we investigated the effects of rotted corn straw on the soil environment of root zone, yield and quality of cucumber with 'Jinyou 35' cucumber as the experimental material. There were three treatments, namely, combined application of rotted corn straw and chemical fertilizer (T1, the total nitrogen fertilizer application were 450 kg N·hm-2, of which 9000 kg·hm-2 rotted corn straw was used as the subsoil fertilizer, and the rest was supplemented with chemical fertilizer), pure chemical fertilizer (T2, the total nitrogen fertilizer application was the same as T1) and no fertilization (control). The results showed that the content of soil organic matter in root zone soil in T1 treatment was much higher, but no difference between T2 treatment and the control, after two continuous plantings in one year. The concentrations of soil alkaline nitrogen, available phosphorus, available potassium of T1 and T2 in cucumber root zone were higher than that in the control. T1 treatment had lower bulk density, but markedly higher porosity and respiratory rate than T2 treatment and the control in root zone soil. The electric conductivity of T1 treatment was higher than that of the control, but significantly lower than T2 treatment. There was no significant difference in pH among the three treatments. The quantity of bacteria and actinomycetes in cucumber rhizosphere soil were the highest in T1, and the lowest in the control. However, the highest quantity of fungi was found in T2. The enzyme activities of rhizosphere soil in T1 treatment were markedly higher than those of the control, whereas those of T2 treatment were significantly lower or had no significant difference relative to the control. The cucumber root dry weight and root activity of T1 were significantly higher than that of the control. The yield of T1 treatment increased by 10.1%, and fruit quality improved obviously. The root activity of T2 treatment was also significantly higher than that in the control. There was no significant difference in root dry weight and yield between T2 treatment and the control. Furthermore, T2 treatment revealed a decrease in fruit quality relative to T1 treatment. These results suggested that the combined application of rotted corn straw and chemical fertilizer could improve soil environment, promote root growth, enhance root activity and improve yield and quality of cucumber in solar-greenhouse, which could be popularized and applied in protected cucumber production.


Asunto(s)
Cucumis sativus , Suelo , Suelo/química , Agricultura/métodos , Zea mays , Fertilizantes , Nitrógeno/análisis
15.
Sci Total Environ ; 884: 163506, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37087003

RESUMEN

Arbuscular mycorrhizal (AM) fungi are symbiotic organisms that contribute significantly to plant mineral nutrition, mainly phosphate. However, their benefits are constricted by the availability of phosphate in the soil, and thus they are recalcitrant as amendment in highly fertilized soils. Biochars are by-products of the pyrolysis of biomass in the absence of oxygen. They can improve soil properties and act as a source of nutrients for plants. However, depending on their origin, the final composition of biochars is extremely variable and thus, their efficiency unpredictable. In order to gain mechanistic insights into how the combined application of biochars and AM fungi contribute to plant phosphate nutrition and growth, we used gene expression analyses of key symbiotic marker genes. We compared for this analysis two biochars originated from very different feedstocks (chicken manure and wheat straw) on tomato plants with or without the AM fungus Rhizophagus irregularis. Our results show that the synergy between AM fungi and biochars as P biofertilizers is greatly governed by the origin of the biochar that determines the speed at which phosphate is released to the soil and absorbed by the plant. Thus, chicken manure biochar quickly impacted on plant growth by readily releasing P, but it turned out detrimental for symbiosis formation, decreasing colonization levels and expression of key symbiotic plant marker genes such as SlPT4 or SlFatM. In contrast, wheat straw biochar was inferior at improving plant growth but stimulated the establishment of the symbiosis, producing plants with the same concentration of phosphate as those with the chicken manure. Taken together, slow P releasing biochars from plant residues appears to be a more promising amendment for long terms experiments in which biofertilizers such as AM fungi are considered. Furthermore, our results indicate that implementing plant transcriptomic analyses might help to mechanistically dissect and better understand the effects of biochars on plant growth in different scenarios.


Asunto(s)
Micorrizas , Solanum lycopersicum , Micorrizas/metabolismo , Fósforo/metabolismo , Estiércol , Simbiosis , Fosfatos , Suelo/química , Perfilación de la Expresión Génica , Raíces de Plantas/metabolismo
16.
Environ Res ; 229: 115960, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116675

RESUMEN

Globally, red mud is a solid waste from the aluminum industry, which is rich in iron oxides. It is an effective soil amendment in agriculture that protects connected waters from legacy diffuse phosphorus (P) soil losses. However, other management practices such as flooding and drying and/or organic carbon inputs could potentially alter P fixation in these red mud-amended soils thereby releasing P to waters. The present study was designed and conducted to monitor the mobilization of P in a red mud-amended acidic soil subjected to periodic flooding-drying, straw incorporation, and a mix of both management practices. Sequential extraction and K edge X-ray absorption near-edge structure spectroscopy (k-XANES) were employed to distinguish P fractions/species and the Langmuir model was fitted to evaluate soil P sorption capacity. The content of labile P indicated by CaCl2-P was increased significantly by 101% and 28.7% in the straw incorporation and periodic flooding-drying treatments, while it decreased significantly by 22.3% in the combined periodic flooding-drying with straw incorporation treatment, compared with Control. The inherent phosphate contained in sorghum straw, and the enhanced iron (Fe) reduction and dissolution of Calcium (Ca)-bound P induced by straw addition contributed to mobilization of P in the straw incorporation treatment. In contrast, the increased poorly crystalline Al/Fe oxides-bound P and occluded Fe-bound P fraction in the combined periodic flooding-drying with straw incorporation treatment explains the decrease in CaCl2-P. Furthermore, the increased soil P sorption capacity and the decreased P desorption rate were also responsible for the reduced P loss risk in the treatment. The results of structural equation modelling (SEM) indicated that organically complexed Fe and Fe-bound P were directly affecting P mobilization in the amended soil. Overall, the present study shows that appropriate flooding-drying events coupled with straw incorporation could be a mitigation practice for stabilizing P in red mud-amended soil. However, before it can be applied on a wide scale, multi-point and field trials should be carried out to further evaluate actual environmental implications.


Asunto(s)
Contaminantes del Suelo , Suelo , Suelo/química , Fósforo , Cloruro de Calcio , Óxidos , Contaminantes del Suelo/análisis , Hierro
17.
Bioresour Technol ; 378: 129010, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37011842

RESUMEN

A combined chemical-bacterial process was developed to convert vegetable straw waste to high value antifungal iturins. Straws from three widely cultivated vegetable (cucumber, tomato and pepper) were evaluated as feedstocks for iturin production. Microwave assisted hydrolysis with very dilute acid (0.2% w/w H2SO4) achieved efficient reducing sugar recovery. The high glucose concentration in non-detoxified hydrolysate from pepper straw facilitated the optimal growth of Bacillus amyloliquefaciens strain Cas02 and stimulated the production of iturin. The fermentation parameters were optimised to enhance the iturin production efficiency. The obtained fermentation extract was further purified using macroporous adsorption resin, resulting in an iturin-rich extract that exhibited strong antifungal activity against Alternaria alternata with an IC50 of 176.44 µg/mL. Each iturin homologue was identified using NMR. Overall, 1.58 g iturin-rich extract containing 164.06 mg/g iturins was obtained from 100 g pepper straw, illustrating the great potential of valorising pepper straw via this process.


Asunto(s)
Antifúngicos , Bacillus amyloliquefaciens , Antifúngicos/farmacología , Antifúngicos/química , Verduras/metabolismo , Bacillus amyloliquefaciens/metabolismo , Fermentación , Extractos Vegetales , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo
18.
Chemosphere ; 327: 138477, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36966928

RESUMEN

The long-term effectiveness of heavy metal immobilization is always a concern. This study proposes a completely novel approach to enhance the stability of heavy metals by combined biochar and microbial induced carbonate precipitation (MICP) technology, to create a "surface barrier" of CaCO3 layer on biochar after lead (Pb2+) immobilization. Aqueous sorption studies and chemical and micro-structure tests were used to verify the feasibility. Rice straw biochar (RSB700) was produced at 700 °C, which shows high immobilization capacity of Pb2+ (maximum of 118 mg g-1). But the stable fraction only accounts for 4.8% of the total immobilized Pb2+ on biochar. After MICP treatment, the stable fraction of Pb2+ significantly increased to a maximum of 92.5%. Microstructural tests confirm the formation of CaCO3 layer on biochar. The CaCO3 species are predominantly calcite and vaterite. Higher Ca2+ and urea concentrations in cementation solution resulted in higher CaCO3 yield but lower Ca2+ utilization efficiency. The main mechanism of the "surface barrier" to enhance Pb2+ stability on biochar was likely the encapsulation effect: it physically blocked the contact between acids and Pb2+ on biochar, and chemically buffer the acidic attack from the environment. The performance of the "surface barrier" depends on both the yield of CaCO3 and their distribution uniformity on biochar's surface. This study shed lights on the potential application of the "surface barrier" strategy combining biochar and MICP technologies for enhanced heavy metal immobilization.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Contaminantes del Suelo , Plomo , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Metales Pesados/análisis , Carbonato de Calcio , Suelo/química
19.
Huan Jing Ke Xue ; 44(3): 1714-1726, 2023 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-36922232

RESUMEN

Regulation of exogenous substances and intercropping are effective methods to improve the efficiency of phytoremediation of heavy metal contaminated soil. A pot experiment was used to study the effects of earthworms, straw, and citric acid on the remediation of Zn, Pb, and Cd contaminated soil by monocropping and intercropping of Solanum photeinocarpum and Pterocypsela indica. The results showed that the bioaccumulation factors (BCF) of earthworms for Zn, Pb, and Cd were 0.07-0.13, 0.10-0.26, and 5.64-15.52, respectively. The addition of straw in the soil increased the biomass of earthworms by 22.29%-223.87% but reduced the heavy metal concentrations by 8.15%-62.58%. Straw and citric acid showed passivation and activation effects, respectively, but earthworms had no significant effect on the available concentrations of heavy metals in the soil. Earthworms had no significant effect on the heavy metal concentrations of P. indica but reduced the heavy metal concentrations of S. photeinocarpum. Straw showed an inhibitory effect on the concentrations of heavy metals in P. indica but promoted the concentrations of Cd in S. photeinocarpum. Citric acid had no significant effect on the heavy metal concentrations in S. photeinocarpum but significantly increased the Pb concentrations in P. indica. Intercropping significantly reduced the soil available heavy metal concentrations and increased the heavy metal concentrations in plant roots; however, it had no significant effect on heavy metal concentrations in plant shoots. The total extraction amounts of Zn, Pb, and Cd by plants were mainly manifested as P. indica>intercropping>S. photeinocarpum. The addition of earthworms increased the total extraction amounts of Zn, Pb, and Cd by 12.49%, 35.89%, and 29.01%, respectively, and the addition of straw+earthworms increased the total extraction amounts of Pb by 87.21%. The results indicated that straw significantly promoted the growth of earthworms and reduced their accumulation of heavy metals, and the addition of earthworms alone or in combination with straw can effectively improve the remediation potential of P. indica of Zn, Pb, and Cd contaminated soil.


Asunto(s)
Asteraceae , Metales Pesados , Oligoquetos , Contaminantes del Suelo , Solanum , Animales , Cadmio/análisis , Plomo , Suelo , Ácido Cítrico , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Biodegradación Ambiental , Zinc
20.
Bioresour Technol ; 377: 128947, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36958680

RESUMEN

In this research, CO2-nanobubble water (CO2-NBW) and iron nanoparticles (Fe0NPs) were added simultaneously to exploit individual advantages to enhance the methanogenesis process from both the stability of anaerobic digestion (AD) system and the activity of anaerobic microorganism aspects. Results showed that the AD performance was enhanced by supplementing with CO2-NBW or Fe0NPs individually, and could be further improved by simultaneous addition of the two additives. The maximum methane yield was achieved in the CO2-NBW + Fe0NPs reactor (141.99 mL/g-VSadded), which increased by 26.16% compared to the control group. Similarly, the activities of the electron transfer system (ETS) and enzyme were improved. The results of microbial community structure revealed that the addition of CO2-NBW and Fe0NPs could improve the abundance of dominant bacteria (Anaerolineaceae, Bacteroidales, and Prolixibacteraceae) and archaea (Methanotrichaceae and Methanospirillaceae). Additionally, the functional metabolic prediction heatmap indicated that metabolic functional genes favorable for AD of corn straw were enhanced.


Asunto(s)
Reactores Biológicos , Nanopartículas , Anaerobiosis , Zea mays , Dióxido de Carbono , Agua , Hierro , Metano , Bacteroidetes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA