Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 121: 155118, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801895

RESUMEN

BACKGROUND: With an increasing number of myocardial infarction (MI) patients, myocardial fibrosis is becoming a widespread health concern. It's becoming more and more urgent to conduct additional research and investigations into efficient treatments. Ethyl ferulate (EF) is a naturally occurring substance with cardioprotective properties. However, the extent of its impact and the underlying mechanism of its treatment for myocardial fibrosis after MI remain unknown. PURPOSE: The goal of this study was to look into how EF affected the signaling of the TGF-receptor 1 (TGFBR1) in myocardial fibrosis after MI. METHODS: Echocardiography, hematoxylin-eosin (HE) and Masson trichrome staining were employed to assess the impact of EF on heart structure and function in MI-affected mice in vivo. Cell proliferation assay (MTS), 5-Ethynyl-2'-deoxyuridine (EdU), and western blot techniques were employed to examine the influence of EF on native cardiac fibroblast (CFs) proliferation and collagen deposition. Molecular simulation and surface plasmon resonance imaging (SPRi) were utilized to explore TGFBR1 and EF interaction. Cardiac-specific Tgfbr1 knockout mice (Tgfbr1ΔMCK) were utilized to testify to the impact of EF. RESULTS: In vivo experiments revealed that EF alleviated myocardial fibrosis, improved cardiac dysfunction after MI and downregulated the TGFBR1 signaling in a dose-dependent manner. Moreover, in vitro experiments revealed that EF significantly inhibited CFs proliferation, collagen deposition and TGFBR1 signaling followed by TGF-ß1 stimulation. More specifically, molecular simulation, molecular dynamics, and SPRi collectively showed that EF directly targeted TGFBR1. Lastly, knocking down of Tgfbr1 partially reversed the inhibitory activity of EF on myocardial fibrosis in MI mice. CONCLUSION: EF attenuated myocardial fibrosis post-MI by directly suppressing TGFBR1 and its downstream signaling pathway.


Asunto(s)
Infarto del Miocardio , Miocardio , Humanos , Ratones , Animales , Miocardio/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/uso terapéutico , Fibroblastos/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Colágeno/metabolismo , Fibrosis , Factor de Crecimiento Transformador beta1/metabolismo
2.
Phytomedicine ; 104: 154277, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35752078

RESUMEN

BACKGROUND: Excessive myocardial fibrosis is the pathological basis of heart failure following myocardial infarction (MI). Although calycosin improves cardiac function, its effect on cardiac fibrosis and cardiac function after MI in mice and its precise mechanism remain unclear. PURPOSE: Here, we firstly investigated the effects of calycosin on cardiac fibrosis and ventricular function in mice after MI and the role of transforming growth factor-beta receptor 1 (TGFBR1) signaling in the amelioration of cardiac fibrosis and ventricular function. METHODS: In vivo effects of calycosin on cardiac structure and function in mice with MI induced by left anterior descending coronary artery ligation were determined by hematoxylin and eosin staining, Masson trichrome staining, and echocardiography. The molecular mechanism of the interaction between TGFBR1 and calycosin was investigated using molecular docking, molecular dynamics (MD) simulation, surface plasmon resonance imaging (SPRi), immunohistochemistry, and western blotting (WB). Subsequently, cardiac-specific Tgfbr1 knockout mice were used to verify the effects of calycosin. The effect of calycosin on primary cardiac fibroblasts (CFs) proliferation and collagen deposition was detected using cell counting (CCK-8), EdU assay, and WB in vitro. CFs infected with an adenovirus that encodes TGFBR1 were used to verify the effects of calycosin. RESULTS: In vivo, calycosin attenuated myocardial fibrosis and cardiac dysfunction following MI in a dose-dependent pattern. Calycosin-TGFBR1 complex was found to have a binding energy of -9.04 kcal/mol based on molecular docking. In addition, calycosin bound steadily in the cavity of TGFBR1 during the MD simulation. Based on SPRi results, the solution equilibrium dissociation constant for calycosin and TGFBR1 was 5.11 × 10-5 M. Calycosin inhibited the expression of TGFBR1, Smad2/3, collagen I, and collagen III. The deletion of TGFBR1 partially counteracted these effects. In vitro, calycosin suppressed CFs proliferation and collagen deposition after TGF-ß1 stimulation by suppressing the TGFBR1 signaling pathway. The suppressive effects of calycosin were partially rescued by overexpression of TGFBR1. CONCLUSION: Calycosin attenuates myocardial fibrosis and cardiac dysfunction following MI in mice in vivo via suppressing the TGFBR1 signaling pathway. Calycosin suppresses CFs proliferation and collagen deposition induced by TGF-ß1 via inhibition of the TGFBR1 signaling pathway in vitro.


Asunto(s)
Infarto del Miocardio , Animales , Colágeno/metabolismo , Fibrosis , Isoflavonas , Ratones , Simulación del Acoplamiento Molecular , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
3.
Phytomedicine ; 92: 153719, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34500301

RESUMEN

BACKGROUND: Neointimal formation, mediated by the proliferation and migration of vascular smooth muscle cells (VSMCs), is a common pathological basis for atherosclerosis and restenosis. Myricetin, a natural flavonoid, reportedly exerts anti-atherosclerotic effects. However, the effect and mechanism of myricetin on VSMCs proliferation and migration and neointimal hyperplasia (NIH) remain unknown. PURPOSE: We investigated myricetin's effect on NIH, as well as the potential involvement of transforming growth factor-beta receptor 1 (TGFBR1) signaling in mediating myricetin's anti-atherosclerotic and anti-restenotic actions. METHODS: Myricetin's effects on the proliferation and migration of HASMCs and A7R5 cells were determined by CCK-8, EdU assays, wound healing, Transwell assays, and western blotting (WB).Molecular docking, molecular dynamics (MD) simulation, surface plasmon resonance (SPR) and TGFBR1 kinase activity assays were employed to investigate the interaction between myricetin and TGFBR1. An adenovirus vector encoding TGFBR1 was used to verify the effects of myricetin. In vivo, the left common carotid artery (LCCA) ligation mouse model was adopted to determine the impacts of myricetin on neointimal formation and TGFBR1 activation. RESULTS: Myricetin dose-dependently inhibited the migration and proliferation in VSMCs, suppressed the expression of CDK4, cyclin D3, MMP2, and MMP9. Molecular docking revealed that myricetin binds to key regions for TGFBR1 antagonist binding, and the binding energy was -9.61 kcal/mol. MD simulation indicated stable binding between TGFBR1 and myricetin. Additionally, SPR revealed an equilibrium dissociation constant of 4.35 × 10-5 M between myricetin and TGFBR1. According to the TGFBR1 kinase activity assay, myricetin directly inhibited TGFBR1 kinase activity (IC50 = 8.551 µM). Furthermore, myricetin suppressed the phosphorylation level of TGFBR1, Smad2, and Smad3 in a dose-dependent pattern, which was partially inhibited by TGFBR1 overexpression. Consistently, TGFBR1 overexpression partially rescued the suppressive roles of myricetin on VSMCs migration and proliferation. Moreover, myricetin dramatically inhibited NIH and reduced TGFBR1, Smad2, and Smad3 phosphorylation in the LCCA. CONCLUSION: This is the first study to demonstrate that myricetin suppresses NIH and VSMC proliferation and migration via inhibiting TGFBR1 signaling. Myricetin can be developed as a potential therapeutic candidate for treating atherosclerosis and vascular restenosis.


Asunto(s)
Músculo Liso Vascular , Miocitos del Músculo Liso , Animales , Movimiento Celular , Proliferación Celular , Células Cultivadas , Flavonoides/farmacología , Hiperplasia , Ratones , Simulación del Acoplamiento Molecular , Receptor Tipo I de Factor de Crecimiento Transformador beta
4.
J Ethnopharmacol ; 270: 113838, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33460756

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Myocardial fibrosis after myocardial infarction (MI) leads to cardiac remodeling and loss of function. Taohong siwu decoction (THSWD), a well-known traditional Chinese medicinal prescription, has been clinically used to treat various cardiovascular and cerebrovascular diseases, but its potential functions in myocardial fibrosis after MI remain uncharacterized. AIM OF THE STUDY: The purpose of current study was to explore the potential mechanism action and anti-myocardial fibrosis effects of treatment with THSWD in vivo and in vitro. MATERIALS AND METHODS: Mouse underwent ligation of coronary artery to induce MI and divided equally into the sham group, model group and THSWD treatment groups. After 4 weeks, the effects of THSWD treatment on cardiac function were estimated by echocardiography. HE staining was used to detect the pathologic changes and Masson trichrome staining was used to estimate tissue fibrosis. To further explore the regulatory molecular mechanisms of THSWD, transcriptome analysis was performed. Furthermore, in vitro, we investigated the effect of THSWD on cell proliferation and collagen deposition in primary cardiac fibrosis cells and its possible mechanism of action. Overexpression of TGFBR1 was achieved by infection with an adenovirus vector encoding TGFBR1. RESULTS: Treatment with THSWD significantly decreased myocardial fibrosis and recovered cardiac function in the post-MI mouse. The transcriptomics data imply that the TGF-ß pathway might be a target in the anti-fibrosis effect of THSWD. THSWD inhibits TGF-ß1-induced proliferation of primary cardiac fibroblasts. THSWD decreased collagen expression and TGFBR1 and Smad2/3 phosphorylation. Moreover, the inhibitory effect of THSWD on CFs proliferation and collagen deposition, as well as TGFBR1 signaling pathway-associated proteins expression was partially abrogated by overexpression of TGFBR1. CONCLUSION: Collectively, the results implicate that THSWD attenuates myocardial fibrosis by inhibiting fibrosis proliferation and collagen deposition via inhibiting TGFBR1, and might be a potential therapeutic agent for treatment of myocardial fibrosis post-MI.


Asunto(s)
Colágeno/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Fibrosis/tratamiento farmacológico , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Colágeno/antagonistas & inhibidores , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico por imagen , Miocardio/metabolismo , Miocardio/patología , Cultivo Primario de Células , Ratas Sprague-Dawley , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Proteínas Smad/antagonistas & inhibidores , Proteínas Smad/metabolismo , Transcriptoma/efectos de los fármacos
5.
Biosci Biotechnol Biochem ; 82(3): 497-506, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29370734

RESUMEN

We fed rats noodle (N) -diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same amount of nutrients (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. We then analyzed transcriptome of the hypothalamic-pituitary (HP), the liver and the white adipose tissue (WAT). Thyroid stimulating hormone (Tshb), and its partner, glycoprotein hormone genes were up-regulated in the HP of N-group. Sterol regulatory element binding transcription factors were activated in the liver of N-group, while an up-regulation of the angiogenic signal occurred in the WAT of N-group. N-group showed higher urine noradrenaline (NA) level suggesting that these tissue signals are regulated by NA and Tshb. The N-diet contains 0.326 wt.% glutamate, 0.00236 wt.% 6-shogaol and Maillard reaction products. Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.


Asunto(s)
Grasas de la Dieta/análisis , Crecimiento y Desarrollo/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hipófisis/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Aminoácidos/sangre , Animales , Catecolaminas/orina , Hipotálamo/fisiología , Masculino , Hipófisis/fisiología , Ratas , Ratas Wistar , Transcriptoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA