Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Curr Pharm Des ; 30(16): 1247-1264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584551

RESUMEN

BACKGROUND: Compound Danshen dripping pills (CDDP), a traditional Chinese medicine, has had an extensive application in the treatment of angina pectoris (AP) in China. However, research on the bioactive ingredients and underlying mechanisms of CDDP in AP remains unclear. OBJECTIVE: In the present study, we explored the major chemical components and potential molecular mechanisms linked to the anti-angina effects of CDDP through the application of network pharmacology and molecular docking. METHODS: The potential targets of active ingredients in CDDP were sourced from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and the Swiss Target Prediction Database (STPD). Additionally, targets related to angina pectoris (AP) were retrieved from various databases, including Gene Cards, DisGeNET, Dis Genet, the Drug Bank database (DBD), and the Therapeutic Target Database (TDD). Protein- protein interaction networks were also established, and core targets were identified based on their topological significance. GO enrichment analysis and KEGG pathway analysis were conducted using the R software. Interactions between active ingredients and potential targets selected through the above process were investigated through molecular docking. RESULTS: Seventy-six active ingredients were selected with the following criteria: OB ≥ 30%, DL ≥ 0.18. 383 targets of CDDP and 1488 targets on AP were gathered, respectively. Afterwards, 194 common targets of CDDP and anti-AP targets were defined, of which 12 were core targets. GO enrichment analysis indicated that CDDP acted on AP by response to lipopolysaccharide, regulating the reactive oxygen species and metal ion metabolism, and epithelial cell proliferation. In addition, KEGG enrichment analysis indicated that the signaling pathways were notably enriched in lipid and atherosclerosis, fluid shear stress and atherosclerosis, IL-17 signaling pathway, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling pathway, and TNF signaling pathway. Moreover, the molecular docking manifested excellent binding capacity between the active ingredients and targets on AP. CONCLUSION: This study comprehensively illustrated the bioactive, potential targets, and molecular mechanisms of CDDP against AP, offering fresh perspectives into the molecular mechanisms of CDDP in preventing and treating AP.


Asunto(s)
Angina de Pecho , Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Salvia miltiorrhiza , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Humanos , Salvia miltiorrhiza/química , Angina de Pecho/tratamiento farmacológico , Angina de Pecho/metabolismo , Medicina Tradicional China , Canfanos , Panax notoginseng
2.
SLAS Technol ; 29(2): 100122, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364892

RESUMEN

OBJECTIVE: Our goal was to find metabolism-related lncRNAs that were associated with osteoporosis (OP) and construct a model for predicting OP progression using these lncRNAs. METHODS: The GEO database was employed to obtain gene expression profiles. The WGCNA technique and differential expression analysis were used to identify hypoxia-related lncRNAs. A Lasso regression model was applied to select 25 hypoxia-related genes, from which a classification model was created. Its robust classification performance was confirmed with an area under the ROC curve close to 1, as verified on the validation set. Concurrently, we constructed a ceRNA network based on these genes to unveil potential regulatory processes. Biologically active compounds of STZYD were identified using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) database. BATMAN was used to identify its targets, and we obtained OP-related genes from Malacards and DisGeNET, followed by identifying intersection genes with metabolism-related genes. A pharmacological network was then constructed based on the intersecting genes. The pharmacological network was further integrated with the ceRNA network, resulting in the creation of a comprehensive network that encompasses herb-active components, pathways, lncRNAs, miRNAs, and targets. Expression levels of hypoxia-related lncRNAs in mononuclear cells isolated from peripheral blood of OP and normal patients were subsequently validated using quantitative real-time PCR (qRT-PCR). Protein levels of RUNX2 were determined through a western blot assay. RESULTS: CBFB, GLO1, NFKB2 and PIK3CA were identified as central therapeutic targets, and ADD3-AS1, DTX2P1-UPK3BP1-PMS2P11, TTTY1B, ZNNT1 and LINC00623 were identified as core lncRNAs. CONCLUSIONS: Our work uncovers a possible therapeutic mechanism for STZYD, providing a potential therapeutic target for OP. In addition, a prediction model of metabolism-related lncRNAs of OP progression was constructed to provide a reference for the diagnosis of OP patients.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Farmacología en Red , ARN Largo no Codificante/genética , MicroARNs/genética , Informática , Hipoxia , Proteínas de Unión a Calmodulina
3.
Artículo en Inglés | MEDLINE | ID: mdl-37403397

RESUMEN

BACKGROUND: To investigate the active ingredients and the mechanisms of Si-miaoyong- an Decoction (SMYA) in the treatment of coronary heart disease (CHD) by using network pharmacology, molecular docking technology, and in vitro validation. METHODS: Through the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), Uniprot database, GeneCards database, and DAVID database, we explored the core compounds, core targets and signal pathways of the effective compounds of SMYA in the treatment of CHD. Molecular docking technology was applied to evaluate the interactions between active compounds and key targets. The hypoxia-reoxygenation H9C2 cell model was applied to carry out in vitro verification experiments. A total of 109 active ingredients and 242 potential targets were screened from SMYA. A total of 1491 CHD-related targets were retrieved through the Gene- Cards database and 155 overlapping CHD-related SMYA targets were obtained. PPI network topology analysis indicated that the core targets of SMYA in the treatment of CHD include interleukin- 6 (IL-6), tumor suppressor gene (TP53), tumor necrosis factor (TNF), vascular endothelial growth factor A (VEGFA), phosphorylated protein kinase (AKT1) and mitogen-activated protein kinase (MAPK). KEGG enrichment analysis demonstrated that SMYA could regulate Pathways in cancer, phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathway, hypoxiainducible factor-1(HIF-1) signaling pathway, VEGF signaling pathway, etc. Results: Molecular docking showed that quercetin had a significant binding activity with VEGFA and AKT1. In vitro studies verified that quercetin, the major effective component of SMYA, has a protective effect on the cell injury model of cardiomyocytes, partially by up-regulating expressions of phosphorylated AKT1 and VEGFA. CONCLUSION: SMYA has multiple components and treats CHD by acting on multiple targets. Quercetin is one of its key ingredients and may protect against CHD by regulating AKT/VEGFA pathway.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Humanos , Proteínas Proto-Oncogénicas c-akt , Factor A de Crecimiento Endotelial Vascular , Farmacología en Red , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Quercetina , Enfermedad Coronaria/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Interleucina-6
4.
Curr Pharm Des ; 29(27): 2161-2176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37694785

RESUMEN

BACKGROUND: In recent years, pulmonary fibrosis (PF) has increased in incidence and prevalence. Qingzaojiufei decoction (QD) is a herbal formula that is used for the treatment of PF. OBJECTIVE: In this research, network pharmacology and molecular docking methods were used to explore the major chemical components and potential mechanisms of QD in the treatment of PF. METHODS: The principal components and corresponding protein targets of QD were used to screen on Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID) and high-throughput experiment-and reference-guided database (HERB), Cytoscape 3.7.2 was used to construct the drug-component-target network. PF targets were collected by GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. The protein-protein interaction (PPI) network was constructed by importing compound-disease intersection targets into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and visualized by Cytoscape3.7.2. We further performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the intersecting targets. In the last, we validated the core targets and active compounds by molecular docking. RESULTS: The key compounds of quercetin, (-)-epigallocatechin-3-gallate, and kaempferol of QD were obtained. The key targets of AKT1, TNF, and IL6 of QD were obtained. The molecular docking results show that quercetin, (-)-epigallocatechin-3-gallate and kaempferol work well with AKT1, TNF and IL6. CONCLUSION: This research shows the multiple active components and molecular mechanism of QD in the treatment of PF and offers resources and suggestions for future studies.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37612869

RESUMEN

BACKGROUND AND OBJECTIVE: Buyanghuanwu Decoction (BYHWD) is a clinically proven prescription effective in treating pulmonary fibrosis (PF), but the molecular mechanism underlying its action remains unclear. The network pharmacology analysis was performed to elucidate the acting substances and related pathways of BYHWD in treating bleomycin (BLM) induced PF mouse. METHODS: First, the pharmacologically active components and corresponding targets in BYHWD were identified through the TCMSP database and literature review. Second, PF¬-related targets were identified through the DisGeNet database. Then, the components-targets network of BYHWD in PF treatment was constructed using Cytoscape. The DAVID database was used for the enrichment analysis of GO terms and KEGG pathways. At last, the therapeutic effect of BYHWD on BLM-induced PF mice were verified, and the mRNA and protein expression of related targets was determined through RT-PCR and western blotting, respectively. RESULTS: The core component-target network contained 58 active components and 147 targets. Thirty-nine core targets were mainly involved in the regulation of biological functions and KEGG pathways, such as the positive regulation of nitric oxide biosynthesis and the TNF signaling pathway. These core targets were obtained through enrichment analysis. Moreover, animal studies revealed that BYHWD down-regulated the mRNA expression levels of TNF, IL-6, IL-1ß, and NOS2 and inhibited NF-κB and p38 phosphorylation. CONCLUSION: The effects of BYHWD on PF mice are therapeutic, and its anti-PF mechanism mainly involves the effects on inflammatory factors and the NF-κB/p38 pathway.

6.
Nutrients ; 15(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37375548

RESUMEN

For centuries, Foeniculi fructus (F. fructus) has been used as a traditional herbal medicine in China and Europe and is widely used as a natural therapy for digestive disorders, including indigestion, flatulence, and bloating. The mechanism of F. fructus that alleviates functional dyspepsia was analyzed through network pharmacology, and its therapeutic effect on an animal model of functional dyspepsia were investigated. The traditional Chinese medicine systems pharmacology (TCMSP) database was used to investigate the compounds, targets, and associated diseases of F. fructus. Information on the target genes was classified using the UniProtdatabase. Using the Cytoscape 3.9.1 software, a network was constructed, and the Cytoscape string application was employed to examine genes associated with functional dyspepsia. The efficacy of F. fructus on functional dyspepsia was confirmed by treatment with its extract in a mouse model of loperamide-induced functional dyspepsia. Seven compounds targeted twelve functional dyspepsia-associated genes. When compared to the control group, F. fructus exhibited significant suppression of symptoms in a mouse model of functional dyspepsia. The results of our animal studies indicated a close association between the mechanism of action of F. fructus and gastrointestinal motility. Based on animal experimental results, the results showed that F. fructus provided a potential means to treat functional dyspepsia, suggesting that its medical mechanism for functional dyspepsia could be described by the relationship between seven key compounds of F. fructus, including oleic acid, ß-sitosterol, and 12 functional dyspepsia-related genes.


Asunto(s)
Medicamentos Herbarios Chinos , Dispepsia , Animales , Ratones , Dispepsia/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Farmacología en Red , Medicina Tradicional China , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular
7.
Heliyon ; 9(3): e14029, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911881

RESUMEN

Acute lung injury (ALI) is a clinically severe lung illness with high incidence rate and mortality. Especially, coronavirus disease 2019 (COVID-19) poses a serious threat to world wide governmental fitness. It has distributed to almost from corner to corner of the universe, and the situation in the prevention and control of COVID-19 remains grave. Traditional Chinese medicine plays a vital role in the precaution and therapy of sicknesses. At present, there is a lack of drugs for treating these diseases, so it is necessary to develop drugs for treating COVID-19 related ALI. Fagopyrum dibotrys (D. Don) Hara is an annual plant of the Polygonaceae family and one of the long-history used traditional medicine in China. In recent years, its rhizomes (medicinal parts) have attracted the attention of scholars at home and abroad due to their significant anti-inflammatory, antibacterial and anticancer activities. It can work on SARS-COV-2 with numerous components, targets, and pathways, and has a certain effect on coronavirus disease 2019 (COVID-19) related acute lung injury (ALI). However, there are few systematic studies on its aerial parts (including stems and leaves) and its potential therapeutic mechanism has not been studied. The phytochemical constituents of rhizome of F. dibotrys were collected using TCMSP database. And metabolites of F. dibotrys' s aerial parts were detected by metabonomics. The phytochemical targets of F. dibotrys were predicted by the PharmMapper website tool. COVID-19 and ALI-related genes were retrieved from GeneCards. Cross targets and active phytochemicals of COVID-19 and ALI related genes in F. dibotrys were enriched by gene ontology (GO) and KEGG by metscape bioinformatics tools. The interplay network entre active phytochemicals and anti COVID-19 and ALI targets was established and broke down using Cytoscape software. Discovery Studio (version 2019) was used to perform molecular docking of crux active plant chemicals with anti COVID-19 and ALI targets. We identified 1136 chemicals from the aerial parts of F. dibotrys, among which 47 were active flavonoids and phenolic chemicals. A total of 61 chemicals were searched from the rhizome of F. dibotrys, and 15 of them were active chemicals. So there are 6 commonly key active chemicals at the aerial parts and the rhizome of F. dibotrys, 89 these phytochemicals's potential targets, and 211 COVID-19 and ALI related genes. GO enrichment bespoken that F. dibotrys might be involved in influencing gene targets contained numerous biological processes, for instance, negative regulation of megakaryocyte differentiation, regulation of DNA metabolic process, which could be put down to its anti COVID-19 associated ALI effects. KEGG pathway indicated that viral carcinogenesis, spliceosome, salmonella infection, coronavirus disease - COVID-19, legionellosis and human immunodeficiency virus 1 infection pathway are the primary pathways obsessed in the anti COVID-19 associated ALI effects of F. dibotrys. Molecular docking confirmed that the 6 critical active phytochemicals of F. dibotrys, such as luteolin, (+) -epicatechin, quercetin, isorhamnetin, (+) -catechin, and (-) -catechin gallate, can combine with kernel therapeutic targets NEDD8, SRPK1, DCUN1D1, and PARP1. In vitro activity experiments showed that the total antioxidant capacity of the aerial parts and rhizomes of F. dibotrys increased with the increase of concentration in a certain range. In addition, as a whole, the antioxidant capacity of the aerial part of F. dibotrys was stronger than that of the rhizome. Our research afford cues for farther exploration of the anti COVID-19 associated ALI chemical compositions and mechanisms of F. dibotrys and afford scientific foundation for progressing modern anti COVID-19 associated ALI drugs based on phytochemicals in F. dibotrys. We also fully developed the medicinal value of F. dibotrys' s aerial parts, which can effectively avoid the waste of resources. Meanwhile, our work provides a new strategy for integrating metabonomics, network pharmacology, and molecular docking techniques which was an efficient way for recognizing effective constituents and mechanisms valid to the pharmacologic actions of traditional Chinese medicine.

8.
J Mol Liq ; 374: 121253, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36694691

RESUMEN

Combination drugs have been used for several diseases for many years since they produce better therapeutic effects. However, it is still a challenge to discover candidates to form a combination drug. This study aimed to investigate whether using a comprehensive in silico approach to identify novel combination drugs from a Chinese herbal formula is an appropriate and creative strategy. We, therefore, used Toujie Quwen Granules for the main protease (Mpro) of SARS-CoV-2 as an example. We first used molecular docking to identify molecular components of the formula which may inhibit Mpro. Baicalein (HQA004) is the most favorable inhibitory ligand. We also identified a ligand from the other component, cubebin (CHA008), which may act to support the proposed HQA004 inhibitor. Molecular dynamics simulations were then performed to further elucidate the possible mechanism of inhibition by HQA004 and synergistic bioactivity conferred by CHA008. HQA004 bound strongly at the active site and that CHA008 enhanced the contacts between HQA004 and Mpro. However, CHA008 also dynamically interacted at multiple sites, and continued to enhance the stability of HQA004 despite diffusion to a distant site. We proposed that HQA004 acted as a possible inhibitor, and CHA008 served to enhance its effects via allosteric effects at two sites. Additionally, our novel wavelet analysis showed that as a result of CHA008 binding, the dynamics and structure of Mpro were observed to have more subtle changes, demonstrating that the inter-residue contacts within Mpro were disrupted by the synergistic ligand. This work highlighted the molecular mechanism of synergistic effects between different herbs as a result of allosteric crosstalk between two ligands at a protein target, as well as revealed that using the multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis to discover novel combination drugs from a Chinese herbal remedy is an innovative pathway.

9.
Artículo en Chino | WPRIM | ID: wpr-965651

RESUMEN

ObjectiveTo explore the mechanism of Tangbikang granules (TBK) against diabetic peripheral neuropathy (DPN) based on network pharmacology and in-vivo experiment. MethodThe active components in medicinals of TBK and their target genes were searched from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The active components of the medicinals which are not included in TCMSP were searched from previous research. After the analysis of drug-likeness by SwissADME, the target genes of them were predicted with SwissTargetPrediction. DPN-related target genes were retrieved from GeneCards. The common targets of the disease and the prescription were the hub genes of TBK against DPN, which were uploaded to Metascape for Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. High-sugar and high-fat diet and low-dose streptozotocin (STZ, ip) were employed to induce diabetes in rats, and then the model rats were respectively treated with low-dose (0.625 g·kg-1), medium-dose (1.25 g·kg-1), and high-dose (2.5 g·kg-1) TBK for 12 weeks. Sensory nerve conduction velocity (SNCV) was evaluated. After hematoxylin and eosin (HE) staining, the sciatic nerve was observed under light microscope to examine the nerve damage. Real-time PCR was performed to detect the gene expression of adenosine monophosphate-activated protein kinase (AMPK) pathway-related targets in rat sciatic nerve, and Western blot to measure the protein expression of AMPK and phosphorylated (p)-AMPK in rat sciatic nerve. ResultThe main active components of TBK, such as quercetin, kaempferol, β-sitosterol, leech pteridine A, stigmasterol, and baicalein were screened out, mainly acting on interleukin-6 (IL-6), tumor necrosis factor (TNF), protein kinase B (Akt), JUN, and HSP90AA1 and signaling pathways such as AMPK, nuclear factor-κB (NF-κB), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). Molecular docking results showed that β-sitosterol and stigmasterol had high binding affinity with IL-6, TNF, JUN, and HSP90AA1. As for the animal experiment, compared with the normal group, model group had low SNCV of sciatic nerve (P<0.01), disordered and loose myelinated nerve fibers with axonotmesis and demyelinization, low mRNA expression of AMPKα, AMPKβ, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), Sirtuin 3 (SirT3), mitochondrial transcription factor A (TFAM), and low p-AMPK/AMPK ratio in sciatic nerve (P<0.05, P<0.01). Compared with the model group, TBK of the three doses raised the SNCV (P<0.01), restored nerve morphology and nerve compactness, and increased the mRNA expression of AMPKα, AMPKβ, PGC-1α, SirT3, and TFAM (P<0.05, P<0.01). The ratio of p-AMPK/AMPK in the high-dose and medium-dose TBK groups was higher than that in the model group (P<0.01), while the protein expression in the low-dose TBK group was insignificantly different from that in the model group. ConclusionTBK exerts therapeutic effect on DPN through multiple pathways and targets. The mechanism is that it activates and regulates AMPK/PGC-1α/SirT3 signaling, which lays a basis for further study of TBK in the treatment of DPN.

10.
Curr Pharm Des ; 28(39): 3231-3241, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36165527

RESUMEN

BACKGROUND: In recent years, the prevalence and mortality of autism spectrum disorder (ASD) have been increasing. The clinical features are different with different cases, so the treatment ways are different for each one. OBJECTIVE: Baohewan Heshiwei Wen Dan Tang (BHWDT) has been recommended for treating autistic spectrum disorder. To investigate the mechanism of action and how the compounds interact with ASD targets, network pharmacology and molecular docking methods were used in this study. METHODS: Traditional Chinese Medicine Systems Pharmacology (TCMSP) was used to screen the active components according to index of oral bio-activity and drug-likeness. Then, TCMSP and Swiss Target Prediction databases were used to screen potential target genes of active components. The related target genes of ASD were obtained from the Gene Cards database. Matescape database was utilized to get gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation of gene targets. Composition- target-pathway (C-T-P) and a protein-protein interaction (PPI) networks were built with Cytoscape 3.8.2 software. RESULTS: The interaction of the main active components of BHWDT was verified by molecular docking. The key targets of MAPK1, IL6, CXCL8 and TP53 of BHWDT were obtained. The key active components Quercetin, Kaempferol and Iuteolin of BHWDT could bind with MAPK1, IL6, CXCL8 and TP53 of BHWDT, respectively. CONCLUSION: BHWDT can be highly effective for treating ASD and this study can help us to understand multiple targets and multiple pathways mechanism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Medicamentos Herbarios Chinos , Humanos , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Simulación del Acoplamiento Molecular , Interleucina-6 , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China
11.
Eur J Integr Med ; 42: 101282, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33425074

RESUMEN

INTRODUCTION: Zukamu granules may play a potential role in the fight against the Coronavirus, COVID-19. The purpose of this study was to explore the mechanisms of Zukamu granules using network pharmacology combined with molecular docking. METHODS: The Traditional Chinese Medicine systems pharmacology (TCMSP) database was used to filter the active compounds and the targets of each drug in the prescription. The Genecards and OMIM databases were used for identifying the targets related to COVID-19. The STRING database was used to analyze the intersection targets. Compound - target interaction and protein-protein interaction networks were constructed using Cytoscape to decipher the anti-COVID-19 mechanisms of action of the prescription. The Kyoto Encyclopedia of Genes and Genome (KEGG) pathway and Gene Ontology (GO) enrichment analysis was performed to investigate the molecular mechanisms of action. Finally, the interaction between the targets and the active compounds was verified by molecular docking technology. RESULTS: A total of 66 targets were identified. Further analysis identified 10 most important targets and 12 key compounds. Besides, 1340 biological processes, 43 cell compositions, and 87 molecular function items were obtained (P < 0.05). One hundred and thirty pathways were obtained (P < 0.05). The results of molecular docking showed that there was a stable binding between the active compounds and the targets. CONCLUSION: Analysis of the constructed pharmacological network results allowed for the prediction and interpretation of the multi-constituent, multi-targeted, and multi-pathway mechanisms of Zukamu granules as a potential source for supportive treatment of COVID-19.

12.
J Orthop Translat ; 26: 132-140, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437632

RESUMEN

OBJECTIVE: To investigate the mitigate efficacy of Chinese medicine Lingzhi (LZ) and San-Miao-San (SMS) combined with hyaluronic acid (HA)-gel in attenuating cartilage degeneration in traumatic osteoarthritis (OA). METHODS: The standardized surgery of anterior cruciate ligament transection (ACLT) was made from the medial compartment of right hind limbs of 8-week-old female SD rats and resulted in a traumatic OA. Rats (n â€‹= â€‹5/group) were treated once intra-articular injection of 50 â€‹µl HA-gel, 50 â€‹µl HA-gel+50 â€‹µg LZ-SMS, 50 â€‹µl of saline+50 â€‹µg LZ-SMS and null (ACLT group) respectively, except sham group. Limbs were harvested for µCT scan and histopathological staining 3-month post-treatment. Inflammatory cytokines from plasma and synovial fluid were detected using Immunology Multiplex Assay kit. The putative targets of active compounds in LZ-SMS and known therapeutic targets for OA were combined to construct protein-protein interaction network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was adopted to predict the potential targets and signaling pathway of LZ-SMS in OA through the tool of DAVID Bioinformatics. RESULTS: In vivo, HA-gel â€‹+ â€‹LZ-SMS treatment resulted in a higher volume ratio of hyaline cartilage (HC)/calcified cartilage (CC) and HC/Sum (total volume of cartilage), compared to ACLT and HA-gel groups. In addition, histological results showed the elevated cartilage matrix, chondrogenic and osteoblastic signals in HA-gel â€‹+ â€‹LZ-SMS treatment. Treatment also significantly altered subchondral bone (SCB) structure including an increase in BV/TV, Tb.Th, BMD, Conn.Dn, Tb.N, and DA, as well as a significant decrease in Tb.Sp and Po(tot), which implied a protective effect on maintaining the stabilization of tibial SCB microstructure. Furthermore, there was also a down-regulated inflammatory cytokines and upregulated anti-inflammatory cytokine IL-10 in HA+LZ-SMS group. Finally, 64 shared targets from 37 active compounds in LZ-SMS related to the core genes for the development of OA. LZ-SMS has a putative role in regulating inflammatory circumstance through influencing the MAPK signaling pathway. CONCLUSION: Our study elucidated a protective effect of HA-gel â€‹+ â€‹LZ-SMS in mitigating cartilage degradation and putative interaction with targets and signaling pathway for the development of traumatic OA. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: Our results provide a biological rationale for the use of LZ-SMS as a potential candidate for OA treatment.

13.
Data Brief ; 33: 106475, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33251300

RESUMEN

Rhizoma Polygonati (Chinese name as , pinyin as huangjing), as medicine and food homology of Traditional Chinese Medicine, has been recently applied for the complex prescriptions of alternative medicine for treatment of COVID-19 but the mechanisms are largely unclear. Here using public database search and filtering the potential chemical compound based drug targets with COVID-19 targets mapped, the list of data were provided and suggested pharmacokinetic tolerating dose of selected natural compounds were further collected from database. The data provided is the supplementary as a reference showing the intersections of Rhizoma Polygonati druggable targets of lists from current database and potentially related ones targeting COVID-19.

14.
Saudi Pharm J ; 28(9): 1138-1148, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32837217

RESUMEN

Clinical studies have shown that renal injury in Corona Virus Disease 2019 (COVID-19) patients has been a real concern, which is associated with high mortality and an inflammation/apoptosis-related causality. Effective target therapy for renal injury has yet been developed. Besides, potential anti-COVID-19 medicines have also been reported to cause adverse side effects to kidney. Chinese Herbal Medicine (CHM), however, has rich experience in treating renal injury and has successfully applied in China in the battle of COVID-19. Nevertheless, the molecular mechanisms of CHM treatment are still unclear. In this study, we searched prescriptions in the treatment of renal injury extensively and the potential mechanisms to treat COVID-19 related renal injury were investigated. The association rules analysis showed that the core herbs includes Huang Qi, Fu Ling, Bai Zhu, Di Huang, Shan Yao. TCM herbs regulate core pathways, such as AGE-RAGE, PI3K-AKT, TNF and apoptosis pathway, etc. The ingredients (quercetin, formononetin, kaempferol, etc.,) from core herbs could modulate targets (PTGS2 (COX2), PTGS1 (COX1), IL6, CASP3, NOS2, and TNF, etc.), and thereby prevent the pharmacological and non-pharmacological renal injury comparable to that from COVID-19 infection. This study provides therapeutic potentials of CHM to combat COVID-19 related renal injury to reduce complications and mortality.

16.
Eur J Integr Med ; 37: 101139, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32501408

RESUMEN

INTRODUCTION: Shuanghuanglian (SHL) oral liquid is a well-known traditional Chinese medicine preparation administered for respiratory tract infections in China. However, the underlying pharmacological mechanisms remain unclear. The present study aims to determine the potential pharmacological mechanisms of SHL oral liquid based on network pharmacology. METHODS: Network pharmacology-based strategy including collection and analysis of putative compounds and target genes, network construction, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Gene Ontology (GO) enrichment, identification of key compounds and target genes, and molecule docking was performed in this study. RESULTS: A total of 82 bioactive compounds and 226 putative target genes of SHL oral liquid were collected. Of note, 28 hub target genes including 4 major hub target genes: estrogen receptor 1 (ESR1), nuclear receptor coactivator 2 (NCOA2), nuclear receptor coactivator 1 (NCOA1), androgen receptor (AR) and 5 key compounds (quercetin, luteolin, baicalein, kaempferol and wogonin) were identified based on network analysis. The hub target genes mainly enriched in pathways including PI3K-Akt signaling pathway, human cytomegalovirus infection, and human papillomavirus infection, which could be the underlying pharmacological mechanisms of SHL oral liquid for treating diseases. Moreover, the key compounds had great molecule docking binding affinity with the major hub target genes. CONCLUSION: Using network pharmacology analysis, SHL oral liquid was found to contain anti-virus, anti-inflammatory, and "multi-compounds and multi-targets" with therapeutic actions. These findings may provide a valuable direction for further clinical application and research.

17.
Artículo en Chino | WPRIM | ID: wpr-846474

RESUMEN

Objective: To identify potential SARS-CoV-2 3CL protease inhibitors from the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) by molecular docking approach. Methods: To alternate extensive compounds experimental screening processes, a Computer-Aided Drug Design (CADD) based molecular docking technology was performed to explore existing drug repurposing possibilities. Molecular docking model with Schrodinger suit 2018 was used to evaluate the binding abilities between TCMSP 13 143 compounds and SARS-CoV-2 3CL protease receptor-binding domain (PBD ID 6LU7), which involving in mediating viral replication and transcription functions. According to the constructed docking system, potential compounds were screened according to docking score, oral bioavailability (OB), and drug-likeness (DL). At last, a compounds-herb-target organ-function network was constructed. Results: Compared with 6LU7 original ligand docking score (-7.734), a total of 498 compounds were identified with lower docking score against 6LU7 targets. These compounds were further reduced to 60 high-priority compounds, based on OB (more than 30) and DL (more than 0.18). Meanwhile, these 60 compounds were found to interact with the amino acid residues (GLU166, GLY143, ASP187, CYS145, GLN189, LEU141, etc.) which were critically involved in the 6LU7 domain mainly by hydrogen-bonded interaction. The network exploring results revealed that these potential compounds were mainly attributed to Glycyrrhizae Radix et Rhizoma, Mori Cortex, Rhododendron dauricum, Polygoni Cuspidati Rhizoma et Radix, and Plantaginis Herba, etc., which associates with acute lung syndromes induced by SARS-CoV-2, with the effect of clearing heat and removing toxin, relieving cough and dispelling phlegm and lung-draining and relieving asthma. Conclusion: Molecular docking method provides a useful tool for the screening of SARS-CoV-2 3CL protease inhibitors from TCMSP platform.

18.
China Pharmacy ; (12): 2632-2638, 2019.
Artículo en Chino | WPRIM | ID: wpr-817494

RESUMEN

OBECTIVE: To study the mechanism of Wutou decoction in the treatment of osteoarthritis, and to provide a new direction and target for the treatment of osteoarthritis. METHODS: Using oral bioavailability (OB)≥30%, drug like (DL)≥0.18% as index, active components were screened from Wutou decoction by using TCM systematic pharmacological analysis platform (TCMSP), such as Aconitum carmichaelii, Ephedra sinica, Astragalus propinquus, Paeonia tactilora, Glycyrrhiza uralensis. Targets of osteoarthritis were obtained by retrieving therapeutic targets database (TTD) and mining thip data from gene expression database (GEO). Target genes were analyzed by GO and KEGG pathway enrichment analysis were performed by using DAVID database. RESULTS: A total of 30 active components were screened, including quercetin, terpenoids and gardenol; 31 targets related to osteoarthritis were obtained, including β2 adrenergic receptor, arachidonate 5-lipoxygenase and androgen receptor. The biological process of Wutou decoction in treatment of osteoarthritis was mainly related to the IL-1 receptor signal transduction, synergistic activation of peroxidase proliferation activated receptor, signal transduction of tyrosine kinase receptor 2. It mainly regulated tumor necrosis factor signaling pathway, vascular endothelial growth factor signaling pathway, osteoclasts differentiation signaling pathway, nuclear factor κB signaling pathway, Toll-like receptor signaling pathway so as to play a role in the treatment of osteoarthritis. CONCLUSIONS: The study analysis the potential mechanism of Wutou decoction in the treatment of osteoarthritis based on network pharmacology, which can provide reference for further study on the material basis and target of Wutou decoction in the treatment of osteoarthritis.

19.
Artículo en Chino | WPRIM | ID: wpr-851936

RESUMEN

Objective To investigate the potential molecular functions and the involved signaling network of Heyan®Kuntai Capsules (HYKTc) based on the ingredient-gene targets clustering by means of bioinformatics analysis. Methods The ingredients in HYKTc were obtained by the combination of previous LC-ESI-MS/MS method and searched through Traditional Chinese Medicine System Pharmacology databases. Further the gene ontology (GO) and KEGG enrichment analysis were performed with Database for Annotation, Visualization, and Integrated Discovery (DAVID) tools. Results A total of 29 chemicals were obtained in which 21 chemicals were identified by LC-ESI-MS/MS method. Afterwards, 186 gene targets were acquired in the databases. The HYKTc-gene targets clustering were highly enriched in central nervous system, breast, and ovary. Subsequent GO analysis showed that these gene targets were significantly located in the cytosol, mitochondria and extracellular matrix, mainly functioning as lipase, kinase and oxidoreductase activity. Besides, KEGG results found that these targets were involved in the PI3K-Akt, mTOR, and insulin signaling pathways. Conclusions Using TCM databases searching combined with bioinformatics methods, the potential explanations for the clinical efficiency of HYKTc were proveded for further clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA