Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 126: 155421, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430819

RESUMEN

BACKGROUND: The presence of plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 and its related variants has been associated with heightened resistance to tigecycline, thus diminishing its effectiveness. In this study, we explored the potential of gramine, a naturally occurring indole alkaloid, as an innovative adjuvant to enhance the treatment of infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters. METHODS: The synergistic potential of gramine in combination with antibiotics against both planktonic and drug-tolerant multidrug-resistant Enterobacterales was evaluated using the checkerboard microbroth dilution technique and time-killing curve analyses. Afterwards, the proton motive force (PMF) of cell membrane, the function of efflux pump and the activity of antioxidant system were determined by fluorescence assay and RT-PCR. The intracellular accumulation of tigecycline was evaluated by HPLC-MS/MS. The respiration rate, bacterial ATP level and the NAD+/NADH ratio were investigated to reveal the metabolism state. Finally, the safety of gramine was assessed through hemolytic activity and cytotoxicity assays. Two animal infection models were used to evaluate the in vivo synergistic effect. RESULTS: Gramine significantly potentiated tigecycline and ciprofloxacin activity against tmexCD1-toprJ1 and its variants-positive pathogens. Importantly, the synergistic activity was also observed against bacteria in special physiological states such as biofilms and persister cells. The mechanism study showed that gramine possesses the capability to augment tigecycline accumulation within cells by disrupting the proton motive force (PMF) and inhibiting the efflux pump functionality. In addition, the bacterial respiration rate, intracellular ATP level and tricarboxylic acid cycle (TCA) were promoted under the treatment of gramine. Notably, gramine effectively restored tigecycline activity in multiple animal infection models infected by tmexCD1-toprJ1 positive K. pneumoniae (RGF105-1). CONCLUSION: This study provides the first evidence of gramine's therapeutic potential as a novel tigecycline adjuvant for treating infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Tigeciclina/metabolismo , Tigeciclina/farmacología , Tigeciclina/uso terapéutico , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Minociclina/farmacología , Minociclina/metabolismo , Minociclina/uso terapéutico , Espectrometría de Masas en Tándem , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Alcaloides Indólicos/farmacología , Adenosina Trifosfato/metabolismo , Pruebas de Sensibilidad Microbiana
2.
Int J Antimicrob Agents ; 63(1): 107017, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37884228

RESUMEN

OBJECTIVES: This study investigated the effect of tigecycline exposure on susceptibility of colistin-resistant Klebsiella pneumoniae isolates to colistin and explored the possibility of antibiotic combination at low concentrations to treat colistin-resistant K. pneumoniae isolates. METHODS: Twelve tigecycline-resistant (TIR) mutants were induced in vitro from wild-type, colistin-resistant, and tigecycline-susceptible K. pneumoniae isolates. Antibiotic susceptibility was determined using the broth microdilution method. The deduced amino acid alterations were identified for genes associated with colistin resistance, lipid A biosynthesis, and tigecycline resistance. Expression levels of genes were compared between wild-type stains and TIR mutants using quantitative real-time polymerase chain reaction (PCR). Lipid A modification was explored using MALDI-TOF mass spectrometry. Time-killing assay was performed to assess the efficiency of combination therapy using low concentrations of colistin and tigecycline. RESULTS: All TIR mutants except one were converted to be susceptible to colistin. These TIR mutants had mutations in the ramR gene and increased expression levels of ramA. Three genes associated with lipid A biosynthesis, lpxC, lpxL, and lpxO, were also overexpressed in TIR mutants, although no mutation was observed. Additional polysaccharides found in colistin-resistant, wild-type strains were modified in TIR mutants. Colistin-resistant K. pneumoniae strains were eliminated in vitro by combining tigecycline and colistin at 2 mg/L. In this study, we found that tigecycline exposure resulted in reduced resistance of colistin-resistant K. pneumoniae to colistin. Such an effect was mediated by regulation of lipid A modification involving ramA and lpx genes. CONCLUSION: Because of such reduced resistance, a combination of colistin and tigecycline in low concentrations could effectively eradicate colistin-resistant K. pneumoniae strains.


Asunto(s)
Colistina , Infecciones por Klebsiella , Humanos , Tigeciclina/farmacología , Colistina/farmacología , Klebsiella pneumoniae , Minociclina/farmacología , Lípido A , Infecciones por Klebsiella/tratamiento farmacológico , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética
3.
Front Cell Infect Microbiol ; 13: 1215288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035333

RESUMEN

Background: Carbapenem-resistant gram-negative bacterial (CRGNB) infections are increasing among kidney transplant recipients, and effective therapeutic options are limited. This study aimed to investigate the efficacy and adverse events associated with combination therapy tigecycline in renal transplant patients with CRGNB infections. Methods: This study retrospectively analyzed 40 Chinese patients with confirmed or suspected CRGNB infections who received tigecycline therapy. The patients' case features and clinical and microbiological data were analyzed. Results: A total of 40 renal transplant recipients received tigecycline therapy for a median duration of 9 (range, 3-25) days. CRGNB isolates were obtained from the organ preservation solution of the donor kidney in 28 patients, with confirmed transmission in 4 patients. Infections were detected in the bloodstream, urinary tract, sputum, and wound. The most prevalent isolates were Klebsiella pneumoniae (75%, 30/40), Acinetobacter baumannii (15%, 6/40), and Escherichia coli (10%, 4/40). A clinical response was observed in 32 (80%) patients. The 28-day all-cause mortality rate was 7.5% (3/40), while the one-year all-cause mortality rate was 2.5% (1/40). While one patient died owing to severe pancreatitis, no serious adverse events related to tigecycline therapy were reported. However, multiple indices of liver function and pancreatitis precursors increased after treatment with tigecycline compared to before treatment. Conclusion: Tigecycline therapy appears to be well tolerated in renal transplant recipients with multidrug-resistant bacterial infections. Nevertheless, attention should be paid to adverse reactions related to tigecycline therapy, especially gastrointestinal reactions, and the related laboratory tests should be closely monitored.


Asunto(s)
Infecciones por Bacterias Gramnegativas , Trasplante de Riñón , Pancreatitis , Humanos , Tigeciclina/uso terapéutico , Tigeciclina/farmacología , Carbapenémicos/uso terapéutico , Carbapenémicos/farmacología , Antibacterianos/efectos adversos , Trasplante de Riñón/efectos adversos , Estudios Retrospectivos , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
4.
Infect Drug Resist ; 16: 6277-6284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37766881

RESUMEN

Purpose: Cefoperazone/sulbactam is a ß-lactam/ß-lactamase inhibitor combination effective against intra-abdominal, urinary tract, and respiratory infections. Although some studies have suggested that cefoperazone/sulbactam is associated with coagulation disorders, it remains debatable whether the combination of cefoperazone/sulbactam with tigecycline or valproic acid increases the risk of bleeding, as both drugs can lead to coagulation disorders. This study aimed to explore the risk factors of cefoperazone/sulbactam-induced coagulopathy. Patients and Methods: This was a single-center, retrospective, nested case-control study. The sample groups were derived from individuals registered at the Department of Neurosurgery, Shanxi Provincial People's Hospital. Propensity score matching (PSM) was used to adjust for demographic data. Conditional logistic regression was used to estimate the matched odds ratios representing the odds of cefoperazone/sulbactam-induced coagulopathy (CIC), and a receiver operating characteristic curve was used to determine the optimal cut-off conditions. Results: After PSM, 155 and 56 patients were included in the control and case groups, respectively. Multivariate analysis revealed that advanced age, treatment duration, and total dose were independent risk factors of cefoperazone/sulbactam-induced coagulation disorders. Concomitant use of vitamin K was an independent protective factor against CIC. The optimal cut-off for the length of treatment was 5 d, and the cut-off for the total dose was 48 g. Conclusion: Tigecycline and valproic acid were not associated with CIC. Advanced age and long treatment duration are risk factors for CIC. Supplementation with vitamin K during cefoperazone/sulbactam treatment was associated with a reduced risk.

5.
Eur J Pharmacol ; 956: 175949, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37541377

RESUMEN

In recent years, research on tetracycline antibiotics has gradually shifted from their antibacterial effects to anticancer effects. Doxycycline, minocycline, and tigecycline as the US Food and Drug Administration (FDA) approved tetracycline antibiotics have been the main subjects of studies. Evidence indicated that they have anticancer properties and are able to control cancer progression through different mechanisms, such as anti-proliferation, anti-metastasis, and promotion of autophagy or apoptosis. In addition, studies have shown that these three tetracycline antibiotics can be utilized in conjunction with chemotherapeutic and targeted drugs to inhibit cancer progression and improve the quality of patient survival. Therefore, doxycycline, minocycline, and tigecycline are taken as examples in this work. Their mechanisms of action in different cancers and related combination therapies are introduced. Their current roles in alleviating the suffering of patients undergoing chemotherapy when used as adjuvant drugs in clinical treatment are also described. Finally, the research gaps and potential research directions at this stage are briefly summarized.


Asunto(s)
Antineoplásicos , Compuestos Heterocíclicos , Neoplasias , Humanos , Doxiciclina/farmacología , Minociclina/farmacología , Minociclina/uso terapéutico , Tigeciclina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/inducido químicamente
6.
Antimicrob Agents Chemother ; 67(7): e0004723, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37289048

RESUMEN

The emergence of TMexCD1-TOprJ1, a novel transferable resistance-nodulation-division (RND)-type efflux pump conferring resistance to tigecycline, is now a serious public health issue in the world. Here, we found that melatonin synergistically enhanced the antibacterial efficacy of tigecycline against tmexCD1-toprJ1-positive Klebsiella pneumoniae by disrupting the proton driving force and efflux function to promote the accumulation of tigecycline into cells, damaging cell membrane integrity and causing the leakage of cell contents. The synergistic effect was further validated by a murine thigh infection model. The results revealed that the melatonin/tigecycline combination is a potential therapy to combat resistant bacteria carrying the tmexCD1-toprJ1 gene.


Asunto(s)
Infecciones por Klebsiella , Melatonina , Animales , Ratones , Tigeciclina/farmacología , Melatonina/farmacología , Melatonina/metabolismo , Minociclina/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Farmacorresistencia Bacteriana/genética , Proteínas de Transporte de Membrana/genética , Antibacterianos/uso terapéutico , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Pruebas de Sensibilidad Microbiana , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo
7.
J Biomed Sci ; 30(1): 37, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37287044

RESUMEN

BACKGROUND: We investigated the presence of heteroresistance against both tigecycline and colistin in Acinetobacter baumannii and then evaluated the effectiveness of combined antibiotic treatment given the existence of discrete tigecycline- and colistin-resistant subpopulations. METHODS: We performed population analysis profiling (PAP) to evaluate the degree of composite heteroresistance in A. baumannii isolates, with the extent of this resistance quantified using subsequent antibiotic susceptibility testing. We then evaluated the amino acid sequence of PmrBAC and the relative mRNA expression levels of pmrB. Finally, we investigated the combined antibiotic efficacy of tigecycline and colistin in multiple-heteroresistant isolates using dual PAP and in vitro time-killing assays. RESULTS: All tigecycline-heteroresistant A. baumannii isolates, with the exception of one colistin-resistant isolate, were also heteroresistant to colistin. Evaluations of the colistin-resistant subpopulations revealed amino acid alterations in PmrA and PmrB and increased expression of pmrB. All tigecycline-resistant subpopulations were susceptible to colistin, and all colistin-resistant subpopulations were susceptible to tigecycline. Dual PAP analysis using tigecycline and colistin showed no heteroresistance, and in vitro time-killing assays revealed that a combination of these two antibiotics effectively eliminated the bacterial cells. CONCLUSION: Our results suggest that multiple heteroresistance to tigecycline and colistin is highly prevalent among A. baumannii clinical isolates and that these resistant subpopulations exist independently in single multiple heteroresistant isolates. Therefore, our findings may explain the success of combined antibiotic therapies in these infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Colistina/farmacología , Colistina/uso terapéutico , Tigeciclina/farmacología , Tigeciclina/uso terapéutico , Acinetobacter baumannii/genética , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Infecciones por Acinetobacter/tratamiento farmacológico
8.
Chinese Journal of Biotechnology ; (12): 1621-1632, 2023.
Artículo en Chino | WPRIM | ID: wpr-981158

RESUMEN

The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound β-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. β-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that β-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of β-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined β-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.


Asunto(s)
Humanos , Tigeciclina/farmacología , Escherichia coli/metabolismo , Especies Reactivas de Oxígeno/uso terapéutico , Plásmidos , Antibacterianos/metabolismo , Infecciones por Escherichia coli/microbiología , Bacterias/genética , Pruebas de Sensibilidad Microbiana
9.
J Clin Pharm Ther ; 47(11): 1875-1884, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36200470

RESUMEN

WHAT IS KNOWN AND OBJECTIVE: Acinetobacter baumannii is one of the most important nosocomial pathogens with the ability to cause infections such as meningitis, pneumonia, urinary tract, septicaemia and wound infections. A wide range of virulence factors are responsible for pathogenesis and high mortality of A. baumannii including outer membrane proteins, lipopolysaccharide, capsule, phospholipase, nutrient- acquisition systems, efflux pumps, protein secretion systems, quarom sensing and biofilm production. These virulence factors contribute in pathogen survival in stressful conditions and antimicrobial resistance. COMMENT: According to the World Health Organization (WHO), A. baumannii is one of the most resistant pathogens of ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa and Enterobacter spp.). In recent years, resistance to a wide range of antibiotics in A. baumannii has significantly increased and the high emergence of extensively drug resistant (XDR) isolates is challenging. Among therapeutic antibiotics, resistance to tigecycline as a last resort antibiotic has become a global concern. Several mechanisms are involved in tigecycline resistance, the most important of which is RND (Resistance-Nodulation-Division) family efflux pumps overexpression. The development of new therapeutic strategies to confront A. baumannii infections has been very promising in recent years. WHAT IS NEW AND CONCLUSION: In the present review we highlight microbiological and virulence traits in A. baumannii and peruse the tigecycline resistance mechanisms and novel therapeutic options. Among the novel therapeutic strategies we focus on combination therapy, drug repurposing, novel antibiotics, bacteriophage therapy, antimicrobial peptides (AMPs), human monoclonal antibodies (Hu-mAbs), nanoparticles and gene editing.


Asunto(s)
Acinetobacter baumannii , Humanos , Tigeciclina/uso terapéutico , Factores de Virulencia/metabolismo , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
10.
J Int Med Res ; 50(6): 3000605221106705, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35711149

RESUMEN

OBJECTIVE: Multidrug-resistant Klebsiella pneumoniae (MDR KP) bloodstream infections are a serious problem. The objective of this study was to investigate the effects of appropriate combination therapies on MDR KP bloodstream infections. METHODS: MDR KP strains isolated from clinical samples were assessed for antibiotic susceptibility using the broth microdilution method. Twenty consecutive MDR KP clinical isolates from patients with bloodstream infections were examined in this study. The experiments were conducted at the Bacterial Laboratory of Tongde Hospital from March to August 2021. Antibiotic combination tests were performed using the minimum inhibitory concentration (MIC) test, and the sum of the fractional inhibitory concentration was used to assess synergy. RESULTS: Following treatment with a combination of two antibiotic agents, the MIC50 and MIC90 values decreased compared with that before treatment. MIC50 decreased by at least 50%, with one value reduced to 6.25% of the pretreatment value. None of the antibiotic combinations were antagonistic. Combination of polymyxin B with rifampicin or tigecycline had a synergistic effect on 70% and 65% of the strains, respectively. CONCLUSIONS: In vitro combination therapies with two active drug agents (polymyxin B plus rifampicin or tigecycline) had a better effect on MDR KP infections compared with that in other regimens.


Asunto(s)
Infecciones por Klebsiella , Sepsis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Polimixina B/farmacología , Polimixina B/uso terapéutico , Rifampin/farmacología , Rifampin/uso terapéutico , Tigeciclina/farmacología
11.
Microbiol Spectr ; 10(1): e0159321, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35044218

RESUMEN

Acinetobacter baumannii is an important opportunistic pathogen of nosocomial infections. A. baumannii presently exhibits increasing antibiotic resistance, which poses great challenges to public health. The occurrence of tigecycline-resistant A. baumannii is related to tigecycline treatment and the within-host evolution of bacteria. We analyzed isogenic A. baumannii isolates from two critically ill patients who underwent tigecycline treatment. Whole-genome sequencing and comparative analyses were performed to determine the characteristics of genomic evolution. We conducted phenotypic studies, including in vitro antibiotic sensitivity tests, biofilm formation tests, growth curve determination, serum bactericidal determination, and Galleria mellonella lethality assays. In vivo emergent tigecycline resistance was observed after tigecycline treatment. After the withdrawal of tigecycline pressure, tigecycline-resistant isolates were not isolated from one patient. Four tigecycline-resistant isolates exhibited lower growth rates. The biofilm formation and virulence characteristics of tigecycline-resistant isolates were reasonably different between the two patients. A special phenotype appeared after tigecycline treatment in both patients, accompanied by reduced serum tolerance, enhanced biofilm formation ability, and reduced virulence of Galleria mellonella. Most of the genomic variation occurred after the tigecycline treatment, primarily involving transcription-, signal transduction-, translation-, ribosomal biogenesis-, and cell wall biogenesis-related genes. We determined that the genomic variations in baeR, wzc, aroQ, rluC, and adeS and acquisition of ISAba1 were associated with tigecycline resistance in vivo. Capsular polysaccharide-related genes, wzc, and itrA2, and aroQ, were the key genes related to the virulence evolution of A. baumannii within the host. IMPORTANCE Multidrug-resistant Acinetobacter baumannii poses a huge challenge to clinical treatment, and tigecycline is considered a last-line drug for the treatment of multidrug-resistant A. baumannii. However, the mechanism of tigecycline resistance in vivo has not been elucidated. This study analyzed the genomic and phenotypic evolution of tigecycline-resistant A. baumannii in two critically ill patients. In this study, after treatment with tigecycline, tigecycline-resistant A. baumannii emerged with higher fitness costs. After the withdrawal of tigecycline pressure, tigecycline-resistant isolates were not isolated from one patient. The in vivo and in vitro virulence of the isolates exhibited diametrically opposite results in the two patients. Genomic variations in baeR, wzc, aroQ, rluC, and adeS and acquisition of ISAba1 were associated with tigecycline resistance in vivo. The capsular polysaccharide-related genes, wzc, itrA2, and aroQ, were the key genes related to the virulence of A. baumannii in hosts. Our research provides a theoretical basis for elucidating the mechanism of tigecycline resistance and presents new clues for future surveillance and treatment of multidrug-resistant A. baumannii.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/uso terapéutico , Tigeciclina/uso terapéutico , Acinetobacter baumannii/clasificación , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidad , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enfermedad Crítica/terapia , Farmacorresistencia Bacteriana Múltiple , Genoma Bacteriano , Genómica , Humanos , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas , Fenotipo , Filogenia , Virulencia
12.
Artículo en Chino | WPRIM | ID: wpr-954187

RESUMEN

Objective:To investigate the clinical efficacy of injectable polymyxin B combined with tigecycline in pneumonia caused by pan-drug resistant Klebsiella pneumonia (PDR-KP). Methods:The retrospective analysis utilized clinical data of 71 patients with PDR-KP admitted to the Neurointensive Care Unit of Beijing Chaoyang Integrative Medicine Emergency Medical Center between September 2018 and August 2021. All patients received injectable polymyxin B combined with tigecycline. The response rate, bacterial clearance rate, and safety of this therapeutic option were evaluated according to the clinical symptoms and biochemical parameters before treatment (baseline), 7 days after the treatment, and at the end of the treatment.Results:The treatment time of 71 patients ranged from 8 to 14 days, with an average of 11 days. The symptoms, signs, laboratory tests, and chest CT findings of most patients significantly improved after the treatment using polymyxin B combined with tigecycline. On the 7th day after the treatment, 37 patients were clinically effective, with a total effective rate of 52.1%(37/71); 41 patients obtained bacteriological clearance, with a bacterial clearance rate of 57.7%(41/71). At the end of treatment, 51 patients were clinically effective, with a total effective rate of 71.8%(51/71); 56 patients obtained bacteriological clearance, with a bacterial clearance rate of 78.9%(56/71). Compared with the results on the 7th day after the treatment, the total effective rate ( χ2=5.86, P=0.016) and bacterial clearance rate ( χ2=7.32, P=0.007) of patients at the end of treatment were significantly increased. Skin pigmentation occurred in 39.4%(28/71) of patients during the treatment. Conclusions:Polymyxin B combined with tigecycline can be tried as a treatment option for pneumonia caused by PDR-KP, but more reliable clinical evidence is still needed.

13.
J Chemother ; 34(3): 166-172, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34818987

RESUMEN

Several antimicrobial combination therapies are used to treat multiple drug resistant (MDR) and extensively drug resistant (XDR) Acinetobacter baumannii infections. A novel antibiotic, eravacycline, shows a higher potency than tigecycline. The efficacies of eravacycline-based therapies have not yet been evaluated. We demonstrated the effectiveness of eravacycline- and tigecycline-based combination therapies in XDR and especially tigecycline resistant A. baumannii. Thirteen eligible isolates were selected from 642 non-duplicate Acinetobacter blood isolates from four medical centres in 2010-2014. Tigecycline/imipenem and eravacycline/imipenem combinations were simultaneously effective against some isolates in vitro with fractional inhibitory concentration index of 0.5. In contrast, eravacycline- and tigecycline-based combination therapies provided no additional benefits in mouse survival compared to those for monotherapy. In summary, colistin is still the final resort for XDR-A. baumannii treatment according to the sensitivities. Owning to rapid development of resistance in A. baumannii, novel antibiotics are urgently needed.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Infecciones por Acinetobacter/tratamiento farmacológico , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Colistina/farmacología , Colistina/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Sinergismo Farmacológico , Humanos , Imipenem/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Minociclina/farmacología , Minociclina/uso terapéutico , Tetraciclinas , Tigeciclina/farmacología
14.
Curr Med Sci ; 41(4): 770-776, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34403102

RESUMEN

OBJECTIVE: Donor-derived carbapenem-resistant Klebsiella pneumoniae (CRKP) infection has recently emerged as a critical early complication after renal transplantation. Although CRKP is usually sensitive to tigecycline, monotherapy with this drug is often less than effective. We investigated the efficacy of a combined regimen of tigecycline with high-dose, extended-infusion meropenem in the treatment of donor-derived CRKP infection after kidney transplantation. METHODS: From Jan. 2016 to Dec. 2017, a total of 12 CRKP isolates were detected from cultures of the organ preservation solution used for soaking the donor kidneys at our institute. Probable or possible donor-derived infection (DDI) was identified in 8 transplant recipients. Clinical data were retrospectively analyzed. RESULTS: Klebsiella pneumoniae carbapenemase-2 (KPC-2)-producing CRKP was reported to be positive in organ preservation solution cultures at 3.5±0.9 days after transplantation, leading to surgical site (n=3), urinary tract (n=4), and/or bloodstream (n=2) infections in 8 recipients. The drug susceptibility tests showed that CRKP was sensitive to tigecycline, but resistant to meropenem. In 7 patients who received tigecycline combined with high-dose extended-infusion meropenem, DDIs were successfully cured. The length of hospital stay was 31 (18-129) days, and the serum creatinine at discharge was 105.8±16.7 µmol/L. The one remaining patient who received tigecycline combined with intravenous-drip meropenem died of septic shock. A median follow-up of 43 months (33-55) showed no recurrence of new CRKP infection in the 7 surviving recipients. CONCLUSION: It was suggested that a prompt and appropriate combination therapy using tigecycline with high-dose extended-infusion meropenem is effective in treating donor-derived KPC-2-producing CRKP infection after renal transplantation.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Klebsiella/tratamiento farmacológico , Meropenem/farmacología , Tigeciclina/farmacología , beta-Lactamasas/genética , Adolescente , Adulto , Carbapenémicos/efectos adversos , Carbapenémicos/farmacología , Niño , Farmacorresistencia Bacteriana/genética , Femenino , Humanos , Lactante , Trasplante de Riñón/efectos adversos , Infecciones por Klebsiella/etiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Donantes de Tejidos , Adulto Joven
15.
BMC Infect Dis ; 21(1): 307, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33771113

RESUMEN

BACKGROUND: Limited clinical studies describe the pharmacodynamics of fosfomycin (FOS), tigecycline (TGC) and colistin methanesulfonate (CMS) in combination against KPC-producing Klebsiella pneumoniae (KPC-Kp). Population pharmacokinetic models were used in our study. Monte Carlo simulation was conducted to calculate probability of target attainment (PTA) and cumulative fraction of response (CFR) of each agent alone and in combination against KPC-Kp in patients with normal or decreased renal function. RESULTS: The simulated regimen of FOS 6 g q8h reached ≥90% PTA against a MIC of 64 mg/L in patients with normal renal function. For patients with renal impairment, FOS 4 g q8h could provide sufficient antimicrobial coverage against a MIC of 128 mg/L. And increasing the daily dose could result to the cut-off value to 256 mg/L in decreased renal function. For TGC, conventional dosing regimens failed to reach 90% PTA against a MIC of 2 mg/L. Higher loading and daily doses (TGC 200/400 mg loading doses followed by 100 mg q12h/200 mg q24h) were needed. For CMS, none achieved 90% PTA against a MIC of 2 mg/L in normal renal function. Against KPC-Kp, the regimens of 200/400 mg loading dose followed by 100 q12h /200 mg q24h achieved > 80% CFRs regardless of renal function, followed by CMS 9 million IU loading dose followed by 4.5/3 million IU q12h in combination with FOS 8 g q8h (CFR 75-91%). CONCLUSIONS: The use of a loading dose and high daily dose of TGC and CMS in combination with FOS can provide sufficient antimicrobial coverage against critically ill patients infected with KPC-Kp.


Asunto(s)
Antibacterianos/farmacocinética , Riñón/fisiopatología , Infecciones por Klebsiella/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Antibacterianos/uso terapéutico , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Colistina/farmacocinética , Colistina/uso terapéutico , Enfermedad Crítica , Femenino , Fosfomicina/farmacocinética , Fosfomicina/uso terapéutico , Humanos , Pruebas de Función Renal , Klebsiella pneumoniae/efectos de los fármacos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Método de Montecarlo , Tigeciclina/farmacocinética , Tigeciclina/uso terapéutico
16.
Int J Antimicrob Agents ; 57(4): 106304, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33588015

RESUMEN

Tigecycline (TGC) resistance remains rare in Staphylococcus aureus worldwide. In this study, 12 TGC-resistant S. aureus mutants (TRSAm) were obtained displaying an increase in efflux activity. The isolates belonged to seven different genetic lineages, with a predominance of clonal complex 5 (CC5). Diverse genetic changes in mepA and mepR genes were found producing alterations in the amino acid sequences of the corresponding proteins (MepA and MepR, respectively). The most frequent amino acid change in MepA was Glu287Gly. All of the TRSAm exhibited different single nucleotide polymorphisms (SNPs) or insertions/deletions (InDels) in mepR causing premature stop codons or amino acid changes in MepR. Expression of mepA was significantly increased in TRSAm with different mutations in mepA and mepR. Of the 12 TRSAm, 6 also harboured mutations in rpsJ that resulted in amino acid changes in the S10 ribosomal protein, with Lys57 being the most frequently mutated site. Our findings demonstrate that these acquired mechanisms of TGC resistance are not restricted to a single type of genotypic background and that different lineages might have the same plasticity to develop TGC resistance. The impact of TGC selective pressure assessed by whole-genome sequencing in four selected strain pairs revealed mutations in other singular genes and IS256 mobilisation.


Asunto(s)
Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Proteínas de Transporte de Membrana/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Tigeciclina/uso terapéutico , Secuencia de Aminoácidos/genética , ADN Bacteriano/genética , Genoma Bacteriano/genética , Humanos , Pruebas de Sensibilidad Microbiana , Polimorfismo de Nucleótido Simple/genética , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/aislamiento & purificación
17.
Antimicrob Resist Infect Control ; 10(1): 16, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461617

RESUMEN

BACKGROUND: Bloodstream infection (BSI) caused by multidrug-resistant Acinetobacter baumannii (MDR-AB) has been increasingly observed among hospitalized patients. The following study analyzed the epidemiology and microbiological characteristics of MDR-AB, as well as the clinical features, antimicrobial treatments, and outcomes in patients over a six years period in China. METHODS: This retrospective study was conducted in a large tertiary hospital in China between January 2013 and December 2018. The clinical and microbiological data of all consecutive hospitalized patients with MDR-AB induced bloodstream infection were included and analyzed. RESULTS: A total of 108 BSI episodes were analyzed. All MDR isolates belonged to ST2, a sequence type that has spread all over the world. Overall, ST2 strains showed strong biofilm formation ability, high serum resistance, and high pathogenicity. As for the clinical characteristics of the patient, 30-day mortality was 69.4% (75/108). The three main risk factors included mechanical ventilation, intensive care unit (ICU) stay, and thrombocytopenia; three protective factors included a change of antimicrobial regimen within 48 h after positive blood culture, use of the antibacterial agent combination, and more inpatient days. The most effective antibacterial regimen was the combination of cefoperazone/sulbactam and tigecycline. CONCLUSIONS: BSI caused by ST2 A.baumannii represents a difficult challenge for physicians, considering the high mortality associated with this infection. The combination of cefoperazone/sulbactam and tigecycline may be an effective treatment option.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Sepsis/tratamiento farmacológico , Virulencia , Infecciones por Acinetobacter/epidemiología , Acinetobacter baumannii/patogenicidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cefoperazona , China/epidemiología , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/epidemiología , Femenino , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Respiración Artificial , Estudios Retrospectivos , Factores de Riesgo , Sepsis/microbiología , Sulbactam , Trombocitopenia , Tigeciclina , Adulto Joven
18.
Eur J Clin Microbiol Infect Dis ; 40(1): 215-218, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32720091

RESUMEN

PURPOSE: This study aimed to examine the degradation of tigecycline in Mueller Hinton broth (ca-MHB), as knowledge about bacterial susceptibility is key for therapeutic decisions. METHODS: Antioxidative stabilizers were evaluated on tigecycline stability in a quantitative chromatography assay and tigecycline induced kill against Staphylococcus aureus (ATCC29213) was determined in time kill studies. RESULTS: Ascorbic acid caused rapid degradation of tigecycline and resulted in loss of antibacterial activity. Tigecycline was stabilized in aged broth by 2% pyruvate and bacterial growth, and tigecycline killing was similar to fresh broth without supplementation, but independent of age. CONCLUSION: Our results underline the importance of using freshly prepared ca-MHB or the need for stabilizers for tigecycline susceptibility testing while using aged ca-MHB.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Tigeciclina/farmacología , Medios de Cultivo , Excipientes , Humanos , Pruebas de Sensibilidad Microbiana
19.
J Artif Organs ; 24(1): 65-73, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33033945

RESUMEN

The aim of this study was to assess the in vitro adsorption of antibiotics: vancomycin, gentamicin, ciprofloxacin and tigecycline on both polyethyleneimine-treated polyacrylonitrile membrane of AN69ST filter and polysulfone membrane of AV1000 filter using porcine blood as a model close to in vivo conditions. The porcine blood with antibiotic dissolved in it was pumped into hemofiltration circuit (with AN69ST or AV1000 filter), ultrafiltration fluid was continuously returned to the reservoir containing blood with antibiotic. Blood samples to determine antibiotic concentrations were taken at minutes 0, 5, 15, 30, 45, 60, 90 and 120 from the pre- blood pump of the hemofiltration circuit. To assess possible spontaneous degradation of the drug in the solution there was an additional reservoir prepared for each antibiotic, containing blood with the drug, which was not connected to the circuit. In the case of vancomycin, ciprofloxacine and tigecycline, a statistically significant decrease in the drug concentration in the hemofiltration circuit in comparison to initial value as well as to the concentrations in the control blood was observed, both for polyacrylonitrile and plolysulfone membrane. In the case of gentamicin, significant adsorption was noted only on polyacrylonitrile membrane. Our studies demonstrated that in full blood adsorption of antibiotics may be big enough to be of clinical significance. In particular in the case of polyacrylonitrile membrane.


Asunto(s)
Antibacterianos/farmacocinética , Terapia de Reemplazo Renal Continuo , Membranas Artificiales , Resinas Acrílicas , Adsorción , Animales , Ciprofloxacina/farmacocinética , Gentamicinas/farmacocinética , Hemofiltración , Polímeros , Sulfonas , Tigeciclina/farmacocinética , Vancomicina/farmacocinética
20.
Elife ; 92020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319750

RESUMEN

Aging is characterized by extensive metabolic reprogramming. To identify metabolic pathways associated with aging, we analyzed age-dependent changes in the metabolomes of long-lived Drosophila melanogaster. Among the metabolites that changed, levels of tyrosine were increased with age in long-lived flies. We demonstrate that the levels of enzymes in the tyrosine degradation pathway increase with age in wild-type flies. Whole-body and neuronal-specific downregulation of enzymes in the tyrosine degradation pathway significantly extends Drosophila lifespan, causes alterations of metabolites associated with increased lifespan, and upregulates the levels of tyrosine-derived neuromediators. Moreover, feeding wild-type flies with tyrosine increased their lifespan. Mechanistically, we show that suppression of ETC complex I drives the upregulation of enzymes in the tyrosine degradation pathway, an effect that can be rescued by tigecycline, an FDA-approved drug that specifically suppresses mitochondrial translation. In addition, tyrosine supplementation partially rescued lifespan of flies with ETC complex I suppression. Altogether, our study highlights the tyrosine degradation pathway as a regulator of longevity.


Asunto(s)
Envejecimiento/efectos de los fármacos , Longevidad/fisiología , Tirosina Transaminasa/metabolismo , Tirosina/metabolismo , Tirosina/farmacología , Animales , Drosophila melanogaster/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/efectos de los fármacos , Longevidad/efectos de los fármacos , Mitocondrias/metabolismo , Tigeciclina/farmacología , Tirosina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA