Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 327: 117986, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437887

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Renal interstitial fibrosis (RIF) is a main pathological process in chronic kidney disease (CKD). Demethylzeylasteral (DML), a major component of Tripterygium wilfordii Hook. f., has anti-renal fibrosis effects. However, its mechanism of action remains incompletely understood. AIM OF THE STUDY: The present study was designed to comprehensively examine the effects of DML on RIF and the underlying mechanisms. MATERIALS AND METHODS: Pathological experiments were performed to determine the therapeutic effect of DML on a mouse model of UUO-induced RIF. To determine the novel mechanisms underlying the therapeutic effects of DML against RIF, a comprehensive transcriptomics analysis was performed on renal tissues, which was further verified by a series of experiments. RESULTS: Pathological and immunohistochemical staining showed that DML inhibited UUO-induced renal damage and reduced the expression of fibrosis-related proteins in mice. Transcriptomic analysis revealed that the partial subunits of mitochondrial complex (MC) I and II may be targets by which DML protects against RIF. Furthermore, DML treatment reduced mitochondrial reactive oxygen species (ROS) levels, consequently promoting ATP production and mitigating oxidative stress-induced injury in mice and cells. Notably, this protective effect was attributed to the inhibition of MC I activity, suggesting a crucial role for this specific complex in mediating the therapeutic effects of DML against RIF. CONCLUSIONS: This study provides compelling evidence that DML may be used to treat RIF by effectively suppressing mitochondrial oxidative stress injury mediated by MC I. These findings offer valuable insights into the pharmacological mechanisms of DML and its potential clinical application for patients with CKD.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal Crónica , Triterpenos , Obstrucción Ureteral , Humanos , Ratones , Animales , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/prevención & control , Enfermedades Renales/metabolismo , Riñón , Insuficiencia Renal Crónica/metabolismo , Estrés Oxidativo , Fibrosis , Obstrucción Ureteral/metabolismo
2.
Comput Biol Chem ; 109: 108030, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387122

RESUMEN

BACKGROUND: Tripterygium wilfordii Hook. f. (TW) shows anticancer activity, and no study has comprehensively investigated the effects of TW in treating cholangiocarcinoma (CHOL). This study was designed to identify the therapeutic role and the mechanism of TW against CHOL to obtain anti-CHOL candidate components and targets. METHODS: Ingredients of TW were collected from the Traditional Chinese Medicine System Pharmacology Database and literature. Limma package and weighted gene co-expression network analysis were used to identify the genes related to CHOL. Enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) was performed by R package Cluster-Profiler and Metascape, respectively. Protein-Protein Interaction (PPI) network was used to select core genes in the treatment of CHOL by TW, followed by GEPIA2, UALCAN database, and ROC curves to assess their diagnostic and prognostic capability. Molecular docking and molecular dynamics simulation were applied to explore the binding affinity and stability of the complex between the bioactive ingredients in TW and core targets. RESULTS: A total of 67 ingredients in TW were collected, and 495 genes were obtained as genes of CHOL. 55 common TW-CHOL targets were identified. 171 biological process terms and 100 KEGG pathways were enriched. 12 genes were regarded as core genes through PPI analysis, such as CYP3A4, CES1, GC, and PLG, whose good diagnostic and prognostic capability were identified. Ten ingredients were selected through the construction of Herb-Components-Targets-Disease network. Molecular docking and molecular dynamics simulation both confirmed the good binding affinity and stability of the ligand-protein complexes. CONCLUSION: This study identified the therapeutic role and predicted the mechanism of TW against CHOL, where TW may combat CHOL through the regulation of metabolic conditions of the body, bile acid secretion, xenobiotics metabolism, and the inflammatory response. Celastrol, triptonide, triptolide and wilforlide A emerged as promising anti-CHOL candidates. So, this study offered a reference for the treatment of CHOL and the development of anti-CHOL drugs.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Medicamentos Herbarios Chinos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Tripterygium , Biología Computacional , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Conductos Biliares Intrahepáticos , Medicamentos Herbarios Chinos/farmacología
3.
Drug Des Devel Ther ; 17: 3767-3781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144417

RESUMEN

Psoriasis is an inflammatory autoimmune skin condition that is clinically marked by chronic erythema and scaling. The traditional Chinese herb Tripterygium wilfordii Hook. F. (TwHF) is commonly used in the treatment of immune-related skin illnesses, such as psoriasis. In clinical studies, PASI (Psoriasis Area and Severity Index) were dramatically decreased by TwHF and its extracts. Their benefits for psoriasis also include relief from psoriasis symptoms such as itching, dryness, overall lesion scores and quality of life. And the pathological mechanisms include anti-inflammation, immunomodulation and potentially signaling pathway modulations, which are achieved by modulating type-3 inflammatory cytokines including IL-22, IL-23, and IL-17 as well as immune cells like Th17 lymphocytes, γδT cells, and interfering with IFN-SOCS1, NF-κB and IL- 36α signaling pathways. TwHF and its extracts may cause various adverse drug reactions, such as gastrointestinal responses, aberrant hepatocytes, reproductive issues, and liver function impairment, but at adequate doses, they are regarded as an alternative therapy for the treatment of psoriasis. In this review, the effectiveness and mechanisms of TwHF and its extracts in psoriasis treatment are elucidated.


Asunto(s)
Enfermedades Autoinmunes , Medicamentos Herbarios Chinos , Psoriasis , Humanos , Tripterygium , Extractos Vegetales/efectos adversos , Calidad de Vida , Psoriasis/tratamiento farmacológico , Psoriasis/metabolismo , Piel/metabolismo , Enfermedades Autoinmunes/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico
4.
Front Pharmacol ; 14: 1282610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027004

RESUMEN

Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body's tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii.

5.
J Pharm Pharmacol ; 75(11): 1442-1457, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37738207

RESUMEN

OBJECTIVES: To validate the enhanced therapeutic effect of Tripterygium wilfordii Hook. f. (TWHF) in the treatment of rheumatoid arthritis (RA) by restoring homeostasis of M1/M2 macrophages. METHODS: This study, using random walk models and network pharmacology, examined the molecular targets and mechanism of TWHF in RA. Based on clinical observations and experiments in arthritis animal models, the effects of TWHF on macrophage polarization, related signal pathways, and targets were examined. Triptolide, a component of TWHF, was used to intervene arthritis rats. KEY FINDINGS: Network pharmacological analysis revealed the key RA target genes related to TWHF. TWHF showed a strong correlation with the improvement of inflammatory indicators. TWHF inhibited the factors secreted by M1 macrophages such as IL-1ß, IL-6, CXCL8, TNF-α, and VEGF-A, but promoted IL-10 from M2 macrophages. Quantitative liquid-phase chip assay showed that triptolide reduced the levels of TNF-α, CXCL2, and VEGF, while IL-4 and IL-10 were increased in arthritis model. Meanwhile, triptolide inhibited the NF-κB, PI3K/AKT, and p38 MAPK signaling pathways, which in turn improved the RA joint inflammation and fixed immune imbalance. CONCLUSIONS: Triptolide downregulate the expression of M1 macrophage-secreted factors that inhibit the overactivation of inflammatory signaling pathways.


Asunto(s)
Artritis Reumatoide , Interleucina-10 , Ratas , Animales , Tripterygium , Factor de Necrosis Tumoral alfa , Fosfatidilinositol 3-Quinasas , Artritis Reumatoide/tratamiento farmacológico , Extractos Vegetales/farmacología , Inflamación/tratamiento farmacológico , Macrófagos
6.
Front Pharmacol ; 14: 1183499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37608889

RESUMEN

Background: Currently, the optimal therapy plan for idiopathic membranous nephropathy (IMN) remains controversial as there has been no comprehensive and systematic comparison of therapy plans for IMN. Therefore, in this study, a Bayesian meta-analysis was used to systematically evaluate the clinical efficacy and safety of various intervention plans involving traditional Chinese medicine TWM in the treatment of IMN. Methods: An electronic search in 7 databases was conducted from their inception to August 2022 for all published randomized controlled trials (RCTs) of various intervention plans for IMN. Network meta-analysis (NMA) was performed by using software R, and the surface under the cumulative ranking area (SUCRA) probability curve was plotted for each outcome indicator to rank the efficacy and safety of different intervention plans. Results: A total of 30 RCTs were included, involving 13 interventions. The results showed that (1) in terms of total remission (TR), ① GC + CNI + TWM was the best effective among all plans, and the addition and subtraction plan of CNI + TWM was the best effective for IMN; ② All plans involving TWM were more effective than GG; ③ Among monotherapy plans for IMN, TWM was more effective distinctly than GC, while TWM and CNI were similarly effective; ④ Among multidrug therapy plans for IMN, the addition of TWM to previously established therapy plans made the original plans more effective; ⑤The efficacy of combining TWM with other plans was superior to that of TWM alone. (2) In terms of lowering 24 h-UTP, GC + TWM was the best effective and more effective than TWM. (3) In terms of safety, there was no statistically significant difference between all groups. However, CNI + TWM was the safest. No serious adverse events (AEs) occurred in all the included studies. Conclusion: The addition of TWM may be beneficial to patients with IMN. It may enhance the efficacy of previously established treatment protocols without leading to additional safety risks. In particular, GC + CNI + TWM, GC + TWM, and CNI + TWM with better efficacy and higher safety can be preferred in clinical decision-making as the therapy plans for IMN.

7.
J Pharm Biomed Anal ; 234: 115573, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37459834

RESUMEN

Tripterygium wilfordii (TW), a well-known traditional Chinese medicine, was widely used in the treatment of autoimmune disorders and inflammatory diseases. However, the clinical use of TW was limited by severe toxicities, such as hepatotoxicity and nephrotoxicity. Our previous studies indicated that roasting was an effective approach for reducing TW-induced toxicity. After roasting, celastrol was completely decomposed, partially converted into 1-hydroxy-2,5,8-trimethyl-9-fluorenone and the total alkaloids content were significantly reduced. However, the detoxication mechanisms of roasting on TW were poorly unknown. This study aimed to explore the toxicity and detoxification mechanisms of TW after roasting based on urine metabolomics. Promising biomarkers were evaluated by multiple comparison analyses. Sixteen toxicity biomarkers were identified between control group and total extract group. Twelve toxicity biomarkers were identified between control group and total alkaloids group. Eight toxicity biomarkers were identified between control group and celastrol group. These metabolites were mainly involved in seven metabolic pathways, summarized as pentose and glucuronate interconversions, lipid metabolism (sphingolipid metabolism, glycerophospholipid metabolisms, fatty acid biosynthesis and steroid hormone biosynthesis) and amino acid metabolism (taurine and hypotaurine metabolism, tryptophan metabolism). After roasting, the toxicities of total extract, total alkaloids and celastrol were relieved by ameliorative serum parameters and pathological changes in hepatic and renal tissues which revealed that the reduction of celastrol and total alkaloids played important roles in the detoxification of roasting on TW. Furthermore, roasting regulated the levels of fourteen potential biomarkers in the total extract group, ten potential biomarkers in the total alkaloids group and seven candidate biomarkers in the celastrol group to normal levels. Biological pathway analysis revealed that roasting may ameliorate TW-induced metabolic disorders in pentose and glucuronate interconversions, lipid metabolism and amino acid metabolism. This study provided evidence for the application of roasting in TW.


Asunto(s)
Alcaloides , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Espectrometría de Masas en Tándem , Tripterygium/química , Metabolómica , Biomarcadores , Alcaloides/toxicidad , Aminoácidos/metabolismo
8.
Int J Rheum Dis ; 26(8): 1529-1539, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37317623

RESUMEN

AIM: The Chinese anti-rheumatic herbal remedy Tripterygium wilfordii Hook F (TWHF) has been widely shown to be effective in treating lupus nephritis (LN), but the therapeutic targets and mechanisms of action are still unclear. In this study, we aimed to combine mRNA expression profile analysis and network pharmacology analysis to screen the pathogenic genes and pathways involved in LN and to explore the potential targets of TWHF in the treatment of LN. METHODS: The mRNA expression profiles of LN patients were used to screen differentially expressed genes (DEGs) and to predict associated pathogenic pathways and networks via the Ingenuity Pathway Analysis database. Through molecular docking, we predicted the mechanism by which TWHF interacts with candidate targets. RESULTS: A total of 351 DEGs were screened from the glomeruli of LN patients and were mainly concentrated in the role of pattern recognition receptors in the recognition of bacteria and viruses and interferon signaling pathways. A total of 130 DEGs were screened from the tubulointerstitium of LN patients, which were concentrated in the interferon signaling pathway. TWHF might be effective in treating LN by hydrogen bonding to regulate the functions of 24 DEGs (including HMOX1, ALB, and CASP1), which are mainly concentrated in the B-cell signaling pathway. CONCLUSION: The mRNA expression profile of renal tissue from LN patients revealed a large number of DEGs. TWHF has been shown to interact with the DEGs (including HMOX1, ALB and CASP1) through hydrogen bonding to treat LN.


Asunto(s)
Medicamentos Herbarios Chinos , Nefritis Lúpica , Humanos , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/genética , Tripterygium , Simulación del Acoplamiento Molecular , Interferones , ARN Mensajero , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
9.
Biomed Pharmacother ; 162: 114705, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37062220

RESUMEN

Celastrol, triptolide and triptonide are the most significant active ingredients of Tripterygium wilfordii Hook F (TWHF). In 2007, the 'Cell' journal ranked celastrol, triptolide, artemisinin, capsaicin and curcumin as the five natural drugs that can be developed into modern medicinal compounds. In this review, we collected relevant data from the Web of Science, PubMed and China Knowledge Resource Integrated databases. Some information was also acquired from government reports and conference papers. Celastrol, triptolide and triptonide have potent pharmacological activity and evident anti-cancer, anti-tumor, anti-obesity and anti-diabetes effects. Because these compounds have demonstrated unique therapeutic potential for acute and chronic inflammation, brain injury, vascular diseases, immune diseases, renal system diseases, bone diseases and cardiac diseases, they can be used as effective drugs in clinical practice in the future. However, celastrol, triptolide and triptonide have certain toxic effects on the liver, kidney, cholangiocyte heart, ear and reproductive system. These shortcomings limit their clinical application. Suitable combination therapy, new dosage forms and new routes of administration can effectively reduce toxicity and increase the effect. In recent years, the development of different targeted drug delivery formulations and administration routes of celastrol and triptolide to overcome their toxic effects and maximise their efficacy has become a major focus of research. However, in-depth investigation is required to elucidate the mechanisms of action of celastrol, triptolide and triptonide, and more clinical trials are required to assess the safety and clinical value of these compounds.


Asunto(s)
Diterpenos , Neoplasias , Fenantrenos , Triterpenos , Humanos , Diterpenos/farmacología , Fenantrenos/farmacología , Compuestos Epoxi/farmacología
10.
J Ethnopharmacol ; 311: 116448, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37030557

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Tripterygium wilfordii Hook. f. has been widely used in clinical practice due to its good anti-inflammatory and analgesic activities. However, its application is limited by potential toxicity and side effects. AIM OF THE STUDY: The study aimed to identify the mechanisms responsible for the pharmacological activity and cardiotoxicity of the main monomers of Tripterygium wilfordii. MATERIALS AND METHODS: Database analysis predicted that ion channels may be potential targets of Tripterygium wilfordii. The regulatory effects of monomers (triptolide, celastrol, demethylzeylasteral, and wilforgine) on protein Nav1.5 and Nav1.7 were predicted and detected by Autodock and patch clamping. Then, we used the formalin-induced pain model and evaluated heart rate and myocardial zymograms to investigate the analgesic activity and cardiotoxicity of each monomer in vivo. RESULTS: All four monomers were able to bind to Nav1.7 and Nav1.5 with different binding energies and subsequently inhibited the peak currents of both Nav1.7 and Nav1.5. The monomers all exhibited analgesic effects on formalin-induced pain; therefore, we hypothesized that Nav1.7 is one of the key analgesic targets. Demethylzeylasteral reduced heart rate and increased the level of creatine kinase-MB, thus suggesting a potential cardiac risk; data suggested that the inhibitory effect on Nav1.5 might be an important factor underlying its cardiotoxicity. CONCLUSION: Our findings provide an important theoretical basis for the further screening of active monomers with higher levels of activity and lower levels of toxicity.


Asunto(s)
Triterpenos , Canales de Sodio Activados por Voltaje , Tripterygium , Cardiotoxicidad
11.
BMC Complement Med Ther ; 23(1): 9, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627617

RESUMEN

BACKGROUND: Tripterygium wilfordii Hook. F. (TwHF), a traditional Chinese medicine, is widely used in the treatment of rheumatoid arthritis. Due to multiorgan toxicity, particularly hepatotoxicity, the application of TwHF is restricted. To clarify the hepatotoxic substances, zebrafish, hepatocytes and macrophages were used for screening based on hepatotoxic injury patterns. This study provides a basis for further elucidation of the hepatotoxic mechanism of TwHF. METHODS: First, 12 compounds were selected according to the chemical categories of TwHF. The fluorescence area and fluorescence intensity of zebrafish livers were observed and calculated. The viability of two hepatocyte lines was detected by CCK8 assay. TNF-α and IL-1ß mRNA expression in bone marrow-derived macrophages was used to evaluate macrophage activation, a factor of potential indirect hepatotoxicity. Finally, the hepatotoxic characteristics of 4 representative components were verified in mice in vivo. RESULTS: Parthenolide, triptolide, triptonide, triptobenzene H, celastrol, demethylzeylasteral, wilforlide A, triptotriterpenic acid A and regelidine significantly reduced the fluorescence area and fluorescence intensity of zebrafish livers. The viability of L-02 or AML-12 cells was significantly inhibited by parthenolide, triptolide, triptonide, celastrol, demethylzeylasteral, and triptotriterpenic acid A. Parthenolide, triptolide, triptonide, celastrol, demethylzeylasteral and triptobenzene H significantly increased TNF-α and IL-1ß mRNA levels in macrophages, while triptophenolide, hypodiolide and wilforine significantly reduced TNF-α and IL-1ß mRNA levels. Triptotriterpenic acid A, celastrol and triptobenzene H at a dose of 10 mg/kg significantly increased the levels of mouse serum alanine aminotransferase and aspartate aminotransferase and aggravated liver inflammation. CONCLUSIONS: Parthenolide, triptolide, triptonide, celastrol, demethylzeylasteral, triptotriterpenic acid A and triptobenzene H might be the main hepatotoxic components of TwFH. Among them, only triptotriterpenic acid A presents direct hepatotoxicity. Triptobenzene H exerts indirect liver damage by activating macrophages. Parthenolide, triptolide, triptonide, celastrol, and demethylzeylasteral can directly and indirectly cause liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ratones , Animales , Tripterygium/química , Pez Cebra , Factor de Necrosis Tumoral alfa , ARN Mensajero
12.
Ecotoxicol Environ Saf ; 252: 114575, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706526

RESUMEN

Paraquat (PQ) poisoning can induce acute lung injury and fibrosis and has an extremely high mortality rate. However, no effective treatments for PQ poisoning have been established. In this study, the potential efficacy of Tripterygium wilfordii Hook.f. (TwHF) in alleviating PQ-induced lung injury and fibrosis was investigated in a mouse model. Mice were randomly assigned to the control, PQ, PQ + TwHF1 (pretreatment before inducing poisoning), and PQ + TwHF2 (treatment after poisoning) groups. The mice in the PQ + TwHF1 group were pretreated with TwHF for 5 days before receiving one dose of PQ (120 mg/kg) and then received a daily oral gavage of the indicated dosages of TwHF until sacrifice. The mice in the PQ + TwHF2 group were treated with TwHF 2 h after PQ exposure until sacrifice. The pathological analysis and Fapi PET/CT showed that treatment with TwHF attenuated lung injury. And TwHF reduced pulmonary oxidative stress, as indicated by the reduction in, malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) levels, as well as by the increase in superoxide dismutase (SOD) levels. Accordingly, the Perls DAB staining showed increased iron concentrations and western blotting revealed a decreased GPX4 expression after PQ exposure, as well as the mitigation of the overexpression of Nrf2 and HO-1 induced by PQ. In conclusion, our study demonstrated the potential of TwHF as a treatment for PQ-induced lung injury and fibrosis. The protective mechanism of this medicinal herb may involve the regulation of ferroptosis.


Asunto(s)
Lesión Pulmonar Aguda , Ferroptosis , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Fibrosis , Glutatión/metabolismo , Pulmón , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Paraquat/toxicidad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tripterygium/metabolismo
13.
J Ethnopharmacol ; 307: 116211, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36706936

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a chronic, systemic inflammatory arthropathy. Tripterygium wilfordii Hook F (TwHF) is common herbal medicine for the treatment of RA in China. However, many important issues, such as efficacy, safety and optimal doses of the combination therapy of TwHF and Methotrexate (MTX) for RA remain to be evaluated. AIMS OF THE STUDY: This study aims to evaluate the efficacy and safety of combination therapy of TwHF and MTX for RA by meta-analysis of randomized clinical trials (RCTs). MATERIAL AND METHODS: Relevant literature was searched from English (PubMed, Web of Science, EMBASE, and Cochrane library) and Chinese databases (WanFang, VIP, CNKI) until December 2021. Response rates and rates of adverse events (AEs) were independently extracted and analyzed. RESULTS: Fourteen randomized controlled trials (RCTs) were included with a total of 1446 patients, which included eight new RCTs with a total of 803 new patients when compared with the previous meta-analysis (Wang et al., 2017). Compared to MTX monotherapy, TwHF + MTX was revealed a higher effective rate (RR = 1.15, 95% CI: 1.10, 1.21), partial remission rate (RR = 1.27, 95% CI: 1.15, 1.40) and remission rate (RR = 1.31, 95% CI: 1.11, 1.55). The addition of TwHF benefited the clinical symptoms (such as tender joint count) and most laboratory indexes (such as the tumor necrosis factor-α). According to the subgroup analyses, the efficacy of the TwHF + MTX seems to be positively associated with the dose of TwHF (10 mg/d vs 30-60 mg/d), negatively related to the dose of MTX (∼10 mg/w vs ∼15 mg/w) and methodological risk of bias of included RCTs, and unrelated to the duration of therapy (12-week vs 24-week). For safety, the addition of TwHF did not increase the risk of most AEs and even reduced the risk of infection and liver AEs. CONCLUSION: Combining TwHF with MTX may be a superior strategy in the treatment of RA compared with MTX monotherapy. The optimal combination of TwHF + MTX therapy might be TwHF at 30-60 mg/d with MTX (∼10 mg/w). Further high-quality double-blind RCTs may be able to change the conclusions of our study, which are still warranted.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Humanos , Metotrexato , Antirreumáticos/uso terapéutico , Tripterygium , Artritis Reumatoide/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Front Pharmacol ; 13: 940773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386135

RESUMEN

Background: Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease. The effective treatment of DKD would rely on the incorporation of a multi-disciplinary. Studies have shown that Tripterygium wilfordii Hook.F. and Trichosanthes kirilowii Maxim have remarkable curative effects in treating DKD, but their combination mechanism has not been fully elucidated. Methods: We explored the mechanism of Tripterygium wilfordii Hook.F.-Trichosanthes kirilowii Maxim decoction (Leigongteng-Tianhuafen Decoction,LTD) in the treatment of DKD by network pharmacology and molecular docking. The main active components and action targets of LTD were collected from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The speculative targets of DKD were obtained from GeneCards, DisGeNET, and Online Mendelian Inheritance in Man (OMIM) databases. Then, an herb-component-target network was constructed based on the above analyses. The biological function of targets was subsequently investigated, and a protein-protein interaction (PPI) network was constructed to identify hub targets of DKD. The gene ontology (GO) function enrichment analysis and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis were performed by RStudio. Finally, molecular docking was performed by AutoDock Vina and PyMOL software to explore the interaction between compounds and targets. Furthermore, the DKD model of human renal tubular cells (HK-2) induced by high glucose (HG) was selected, and the predicted results were verified by western blot analysis and immunofluorescence. Results: A total of 31 active components of LTD were screened out, and 196 targets were identified based on the TCMSP database. A total of 3,481 DKD related targets were obtained based on GeneCards, DisGeNET, and OMIM databases. GO function enrichment analysis included 2,143, 50, and 167 GO terms for biological processes (BPs), cellular composition (CCs), and molecular functions (MFs), respectively. The top 10 enrichment items of BP annotations included response to lipopolysaccharide, response to molecule of bacterial origin, response to extracellular stimulus, etc. CC was mainly enriched in membrane raft, membrane microdomain, plasma membrane raft, etc. The MF of LTD analysis on DKD was predominately involved in nuclear receptor activity, ligand-activated transcription factor activity, RNA polymerase II-specific DNA-binding transcription factor binding, etc. The involvement signaling pathway of LTD in the treatment of DKD included AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, insulin resistance, TNF signaling pathway, etc. Molecular docking results showed that kaempferol, triptolide, nobiletin, and schottenol had a strong binding ability to PTGS2 and RELA. Furthermore, the in vitro experiments confirmed that LTD effectively decreased the expression of PTGS2, NF-κB, JNK, and AKT in the HG-induced DKD model. Conclusion: The findings of this study revealed that the therapeutic efficacy of LTD on DKD might be achieved by decreasing the expression of PTGS2, NF-κB, JNK, and AKT, which might improve insulin resistance, inflammation, and oxidative stress. These findings can provide ideas and supply potential therapeutic targets for DKD.

15.
Front Pharmacol ; 13: 1018273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36339610

RESUMEN

Traditional Chinese medicine (TCM) usually acts in the form of compound prescriptions in the treatment of complex diseases. The herbs contained in each prescription have the dual nature of efficiency and toxicity due to their complex chemical component, and the principle of prescription is usually to increase efficiency and reduce toxicity. At present, the studies on prescriptions have mainly focused on the consideration of the material basis and possible mechanism of the action mode, but the quantitative research on the compatibility rule of increasing efficiency and reducing toxicity is still the tip of the iceberg. With the extensive application of computational pharmacology technology in the research of TCM prescriptions, it is possible to quantify the mechanism of synergism and toxicity reduction of the TCM formula. Currently, there are some classic drug pairs commonly used to treat complex diseases, such as Tripterygium wilfordii Hook. f. with Lysimachia christinae Hance for lung cancer, Aconitum carmichaelii Debeaux with Glycyrrhiza uralensis Fisch. in the treatment of coronary heart disease, but there is a lack of systematic quantitative analysis model and strategy to quantitatively study the compatibility rule and potential mechanism of synergism and toxicity reduction. To address this issue, we designed an integrated model which integrates matrix decomposition and shortest path propagation, taking into account both the crosstalk of the effective network and the propagation characteristics. With the integrated model strategy, we can quantitatively detect the possible mechanisms of synergism and attenuation of Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance in the treatment of lung cancer. The results showed the compatibility of Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance could increase the efficacy and decrease the toxicity of lung cancer treatment through MAPK pathway and PD-1 checkpoint pathway in lung cancer.

16.
Front Pharmacol ; 13: 905576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784734

RESUMEN

Triptolide, a diterpene triepoxide, is a pharmacologically active compound isolated from a Chinese medicinal herb Tripterygium wilfordii Hook F (TwHF). Triptolide has attracted considerable attention in recent times due to its multiple biological and pharmaceutical activities, with an emphasis on therapeutic importance in the treatment of diverse disorders. With essential medicinal implications, TwHF's extracts have been used as anti-inflammatory, antiproliferative, antioxidative, and immunosuppressive agents for centuries, with continuous and relevant modifications to date to enhance its utility in several diseases and pathophysiology. Here, in this review, we accentuate the studies, highlighting the effects of triptolide on treating bone-related disorders, both inflammatory and cancerous, particularly osteosarcoma, and their manifestations. Based on this review, future avenues could be estimated for potential research strategies, molecular mechanisms, and outcomes that might contribute toward reinforcing new dimensions in the clinical application of triptolide in treating bone-related disorders.

17.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(5): 573-582, 2022 May 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-35753727

RESUMEN

Tripterygium wilfordii Hook. f. is a traditional Chinese herbal medicine. The bioactive compounds from Tripterygium wilfordii Hook. f. have unique immunosuppressive and anti-inflammatory effects, and can exert their pharmacological effects through multi-target and multi-channel. Tripterygium wilfordii Hook. f. preparations have been used in IgA nephropathy (IgAN) for many years and are well accepted for good curative effects. However, the underlying mechanisms are still unclear. It is valuable to summarize the current progress in clinical application of Tripterygium wilfordii Hook. f. preparations in IgAN and other kidney diseases. We discussed the component characteristics, efficacies in reducing urinary protein levels and protecting renal function, as well as the side effects. As for the mechanisms, we should focus on all links of IgAN pathogenesis, including reducing the production of pathogenic IgA, decreasing renal inflammation and fibrosis, and protecting podocytes. As a representative drugs with clear efficacy and potential toxicity, Tripterygium wilfordii Hook. f. preparations need more in-depth basic and clinical research to improve their efficacy and safety.


Asunto(s)
Medicamentos Herbarios Chinos , Glomerulonefritis por IGA , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Glomerulonefritis por IGA/inducido químicamente , Glomerulonefritis por IGA/tratamiento farmacológico , Humanos , Inmunosupresores , Medicina Tradicional China , Tripterygium
18.
BMC Nephrol ; 23(1): 179, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538439

RESUMEN

BACKGROUND: Tripterygium Wilfordii Hook F (TwHF) preparation has been widely used in the treatments of IgA nephropathy (IgAN) in China. However, the effectiveness and safety of the new generation of TwHF preparation, KuxXian capsule, on the treatment of IgAN remains unknown. METHODS: Here, we retrospectively describe our experience treating 55 consecutive IgAN patients with KunXian. We defined complete remission as proteinuria < 0.5 g/24 h and partial remission as proteinuria < 1 g/24 h, each also having > 50% reduction in proteinuria from baseline. RESULTS: At first follow-up after KunXian treatment (5.7 weeks, IQR 4.7-7.9), all but two patients (96%) showed a reduction in proteinuria. The overall median proteinuria decreased from 2.23 g/day at baseline to 0.94 g/day (P < 0.001) at the first follow-up. During a median follow-up of 28 weeks after KunXian administration, 25(45.5%) patients achieved complete remission, 34 (61.8%) patients achieved complete/partial remission. Of the 12 patients discontinued KunXian treatment during the follow-up, the median proteinuria was increased from 0.97 g/24 h to 2.74 g/24 h after a median of 10.9 weeks (P = 0.004). Multivariable Cox models showed that female, treatment switching from previous generation of TwHF preparation, lower initial KunXian dosage, and higher proteinuria at baseline were independently associated proteinuria remission. Of the 20 pre-menopausal females, 12 of them developed oligomenorrhea or menstrual irregularity and ten of them developed amenorrhea. CONCLUSION: KunXian is effectiveness and safety for the treatment of IgA nephropathy. Woman of childbearing age to be informed of the risk of ovarian failure after being treated with TwHF preparations.


Asunto(s)
Glomerulonefritis por IGA , Medicamentos Herbarios Chinos , Femenino , Glomerulonefritis por IGA/tratamiento farmacológico , Humanos , Masculino , Proteinuria/tratamiento farmacológico , Estudios Retrospectivos , Resultado del Tratamiento , Tripterygium
19.
Phytomedicine ; 101: 154103, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35468451

RESUMEN

BACKGROUND: The HIV-1 infected immunological non-responders (INRs) are characterized by poor immune reconstitution after long-term treatment. Tripterygium Wilfordii Hook F (TwHF) pill is a traditional Chinese patent drug with extensive immunosuppressive effects and has been clinically proven efficacy in treating INRs. PURPOSE: The therapeutic mechanism of TwHF pills in the treatment of INRs was investigated by the combined multi-omics analysis on clinical samples and network pharmacology approach. METHODS: Clinically, the peripheral blood mononuclear cells (PBMC) samples of TwHF-treated INRs from different time points were collected to conduct the transcriptomic and proteomic profiling. Key effector pathways of TwHF were enriched and analyzed by the ingenuity pathway analysis (IPA). Computationally, the TwHF-related compounds were obtained from traditional Chinese medicine databases, and literature search and structural prediction were performed to identify TwHF-related targets. Integrated with the INR-related targets, the 'TwHF-compounds-targets-INR' network was constructed to analyze core effector targets by centrality measurement. Experimentally, the effects of TwHF compounds on the T cells activation and expression of identified targets were evaluated with in vitro cell culture. RESULTS: 33 INRs were included and treated with TwHF pills for 17 (IQR, 12-24) months. These patients experienced rapid growth in the CD4+ T cell counts and decreased T cell activation. The multi-omics analysis showed that the interferon (IFN)-signaling pathway was significantly inhibited after taking TwHF pills. The network pharmacology predicted the central role of the signal transducer and activator of transcription 1 (STAT1) in the 'TwHF-compounds-targets-INR' network. Further bioinformatic analysis predicted STAT1 would regulate over 58.8% of identified down-regulated genes. Cell experiments validated that triptolide (TPL) would serve as the major bioactivity compound of TwHF pills to inhibit the immune cell activation, the production of IFN-γ, the expression of downstream IFN-stimulated genes, and the phosphorylation of STAT1. CONCLUSION: Our research is the first to systemic verify the mechanisms of TwHF in treating INRs. The IFN signaling pathway and the STAT1 would be the major effector targets of TwHF pills in treating INRs. The TPL would be the major bioactive compound to inhibit the IFN response and the phosphorylation of STAT1. Our observations suggest the basis for further application of TPL analogous in treating INRs.


Asunto(s)
Medicamentos Herbarios Chinos , Infecciones por VIH , Medicamentos Herbarios Chinos/química , Infecciones por VIH/tratamiento farmacológico , Humanos , Leucocitos Mononucleares , Farmacología en Red , Proteómica , Tripterygium/química
20.
Front Pharmacol ; 13: 846746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387327

RESUMEN

Tripterygium wilfordii Hook. f. (TwHF) is a Chinese botanical drug containing a large number of metabolites. The discovered and recognized anti-inflammatory and immune-regulating effects have made it attract more and more attentions in trials and clinical researches. The extraction and processing of TwHF for pharmaceuticals is a manifestation of the role of traditional Chinese medicine. However, TwHF is toxic. Optimization of TwHF preparations has become a requirement for the development of TwHF pharmaceuticals. Our article introduces the main preparations of TwHF on the Chinese market and their characteristics. In particular, we summarize the clinical applications and influential mechanisms of TwHF and its preparations in kidney diseases. Considering that nephropathy is closely related to immune inflammation and TwHF is a botanical drug with a high number of metabolites, the application of TwHF in kidney diseases may be much more complicated. By revealing the role and mechanisms of TwHF in kidney diseases, this study aims to provide more insights to basic and clinical studies about nephropathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA