RESUMEN
Selenium (Se) is an essential trace element, which is inserted as selenocysteine (Sec) into selenoproteins during biosynthesis, orchestrating their expression and activity. Se is associated with both beneficial and detrimental health effects; deficient supply or uncontrolled supplementation raises concerns. In particular, Se was associated with an increased incidence of type 2 diabetes (T2D) in a secondary analysis of a randomized controlled trial (RCT). In this review, we discuss the intricate relationship between Se and diabetes and the limitations of the available clinical and experimental studies. Recent evidence points to sexual dimorphism and an association of Se deficiency with gestational diabetes mellitus (GDM). We highlight the emerging evidence linking high Se status with improved prognosis in patients with T2D and lower risk of macrovascular complications.
Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Selenio , Humanos , Selenio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Diabetes Gestacional/metabolismo , Embarazo , Caracteres Sexuales , Animales , Masculino , Selenoproteínas/metabolismoRESUMEN
Limeum indicum has been widely utilized in traditional medicine but no experimental work has been done on this herb. The primary objective of this study was to conduct a phytochemical analysis and assess the multifunctional capabilities of aforementioned plant in dual therapy for Alzheimer's disease (AD) and Typeâ 2 diabetes (T2D). The phytochemical screening of ethanol, methanol extract, and their derived fractions of Limeum indicum was conducted using GC-MS, HPLC, UV-analysis and FTIR. The antioxidant capacity was evaluated by DPPH method. The inhibitory potential of the extracts/fractions against α-, ß-glucosidase acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoaminine oxidases (MAO-A & B) was evaluated. Results revealed that acetonitrile fraction has highest inhibitory potential against α-glucosidase (IC50=68.47±0.05â µg/mL), methanol extract against ß-glucosidase (IC50=91.12±0.07â µg/mL), ethyl acetate fraction against AChE (IC50=59.0±0.02â µg/mL), ethanol extract against BChE (28.41±0.01â µg/mL), n-hexane fraction against MAO-A (IC50=150.5±0.31â µg/mL) and methanol extract for MAO-B (IC50=75.95±0.13â µg/mL). The docking analysis of extracts\fractions suggested the best binding scores within the active pocket of the respective enzymes. During the in-vivo investigation, ethanol extract produced hypoglycemic effect (134.52±2.79 and 119.38±1.40â mg/dl) after 21â days treatment at dose level of 250 and 500â mg/Kg. Histopathological findings further supported the in-vivo studies.
Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Butirilcolinesterasa , Cromatografía de Gases y Espectrometría de Masas , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Monoaminooxidasa , Fitoquímicos , Extractos Vegetales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación , Monoaminooxidasa/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/tratamiento farmacológico , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Masculino , alfa-Glucosidasas/metabolismo , Ratas , beta-Glucosidasa/antagonistas & inhibidores , beta-Glucosidasa/metabolismo , HumanosRESUMEN
BACKGROUND: Trigonella foenum-graecum (Fenugreek) is an extensively researched phytotherapeutic for the management of Type 2 diabetes without any associated side effects. The major anti-diabetic bioactive constituents present in the plant are furostanolic saponins, which are more abundantly available in the seed of the plant. However, the bioavailability of these components depends on the method of extraction and hence formulation of the phytotherapeutic constitutes a critical step for its success. OBJECTIVE: The present study reports the efficacy of a novel, patented fenugreek seed extract, Fenfuro®, containing significant amount of furostanolic saponins, in an open-labelled, two-armed, single centric study on a group of 204 patients with Type 2 diabetes mellitus over a period of twelve consecutive weeks. RESULTS: Administration of Fenfuro® in the dosage of 500 mg twice daily along with metformin and/or sulfonylurea-based prescribed antidiabetic drug resulted in a reduction of post-prandial glucose by more than 33% along with significant reduction in fasting glucose, both of which were greater than what resulted for the patient group receiving only Metformin and/or Sulfonylurea therapy. Fenfuro® also resulted in reduction in mean baseline HOMA index from 4.27 to 3.765, indicating restoration of insulin sensitivity which was also supported by a significant decrease in serum insulin levels by >10% as well as slight reduction in the levels of C-peptide. However, in the case of the Metformin and/or Sulfonylurea group, insulin levels were found to increase by more than 14%, which clearly indicated that drug-induced suppression of glucose levels instead of restoration of glucose homeostasis. Administration of the formulation was also found to be free from any adverse side effects as there were no changes in hematological profile, liver function and renal function. CONCLUSION: The study demonstrated the promising potential of this novel phytotherapeutic, Fenfuro®, in long-term holistic management of type-2 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinas , Metformina , Saponinas , Trigonella , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa/uso terapéutico , Insulinas/uso terapéutico , Metformina/uso terapéutico , Extractos Vegetales/farmacología , Saponinas/uso terapéutico , Compuestos de Sulfonilurea/uso terapéutico , Método Doble CiegoRESUMEN
Purpose: In this study, our primary aim is to analyze the genetic expression feature and analyze specific Traditional Chinese medicine (TCM) constitution distribution in non-alcoholic fatty liver disease (NAFLD) and reveal the metabolic characteristic of NAFLD. Materials and Methods: For revealing genetic features, we obtained the gene expression data from the Gene Expression Omnibus (GEO) database of the National Center for Biotechnology Information (NCBI). The genetic data on NAFLD were analyzed by identifying differentially expressed genes (DEGs), associated pathways, co-expressed genetic networks, and gene set enrichment function. Concurrently, we assessed specific constitution distributions among local NAFLD patients through established TCM constitution models and determined the independent variable, including specific constitution to the NAFLD via the regression analyses. Results: The analyses on GEO datasets showed that simple steatosis in NAFLD is strongly associated with HOMA-insulin resistance (HOMA-IR). Analyses of GEO datasets revealed significantly altered genetic expression profiles between NAFLD and normal populations. For TCM constitution analyses, we demonstrated a decline in yin-yang harmony (YYH) and yang-asthenia (YAAC) constitution, whereas there was an increase in qi-stagnation (QSC) and phlegm-dampness (PDC) in NAFLD. The binary logistic regression analysis indicated that besides other metabolic parameters, YYH, qi asthenia (QAC), YYAC, and yin-asthenia (YAC) were the independent variables of NAFLD, while YAC was the independent variables of T2D. The multilinear regression analyses suggested that NAFLD, DM, BMI, waist, TC, TG, hypertension, ALT, AST, and YAC were the significant determinators of the FPG. Conclusion: This study presents a relatively comprehensive metabolic profile in steatosis of NAFLD, revealed by significant genetic expression feature alterations and different TCM constitution distribution in NAFLD. Through this method, the study intends to associate the genetic feature with the phenotype of TCM constitution. The results could be applied to assist integrative medicine research in exploring the appropriate personalized approaches for NAFLD.
RESUMEN
Accumulating evidences strongly support the correlations between the compositions of gut microbiome and therapeutic effects on Type 2 diabetes (T2D). Notably, gut microbes such as Akkermansia muciniphila are found able to regulate microecological balance and alleviate dysmetabolism of mice bearing T2D. In order to search out similarly functional bacteria, bacteriophage MS2 with a good specificity to bacteria carrying fertility (F) factor were used to treat T2D mice. Based on multi-omics analysis of microbiome and global metabolism of mice, we observed that gavage of bacteriophage MS2 and metformin led to a significant increase in the abundance of Corynebacterium glutamicum and A. muciniphila, respectively. Consequently, the gut microbiota were remodeled, leading to variations in metabolites and a substantial increase in short-chain fatty acids (SCFAs). In which, the amount of acetate, propionate, and butyrate presented negative correlations to that of proinflammatory cytokines, which was beneficial to repairing the intestinal barriers and improving their functions. Moreover, main short fatty acid (SCFA) producers exhibited positive interactions, further facilitating the restoration of gut eubiosis. These findings revealed that C. glutamicum and its metabolites may be potential dietary supplements for the treatment of T2D. Moreover, our research contributes to a novel understanding of the underlying mechanism by which functional foods exert their anti-diabetic effects.
Asunto(s)
Corynebacterium glutamicum , Diabetes Mellitus Tipo 2 , Animales , Ratones , Ácidos Grasos Volátiles , Butiratos , Bacterias , LevivirusRESUMEN
Introduction: Numerous studies have demonstrated that the stems of D. officinale have the effect of lowering blood glucose, but the leaves of D. officinale have seldom been investigated. In this study, we mainly studied the hypoglycemic effect and mechanism of D. officinale leaves. Methods: Initially in vivo, male C57BL/6 mice were administered either standard feed (10 kcal% fat) or high-fat feed (60 kcal% fat) along with either normal drinking water or drinking water containing 5 g/L water extract of D. officinale leaves (EDL) for 16 weeks, and changes in body weight, food intake, blood glucose, etc., were monitored weekly. Next in vitro, C2C12 myofiber precursor cells which were induced to differentiate into myofibroblasts and cultured with EDL to detect the expression of insulin signaling pathway related proteins. HEPA cells were also cultured with EDL to detect the expression of hepatic gluconeogenesis or hepatic glycogen synthesis related proteins. Eventually after separating the components from EDL by ethanol and 3 kDa ultrafiltration centrifuge tube, we conducted animal experiments using the ethanol-soluble fraction of EDL (ESFE), ethanol-insoluble fraction of EDL (EIFE), ESFE with a molecular weight of >3 kDa (>3 kDa ESFE), and ESFE with a molecular weight of <3 kDa (<3 kDa ESFE) for intensive study. Results: The results in vivo revealed that the mice fed the high-fat diet exhibited significantly decreased blood glucose levels and significantly increased glucose tolerance after the EDL treatment, whereas the mice fed the low-fat diet did not. The results in vitro showed that EDL activated the expression of protein kinase B (AKT), the phosphorylation of AKT, and the expression of downstream GSK3ß in the insulin signaling pathway. EDL treatment of HEPA cells confirmed that EDL did not affect hepatic gluconeogenesis or hepatic glycogen synthesis. In the experiment of studying the composition of EDL, we found that the >3 kDa ESFE displayed the effect of lowering blood glucose. In summary, the effect of EDL in lowering blood glucose may bethanole achieved by activating the insulin signaling pathway to increase insulin sensitivity, and the main functional substance was contained within the >3 kDa ESFE. Discussion: The findings of this study represent a reference point for further exploration of the hypoglycemic effects of D. officinale leaves and may assist in both the identification of new molecular mechanisms to improve insulin sensitivity and the isolation of monomeric substances that lower blood glucose. Furthermore, the obtained results may provide a theoretical basis for the development of hypoglycemic drugs with D. officinale leaves as the main component.
RESUMEN
Epidemiological evidence regarding the possible link between multiple essential metals levels and all-cause mortality and cardiovascular disease (CVD) mortality among type 2 diabetes (T2D) patients is sparse. Here, we aimed to evaluate the longitudinal associations between 11 essential metals levels in plasma and all-cause mortality and CVD mortality among T2D patients. Our study included 5278 T2D patients from the Dongfeng-Tongji cohort. LASSO penalized regression analysis was used to select the all-cause and CVD mortality-associated metals from 11 essential metals (iron, copper, zinc, selenium, manganese, molybdenum, vanadium, cobalt, chromium, nickel, and tin) measured in plasma. Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results: With a median follow-up of 9.8 years, 890 deaths were documented, including 312 deaths of CVD. LASSO regression models and the multiple-metals model revealed that plasma iron and selenium were negatively associated with all-cause mortality (HR: 0.83; 95%CI: 0.70, 0.98; HR: 0.60; 95%CI: 0.46, 0.77), whereas copper was positively associated with all-cause mortality (HR: 1.60; 95%CI: 1.30, 1.97). Only plasma iron has been significantly associated with decreased risk of CVD mortality (HR: 0.61; 95%CI: 0.49, 0.78). The dose-response curves for the association between copper levels and all-cause mortality followed a J shape (Pfor nonlinear = 0.01). Our study highlights the close relationships between essential metals elements (iron, selenium, and copper) and all-cause and CVD mortality among diabetic patients.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Selenio , Humanos , Cobre , Metales , Hierro , Factores de RiesgoRESUMEN
The prevalence of obesity has risen in the last decades, and it has caused massive health burdens on people's health, especially metabolic and cardiovascular issues. The risk of vitamin D insufficiency is increased by obesity, because adipose tissue alters both the requirements for and bioavailability of vitamin D. Exercise training is acknowledged as having a significant and long-term influence on body weight control; the favorable impact of exercise on obesity and obesity-related co-morbidities has been demonstrated via various mechanisms. The current work illustrated the effects of vitamin D supplementation and exercise on obesity induced by a high-fat diet (HFD) and hepatic steatosis in rats and explored how fatty acid transport protein-4 (FATP4) and Toll-like receptor-4 antibodies (TLR4) might be contributing factors to obesity and related hepatic steatosis. Thirty male albino rats were divided into five groups: group 1 was fed a normal-fat diet, group 2 was fed an HFD, group 3 was fed an HFD and given vitamin D supplementation, group 4 was fed an HFD and kept on exercise, and group 5 was fed an HFD, given vitamin D, and kept on exercise. The serum lipid profile adipokines, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were analyzed, and the pathological changes in adipose and liver tissues were examined. In addition, the messenger-ribonucleic acid (mRNA) expression of FATP4 and immunohistochemical expression of TLR4 in adipose and liver tissues were evaluated. Vitamin D supplementation and exercise improved HFD-induced weight gain and attenuated hepatic steatosis, along with improving the serum lipid profile, degree of inflammation, and serum adipokine levels. The expression of FATP4 and TLR4 in both adipose tissue and the liver was downregulated; it was noteworthy that the group that received vitamin D and was kept on exercise showed also improvement in the histopathological picture of this group. According to the findings of this research, the protective effect of vitamin D and exercise against obesity and HFD-induced hepatic steatosis is associated with the downregulation of FATP4 and TLR4, as well as a reduction in inflammation.
Asunto(s)
Dieta Alta en Grasa , Hígado Graso , Natación , Vitamina D , Masculino , Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Lípidos , Hígado , Obesidad/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Vitamina D/farmacología , Vitamina D/uso terapéutico , Vitamina D/metabolismo , Vitaminas/metabolismo , RatasRESUMEN
Background: The presence of diabetes mellitus (DM) among COVID-19 patients is associated with increased hospitalization, morbidity, and mortality. Evidence has shown that hyperglycemia potentiates SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection and plays a central role in severe COVID-19 and diabetes comorbidity. In this review, we explore the therapeutic potentials of herbal medications and natural products in the management of COVID-19 and DM comorbidity and the challenges associated with the preexisting or concurrent use of these substances. Methods: Research papers that were published from January 2016 to December 2021 were retrieved from PubMed, ScienceDirect, and Google Scholar databases. Papers reporting clinical evidence of antidiabetic activities and any available evidence of the anti-COVID-19 potential of ten selected natural products were retrieved and analyzed for discussion in this review. Results: A total of 548 papers (73 clinical trials on the antidiabetic activities of the selected natural products and 475 research and review articles on their anti-COVID-19 potential) were retrieved from the literature search for further analysis. A total of 517 articles (reviews and less relevant research papers) were excluded. A cumulative sum of thirty-one (31) research papers (20 clinical trials and 10 others) met the criteria and have been discussed in this review. Conclusion: The findings of this review suggest that phenolic compounds are the most promising phytochemicals in the management of COVID-19 and DM comorbidity. Curcumin and propolis have shown substantial evidence against COVID-19 and DM in humans and are thus, considered the best potential therapeutic options.
RESUMEN
Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.
RESUMEN
INTRODUCTION: Current treatment for type 1 diabetes (T1D) is centered around insulin supplementation to manage the effects of pancreatic ß cell loss. GDF15 is a potential preventative therapy against T1D progression that could work to curb increasing disease incidence. AREAS COVERED: This paper discusses the known actions of GDF15, a pleiotropic protein with metabolic, feeding, and immunomodulatory effects, connecting them to highlight the open opportunities for future research. The role of GDF15 in the prevention of insulitis and protection of pancreatic ß cells against pro-inflammatory cytokine-mediated cellular stress are examined and the pharmacological promise of GDF15 and critical areas of future research are discussed. EXPERT OPINION: GDF15 shows promise as a potential intervention but requires further development. Preclinical studies have shown poor efficacy, but this result may be confounded by the measurement of gross GDF15 instead of the active form. Additionally, the effect of GDF15 in the induction of anorexia and nausea-like behavior and short-half-life present significant challenges to its deployment, but a systems pharmacology approach paired with chronotherapy may provide a possible solution to therapy for this currently unpreventable disease.
Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismoRESUMEN
The study was conducted to comprehensively assess the association of the concentration of vitamin D in the blood and insulin resistance in non-diabetic subjects. The objective was to pool the results from all observational studies from the beginning of 1980 to August 2021. PubMed, Medline and Embase were systematically searched for the observational studies. Filters were used for more focused results. A total of 2248 articles were found after raw search which were narrowed down to 32 articles by the systematic selection of related articles. Homeostatic Model Assessment of Insulin Resistance (HOMAIR) was used as the measure of insulin resistance and correlation coefficient was used as a measure of the relationship between vitamin D levels and the insulin resistance. Risk of bias tables and summary plots were built using Revman software version 5.3 while Comprehensive meta-analysis version 3 was used for the construction of forest plot. The results showed an inverse association between the status of vitamin D and insulin resistance (r = -0.217; 95% CI = -0.161 to -0.272; p = 0.000). A supplement of vitamin D can help reduce the risk of insulin resistance; however further studies, like randomized controlled trials are needed to confirm the results.
Asunto(s)
Resistencia a la Insulina , Deficiencia de Vitamina D/metabolismo , Vitamina D/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Suplementos Dietéticos , Femenino , Homeostasis , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Estudios Observacionales como Asunto , Riesgo , Vitamina D/administración & dosificación , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/tratamiento farmacológico , Adulto JovenRESUMEN
Since honeybee pollen is considered a "perfectly complete food" and is characterized by many beneficial properties (anti-inflammatory, antioxidant, anti-bacterial, etc.), it has begun to be used for therapeutic purposes. Consequently, there is a high need to develop methods for controlling its composition. A thorough bee pollen analysis can be very informative regarding its safety for consumption, the variability of its composition, its biogeographical origin, or harvest date. Therefore, in this study, two reliable and non-destructive spectroscopy methods, i.e., ED-XRF and ATR-FTIR, are proposed as a fast approach to characterize bee pollen. The collected samples were derived from apiaries located in west-central Poland. Additionally, some commercially available samples were analyzed. The applied methodology was optimized and combined with sophisticated chemometric tools. Data derived from IR analyses were also subjected to two-dimensional correlation spectroscopy. The developed ED-XRF method allowed the reliable quantification of eight macro- and micro-nutrients, while organic components were characterized by IR spectroscopy. Principal component analysis, cluster analysis, and obtained synchronous and asynchronous maps allowed the study of component changes occurring dependently on the date and location of harvest. The proposed approach proved to be an excellent tool to monitor the variability of the inorganic and organic content of bee pollen.
Asunto(s)
Nutrientes/análisis , Polen/química , Espectrometría por Rayos X/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Animales , Abejas , Micronutrientes/análisisRESUMEN
Oxidative stress resulting from the depletion of glutathione (GSH) level plays a vital role in generating various degenerative diseases, including type 2 diabetes (T2D). We tested the hypothesis that depleted glutathione levels can be enhanced and the impaired glucose metabolism can be prevented by supplementing Allium hookeri, a herb rich in organosulfur compounds, in a High Fat (HF) diet-induced T2D Male Sprague Dawley rat model. The experimental rats were divided into three groups (n = 6), namely normal diet, high-fat diet, and high-fat diet treated with A.hookeri methanolic leaf extract (250 mg/kg). Consumption of HF diet along with the plant extract resulted in significant reduction of the body weight (7.08%-14.89%) and blood glucose level (6.5%-16.4%) from the 13th week onward. There was a significant decrease in reactive oxygen species, oxidized glutathione (GSSG) levels, and an increase in GSH level in skeletal muscle tissues supplemented with the plant extract. The protein expressions of the signaling molecules such as GCLC and GR involved in GSH synthesis and of GLUT4 in glucose transport were also upregulated in the skeletal muscle tissues of the plant extract-treated group. Results of in vitro studies with muscle cell line (L6) further demonstrated the beneficial effect of the plant extract in increasing glucose uptake and maintaining the GSH/GSSH equilibrium via regulation of protein expression of GCLC/GR/GLUT4 signaling molecules in sodium palmitate (0.75 mM) treated cells. Overall this study suggests that dietary supplementation with Allium hookeri, can restore the glutathione level and regulate the blood glucose level in T2D.
Asunto(s)
Allium/química , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glutatión/biosíntesis , Metanol/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Masculino , Extractos Vegetales/aislamiento & purificación , Ratas , Ratas Sprague-DawleyRESUMEN
Amylin (hIAPP) amyloid formation plays an important role in the pathogenesis of type 2 diabetes (T2D), which makes it a promising therapeutic target for T2D. In this study, we established a screening tool for identifying chemicals affecting hIAPP amyloid formation based on a reported genetic tool, which constantly tracks protein aggregates in Saccharomyces cerevisiae. In order to obtain the hIAPP with better aggregation ability, the gene of hIAPP was tandemly ligated to create 1×, 2×, 4× or 6×-hIAPP expressing strains. By measuring the cell density and fluorescence intensity of green fluorescent protein (GFP) regulated by the aggregation status of hIAPP, it was found that four intramolecular ligated hIAPP (4×hIAPP) could form obvious amyloids with mild toxicity. The validity and reliability of the screening tool were verified by testing six reported hIAPP inhibitors, including curcumin, epigallocatechin gallate and so on. Combined with surface plasmon resonance (SPR) and the screening tool, which could be a screening system for hIAPP inhibitors, we found that crocin specifically binds to hIAPP and acts inhibit amyloid formation of hIAPP. The effect of crocin was further confirmed by Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) analysis. Thus, a screening system for hIAPP amyloid inhibitors and a new mechanism of crocin on anti-T2D were obtained as a result of this study.
Asunto(s)
Carotenoides/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Polipéptido Amiloide de los Islotes Pancreáticos/antagonistas & inhibidores , Agregación Patológica de Proteínas/tratamiento farmacológico , Carotenoides/química , Diabetes Mellitus Tipo 2/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Hipoglucemiantes/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Agregación Patológica de Proteínas/metabolismoRESUMEN
BACKGROUND: High-intensity statin is recommended in high-risk type 2 diabetes (T2D); however, statin dose dependently increases the risk of developing new-onset diabetes, can potentially worsen glycemic control in T2D, and may cause cognitive impairment. This study aimed to investigate the effect of statin intensification on glucose homeostasis and cognitive function in T2D. MATERIALS AND METHODS: T2D patients who were taking simvastatin ≤20 mg/day were randomized to continue taking the same dosage of simvastatin (low-dose simvastatin group; LS, n=63) for 12 weeks, or to change to atorvastatin 40 mg/day for 6 weeks, and if tolerated, atorvastatin was increased to 80 mg/day for 6 weeks (high-dose atorvastatin group; HS, n=62). Fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), plasma insulin, homeostatic model assessment of insulin resistance (HOMA-IR) and of ß-cell function (HOMA-B), cognitive functions using Montreal Cognitive Assessment (MoCA), and Trail Making Test (TMT) were assessed at baseline, 6 weeks, and 12 weeks. RESULTS: Mean age of patients was 58.8±8.9 years, and 72% were female. Mean baseline FPG and HbA1c were 124.0±27.5 mg/dl and 6.9±0.8%, respectively. No differences in baseline characteristics between groups were observed. Change in HbA1c from baseline in the LS and HS groups was -0.1% and +0.1% (p=0.03) at 6 weeks, and -0.1% and +0.1% (p=0.07) at 12 weeks. There were no significant differences in FPG, fasting plasma insulin, HOMA-B, HOMA-IR, MoCA score, or TMT between groups at 6 or 12 weeks. CONCLUSION: Switching from low-dose simvastatin to high-dose atorvastatin in T2D resulted in a slight increase in HbA1c (0.1%) without causing cognitive decline.
Asunto(s)
Atorvastatina/administración & dosificación , Glucemia/efectos de los fármacos , Cognición/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Sustitución de Medicamentos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Simvastatina/administración & dosificación , Anciano , Atorvastatina/efectos adversos , Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/psicología , Femenino , Hemoglobina Glucada/metabolismo , Homeostasis , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Simvastatina/efectos adversos , Tailandia , Factores de Tiempo , Prueba de Secuencia Alfanumérica , Resultado del TratamientoRESUMEN
Excess of visceral adipose tissue (VAT) characteristic of obesity leads to a proinflammatory state disrupting the insulin signaling pathway, triggering insulin resistance (IR) and inflammation, the main processes contributing to obesity comorbidities. Ursolic acid (UA), a pentacyclic triterpenoid occurring in a variety of plant foods, exhibits anti-inflammatory properties. The aim of this study was to evaluate UA effects on IR, hyperinsulinemia, and inflammation in experimental diet-induced obesity. Forty male Wistar rats were randomly assigned to eight groups (n = 5). One group was used for time 0. Three groups were labeled as OBE (control): receiving high-fat diet (HFD; fat content 45.24% of energy) during 3, 6, or 9 weeks; three groups UA-PREV: exposed to simultaneous HFD and UA during 3, 6, or 9 weeks to evaluate UA preventive effects; one group UA-REV: receiving HFD for 6 weeks, followed by simultaneous HFD and UA for three additional weeks to analyze UA reversal effects. Measurements were performed after 3, 6, or 9 weeks of treatment. Adiposity was calculated by weighing VAT after sacrifice. Serum markers were quantified through colorimetric and enzyme-linked immunosorbent assay methods. VAT adipokines RNAm expression was evaluated by quantitative reverse transcriptase-polymerase chain reaction. Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests. UA significantly decreased adiposity, IR, hyperinsulinemia, triacylglycerides, and cholesterol levels, and also VAT mRNA expression of MCP-1 (monocyte chemoattractant protein-1), IL (interleukin)-1ß and IL-6, concomitantly increasing adiponectin levels. UA metabolic effects demonstrated in this study support its potential therapeutic utility to improve IR, hyperinsulinemia, and inflammation observed in obesity and diabetes.
Asunto(s)
Adipoquinas/genética , Hiperinsulinismo/tratamiento farmacológico , Resistencia a la Insulina , Obesidad/tratamiento farmacológico , Triterpenos/administración & dosificación , Adipoquinas/metabolismo , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Dieta Alta en Grasa/efectos adversos , Humanos , Hiperinsulinismo/etiología , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Ratas , Ratas Wistar , Ácido UrsólicoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus emblica Linn. (Syn. Emblica officinalis Gaertn.), has been used to cure many ailments of human beings. Literature survey demonstrates that it has many pharmacological activities i.e. antidiabetic, antioxidant, anti-microbial, antifungal, antiallergic, antiviral, and anticancer properties. AIM OF THE STUDY: The present study aimed to identify the novel plant-derived antidiabetic compounds from P. emblica to understand the molecular basis of antidiabetic activities. MATERIAL AND METHODS: Text mining analysis of P. emblica and its disease association was carried out using server DLAD4U. Due to the highest score of P. emblica with diabetes, the virtual screening of a phytochemical library of P. emblica against three targets of diabetes was carried out. After that FAF-Drug4, admetSAR and DruLiTo servers were used for drug-likeness prediction. Additionally, pharmacophore modeling was also carried out to understand the antidiabetic activity of screened compounds. RESULTS: The docking scores, drug-likeness and pharmacophore studies found that Ellagic acid, Estradiol, Sesamine, Kaempferol, Zeatin, Quercetin, and Leucodelphinidin are potential antidiabetic compounds. CONCLUSIONS: Our study shows that phytochemicals of P. emblica are very potential antidiabetic candidates. Using the modern techniques these molecules could be used to develop an effective antidiabetic drugs from a natural resource.
Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Hipoglucemiantes/farmacología , PPAR gamma/metabolismo , Phyllanthus emblica , Fitoquímicos/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Simulación por Computador , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglucemiantes/farmacocinética , Modelos Biológicos , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacocinética , FitoterapiaRESUMEN
Type 2 Diabetes causes learning and memory deficits that might be mediated by hippocampus neuron apoptosis. Studies found that taurine might improve cognitive deficits under diabetic condition because of its ability to prevent hippocampus neuron apoptosis. However, the effect and mechanism is not clear. In this study, we explore the effect and mechanism of taurine on inhibiting hippocampus neuron apoptosis. Sixty male Sprague-Dawley rats were randomly divided into control, T2D, taurine treatment (giving 0.5%, 1%, and 2% taurine in drinking water) groups. Streptozotocin was used to establish the diabetes model. HT-22 cell (hippocampus neurons line) was used for in vitro experiments. Morris Water Maze test was used to check the learning and memory ability, TUNEL assay was used to measure apoptosis and nerve growth factor (NGF); Akt/Bad pathway relevant protein was detected by western blot. Taurine improved learning and memory ability and significantly decreased apoptosis of the hippocampus neurons in T2D rats. Moreover, taurine supplement also inhibited high glucose-induced apoptosis in HT-22 cell in vitro. Mechanistically, taurine increased the expression of NGF, phosphorylation of Trka, Akt, and Bad, as well as reduced cytochrome c release from mitochondria to cytosol. However, beneficial effects of taurine were blocked in the presence of anti-NGF antibody or Akt inhibitor. Taurine could inhibit hippocampus neuron apoptosis via NGF-Akt/Bad pathway. These results provide some clues that taurine might be efficient and feasible candidate for improvement of learning and memory ability in T2D rats.