Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Fitoterapia ; 175: 105897, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479618

RESUMEN

Globally, obesity has become one of the major health problems. This study was conducted to evaluate the anti-obesity potential of Cymbopogon schoenanthus methanolic extract (CS) in rats. Fifty male Wistar rats of six to eight weeks old, 100-120 g body weight (BW) were randomly assigned into 5 groups (n = 10): The control group was fed a basal diet. CS-group was supplied with basal diet and orally given CS (200 mg/kg BW) for 12 weeks. HFD-group was fed a high-fat diet (HFD) for 18 weeks. HFD + CS-group was fed on HFD and CS HFD then CS-group was fed HFD for 12 weeks then shifted to basal diet and CS for another 6 weeks. Phytochemical analysis of CS indicated the presence of various terpenes and flavonoid compounds. Among the compounds characterized are quercetin, apigenin, luteolin, orientin, eudesmene, cymbopogonol, caffeic acid, coumaric acid, and linolenic acid. Supplementation of HFD significantly increased the body weight, levels of serum triacylglycerol, total cholesterol, very low-density lipoprotein, low-density lipo-protein (HDL), glucose, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. In addition, HFD up-regulated the protein expression of uncoupling protein (UCP)-1 in both brown and white adipose tissue; and the expression of hepatic mRNA of sterol regulatory element-binding protein (SREBP)-1c and SREBP-2. However, it decreased the serum level of HDL, and protein expression level of UCP-1 in both brown and white adipose tissue. Treatment of HFD-fed animals with CS extract either concurrently (HFD + CS-group), or after obesity induction (HFD then CS-group) significantly reversed all HFD-induced alterations in body weight; food intake; serum biochemical profile (including hyperglycemia, dyslipidemia); and tissue gene expressions. These results indicate that CS methanolic extract ameliorated HFD-induced obesity, serum biochemical, hepatic, and adipose tissue gene expression alterations. CS extract accomplished these effects mostly through its various identified bioactive compounds which have been proven to have anti-obesity and anti-diabetic activities.


Asunto(s)
Fármacos Antiobesidad , Cymbopogon , Dieta Alta en Grasa , Dislipidemias , Obesidad , Extractos Vegetales , Ratas Wistar , Animales , Masculino , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Ratas , Cymbopogon/química , Dislipidemias/tratamiento farmacológico , Fármacos Antiobesidad/farmacología , Termogénesis/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteína Desacopladora 1/metabolismo , Fitoquímicos/farmacología
2.
Biosci Biotechnol Biochem ; 88(1): 16-25, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37777845

RESUMEN

We previously demonstrated that dietary supplementation with Dunaliella tertiolecta (DT) increases uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) and improves diet-induced obesity (DIO) in C57BL/6 J mice at thermoneutrality (30 °C). Here, we investigated whether DT improves DIO in a thermoneutral UCP1-deficient (KO) animal. KO mice were fed a high-fat diet supplemented with DT for 12 weeks. Compared to control group without DT, body weight was significantly reduced in DT group with no difference in food intake. Dunaliella tertiolecta-supplemented mice exhibited lower adiposity and well-maintained multilocular morphology in BAT, in which a significant increase in gene expression of PR domain containing 16 was detected in DT group compared to control group. Moreover, increase in UCP2 level and/or decrease in ribosomal protein S6 phosphorylation were detected in adipose tissues of DT group relative to control group. These results suggest that DT supplementation improves DIO by stimulating UCP1-independent energy dissipation at thermoneutrality.


Asunto(s)
Metabolismo Energético , Obesidad , Animales , Ratones , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/genética , Tejido Adiposo Pardo/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ratones Noqueados
3.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(5): 627-635, 2023 Oct 07.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37899401

RESUMEN

OBJECTIVES: To explore the mechanism of Chinese medicine Jiangzhuo mixture regulating glucose and lipid metabolism in obese rats. METHODS: Thirty healthy male SD rats were randomly divided into normal control group, model control group, and Jiangzhuo mixture treatment group, with 10 rats in each group. The rats in the normal control group were fed with normal diet, the obesity model was induced by feeding high-fat diet in the model control group and the Jiangzhuo mixture treatment group, the rats in the treatment group were given with Jiangzhuo mixture 50 g/kg by gavage. After 8 weeks of intervention, the blood glucose (GLU), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were measured in the three groups. Quantitative reverse transcription PCR were used to detect the expression levels of PR domain containing 16 (PRDM16) and uncoupling protein 1 (UCP1) in white and brown adipose tissues of the rats in each group; Western blotting was used to detect the expression of PRDM16 in the white and brown adipose tissue of rats, and Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB) and inhibitor of NF-κB alpha (IκBα) in the white adipose tissue; immunohistochemistry was used to detect the expression of UCP1 protein in white and brown adipose tissues. RESULTS: Compared with the normal control group, the white fat weight (P<0.01), white fat coefficient (P<0.05) and Lee's coefficient (P<0.01) were significantly increased in the model control group; the contents of GLU, TC, TG and LDL-C were all increased, and the content of TG was significantly increased (P<0.05) in the model control group. The mRNA and protein expression levels of PRDM16 and UCP1 in white fat and brown fat were significantly decreased (P<0.05) in the model control group. Compared with the model control group, the white fat weight and white fat coefficient and Lee's coefficient were significantly reduced in the Jiangzhuo mixture treatment group (all P<0.01), the levels of GLU, TC, TG, and LDL-C in the the treatment group were all reduced, and the content of TG was reduced more obviously (P<0.01); expression levels of PRDM16 and UCP1 mRNA and protein were increased in brown and white adipose tissue. Compared with the normal control group, the expression levels of TLR4, phospho-IκBα and NF-κB-p65 proteins in white adipose tissue of the model control group were significantly increased (all P<0.01), while the expression levels of these proteins in the treatment group were significantly lower than those in the model control group (all P<0.05). CONCLUSIONS: Jiangzhuo mixture can alleviate high-fat diet-induced increase in body fat, abnormal expression of biochemical indexes and promote the expression of key proteins including UCP1 and PRDM16 in white and brown adipose tissues by regulating TLR4/IκBα/NF-κB signaling pathway.


Asunto(s)
Glucosa , FN-kappa B , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Metabolismo de los Lípidos , Receptor Toll-Like 4 , LDL-Colesterol/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Medicina Tradicional China , Transducción de Señal , Triglicéridos , Factores de Transcripción/metabolismo , Obesidad , ARN Mensajero
4.
Int J Biol Macromol ; 222(Pt B): 1963-1973, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252624

RESUMEN

BACKGROUND: Obesity, fatty liver, type 2 diabetes, and Non-alcoholic fatty liver disease (NAFLD) are all metabolic diseases caused by excess food consumption. Existing drug molecules had negative side effects and caused other diseases to develop (Orlistat causes angioedema, and menstrual irregularities; megestrol acetate causes hypertension, and insomnia). By enhancing lipid consumption and increasing nonshivering thermogenesis, targeting mitochondrial uncoupling protein-1 (UCP1) expression in adipocytes could be an auspicious treatment strategy against obesity or metabolic disorders associated with obesity. METHODS: We used previously produced UCP1-A-GFP reporter cell lines in this investigation to find new pharmacological compounds against obesity or metabolic syndrome, which we then tested in cellular analysis, cytotoxicity, mitochondrial function, mitochondrial DNA quantification, mitochondrial ATP production, and in-silico models. RESULTS: Baicalein was discovered to play a critical role in obesity prevention via altering mitochondrial function. Baicalein lowers ATP generation while increasing considerable UCP1 gene expression in brown adipocytes. As a result, cellular thermogenesis is boosted. The HEK293T cell line is harmless by baicalein. The investigation by the in-silico study revealed drug-protein interaction and UCP1 binding. Thus, our research clarifies baicalein's therapeutic role in metabolic and obesity-related illnesses via modulating mitochondrial activity (Supplementary Fig. 2). CONCLUSIONS: Further studies are required in both murine and human models to understand the full mechanism of action by mitochondrial modulation. Drug development investigation also requires to development of a precise formulation.


Asunto(s)
Adipocitos Marrones , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Adipocitos Marrones/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Pardo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células HEK293 , Mitocondrias , Obesidad/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Mitocondriales/metabolismo
5.
Chin Med ; 17(1): 48, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35436959

RESUMEN

BACKGROUND: Low-frequency electroacupuncture (EA) has been shown to ameliorate obesity and reproductive dysfunctions in patients with polycystic ovary syndrome (PCOS), and further explorations in PCOS-like rats showed that EA could affect white adipose tissue. However, the function and neuromodulation of brown adipose tissue (BAT) in PCOS and after EA treatment have remained unknown. The present study focused on the role of BAT in PCOS-like rats and its relationship with EA and characterized the three-dimensional (3D) innervation of BAT associated with activation molecules. METHODS: Female rats (21 days old) were implanted with dihydrotestosterone or fed with a high fat diet to establish PCOS-like and obesity models, respectively, and then EA treatment at "Guilai" (ST 29) and "Sanyinjiao" (SP 6) was carried out for 4 weeks. In the present study, morphological analysis, 3D imaging, molecular biology, and other experimental techniques were used to study the sympathetic nerves and activity of BAT. RESULTS: PCOS-like rats showed both obvious weight gain and reproductive dysfunction, similar to what was seen in obese rats except for the absence of reproductive dysfunction. The body weight gain was mainly caused by an increase in white adipose tissue, and there was an abnormal decrease in BAT. Because both the lipid metabolism and reproductive disorders could be improved with bilateral EA at "Guilai" (ST 29) and "Sanyinjiao" (SP 6), especially the restoration of BAT, we further investigated the neuromodulation and inflammation in BAT and identified the sympathetic marker tyrosine hydroxylase as one of the key factors of sympathetic nerves. Modified adipo-clearing technology and 3D high-resolution imaging showed that crooked or dispersed sympathetic nerves, but not the twisted vasculature, were reconstructed and associated with the activation of BAT and are likely to be the functional target for EA treatment. CONCLUSION: Our study highlights the significant role of BAT and its sympathetic innervations in PCOS and in EA therapy.

6.
Phytomedicine ; 98: 153919, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35104757

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis and hepatocyte injury, is an obesity-induced metabolic dysregulation with few available therapeutic options. Enhancement of the mitochondrial function was considered as an effective treatment for NALFD. Unsaturated fatty acids (UFAs) have been shown to have beneficial effects on metabolic syndrome disease such as hyperlipidemia, coronary artery disease and cardiovascular diseases. The seed oil of Rosa roxburghii Tratt (ORRT) was of high quality in terms of its high amount of unsaturated fatty acids. However, the effects of ORRT on NALFD have not been reported so far. PURPOSE: The study aimed to evaluate the protective effects and molecular mechanism of ORRT for the treatment of NAFLD in vivo and in vitro. METHODS: The beneficial effects, especially improving the mitochondrial function, and the potential mechanism of ORRT on NAFLD were studied both in vivo and in vitro. Lipid levels were determined by triglyceride (TG), total cholesterol (TC), and Oil Red O staining. Oxidative stress and inflammation were assessed by detecting antioxidant enzyme activity, MDA content, and ELISA assay. Blood TG, TC, HDL-c and LDL-c levels were measured in HFD mice. Western blot analyses were used to determine the levels of the protein involved in fatty acid oxidation, oxidative metabolism, and mitochondria biogenesis and function. The mitochondrial membrane potential level was measured by JC-1 staining to teste the effect of ORRT on mitochondrial function in vitro. GW6471 (inhibitor of PPARα) was used to confirm the relationship between PPARα and PGC-1α. RESULTS: ORRT significantly restrained NAFLD progression by attenuating lipid accumulation, oxidative stress and inflammatory response. Furthermore, ORRT upregulated thermogenesis-related gene expressions, such as uncoupling protein 1 (UCP1) and p38 mitogen-activated protein kinase (p38 MAPK). The results showed that the expression of key genes involved in fatty acid oxidation (e.g., CPT-1α, ACADL, PPARα) and in mitochondrial biogenesis and function (e.g., TFAM, NRF1, PGC-1α, and COX IV) was significantly increased. Together with the observed MMP improvement, these findings suggested that ORRT activated the mitochondrial oxidative pathway. Additionally, GW6471 inhibited the ORRT on promoting the expression of PGC-1α, CPT-1α, and ACADL. In conclusion, ORRT possessed the potential to prevent lipid accumulation via the PPARα/PGC-1α signaling pathway, which could be developed as a natural health-promoting oil against NAFLD.

7.
J Am Heart Assoc ; 10(24): e023227, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34873915

RESUMEN

Background The complexity of the interaction between metabolic dysfunction and cardiovascular complications has long been recognized to extend beyond simple perturbations of blood glucose levels. Yet, structured interventions targeting the root pathologies are not forthcoming. Growing evidence implicates the inflammatory changes occurring in perivascular adipose tissue (PVAT) as early instigators of cardiovascular deterioration. Methods and Results We used a nonobese prediabetic rat model with localized PVAT inflammation induced by hypercaloric diet feeding, which dilutes inorganic phosphorus (Pi) to energy ratio by 50%, to investigate whether Pi supplementation ameliorates the early metabolic impairment. A 12-week Pi supplementation at concentrations equivalent to and twice as much as that in the control diet was performed. The localized PVAT inflammation was reversed in a dose-dependent manner. The increased expression of UCP1 (uncoupling protein1), HIF-1α (hypoxia inducible factor-1α), and IL-1ß (interleukin-1ß), representing the hallmark of PVAT inflammation in this rat model, were reversed, with normalization of PVAT macrophage polarization. Pi supplementation restored the metabolic efficiency consistent with its putative role as an UCP1 inhibitor. Alongside, parasympathetic autonomic and cerebrovascular dysfunction function observed in the prediabetic model was reversed, together with the mitigation of multiple molecular and histological cardiovascular damage markers. Significantly, a Pi-deficient control diet neither induced PVAT inflammation nor cardiovascular dysfunction, whereas Pi reinstatement in the diet after a 10-week exposure to a hypercaloric low-Pi diet ameliorated the dysfunction. Conclusions Our present results propose Pi supplementation as a simple intervention to reverse PVAT inflammation and its early cardiovascular consequences, possibly through the interference with hypercaloric-induced increase in UCP1 expression/activity.


Asunto(s)
Tejido Adiposo , Suplementos Dietéticos , Inflamación , Fósforo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Inflamación/complicaciones , Inflamación/prevención & control , Enfermedades Metabólicas/prevención & control , Fósforo/uso terapéutico , Estado Prediabético , Ratas
8.
Am J Chin Med ; 49(8): 1929-1948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34961413

RESUMEN

Although gomisin A (GA) alleviates cancer and inflammation, its anti-obesity effect and the underlying mechanism have not yet been elucidated. Therefore, in this study, we aimed to elucidate the anti-obesity effects of GA by investigating the phenotypic changes involved in the browning and whitening of adipocytes. Here, obesity was induced to C57BL/6J mice using a high-fat diet (HFD). We administrated GA and checked weight changes for 12 weeks. We found that GA decreased the weight of weight gain, epididymal white adipose tissue (eWAT), and liver in the mice. In addition, the administration of GA elevated the levels of high-density lipoprotein (HDL)-cholesterol in the mice serum. Moreover, even after 12 weeks of treatment with GA, it did not cause any hepatic and renal toxicity. However, we found that GA induced the browning of eWAT and inhibited the whitening of brown adipose tissue. We further confirmed the anti-obesity mechanism of GA using 3T3-L1 cells, the human adipose mesenchymal stem cells (hAMSCs), and primary brown adipocytes (BAs) in vitroexperiments. We found that GA suppressed adipogenesis via the activation of AMP-activated protein kinase (AMPK). Furthermore, GA-induced browning by increasing the expression levels of uncoupling protein 1 (UCP1) in hAMSCs. The results of our study indicate that GA can inhibit weight gain by regulating the phenotypic changes involved in the browning and whitening of adipose tissues, which makes it a potential therapeutic agent for the treatment of obesity.


Asunto(s)
Adipocitos Marrones , Obesidad , Células 3T3-L1 , Tejido Adiposo Pardo , Animales , Ciclooctanos , Dieta Alta en Grasa/efectos adversos , Dioxoles , Lignanos , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico
10.
J Nutr Sci Vitaminol (Tokyo) ; 67(4): 225-233, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34470997

RESUMEN

Exercise combined with dietary factors may have significant effects on the suppression of body fat accumulation. Several trials suggest that amino acid mixtures containing alanine, arginine, and phenylalanine (ARF) combined with exercise can significantly reduce body fat accumulation in overweight adults and high-fat diet-induced obesity in mice. We therefore hypothesized that combining ARF and exercise would significantly induce beige adipocyte formation and that this would contribute to reducing body weight, whereas administration of ARF or exercise alone would not. Administration of ARF (1 g/kg body weight, daily) combined with exercise (5 sessions per week) for 4 wk significantly induced formation of beige adipocytes in inguinal white adipose tissue (iWAT) in mice, although ARF or exercise alone did not. Metabolomic analysis showed that plasma lactate concentration was significantly elevated in the exercise+ARF group relative to the exercise group. Furthermore, lactate dehydrogenase B, which increases redox stress by converting lactate to pyruvate in iWAT and triggers induction of uncoupling protein 1 expression was significantly upregulated in iWAT of the exercise+ARF group. These findings demonstrate the unique effect of ARF combined with exercise for inducing beige adipocyte formation, which may be associated with the suggested lactate-mediated pathway. Appropriate mixtures of amino acids could be used as a dietary supplement before exercise and contributed to increasing energy expenditures.


Asunto(s)
Adipocitos Beige , Tejido Adiposo Blanco , Aminoácidos , Animales , Ratones , Ratones Endogámicos C57BL , Termogénesis , Proteína Desacopladora 1
11.
Life Sci ; 265: 118769, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33309717

RESUMEN

AIMS: Investigate the role of melatonin on the regulation of body temperature in aged animals that have impaired melatonin production. MATERIAL AND METHODS: Aged Male Wistar rats were randomly assigned to the following groups: 1) control (vehicle added to the water bottles during the dark phase) and 2) melatonin-treated (10 mg/kg melatonin added to the water bottles during the dark phase). Before and after 16 weeks of vehicle or melatonin treatment, control group and melatonin-treated animals were acutely exposed to 18 °C for 2 h for an acute cold challenge and thermal images were obtained using an infrared camera. After 16 weeks, animals were euthanized and brown and beige adipocytes were collected for analysis of genes involved in the thermogenesis process by real-time PCR, and the uncoupling protein expression was evaluated by immunoblotting. Browning intensity of beige adipocytes were quantified by staining with hematoxylin-eosin. KEY FINDINGS: Chronic melatonin supplementation induced a minor increase in body mass and increased the animal's thermogenic potential in the cold acute challenge. Brown and beige adipocytes acted in a coordinated and complementary way to ensure adequate heat production. SIGNIFICANCE: Melatonin plays an important role in the thermoregulatory mechanisms, ensuring greater capacity to withstand cold and, also, participating in the regulation of energy balance.


Asunto(s)
Regulación de la Temperatura Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Respuesta al Choque por Frío/efectos de los fármacos , Suplementos Dietéticos , Melatonina/farmacología , Animales , Frío/efectos adversos , Immunoblotting , Masculino , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Mol Nutr Food Res ; 65(2): e2000681, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33274552

RESUMEN

SCOPE: Brown and brite adipocytes within the mammalian adipose organ provide non-shivering thermogenesis and thus, have an exceptional capacity to dissipate chemical energy as heat. Polyunsaturated fatty acids (PUFA) of the n3-series, abundant in fish oil, have been repeatedly demonstrated to enhance the recruitment of thermogenic capacity in these cells, consequently affecting body adiposity and glucose tolerance. These effects are scrutinized in mice housed in a thermoneutral environment and in a human dietary intervention trial. METHODS AND RESULTS: Mice are housed in a thermoneutral environment eliminating the superimposing effect of mild cold-exposure on thermogenic adipocyte recruitment. Dietary fish oil supplementation in two different inbred mouse strains neither affects body mass trajectory nor enhances the recruitment of brown and brite adipocytes, both in the presence and absence of a ß3-adrenoreceptor agonist imitating the effect of cold-exposure on adipocytes. In line with these findings, dietary fish oil supplementation of persons with overweight or obesity fails to recruit thermogenic adipocytes in subcutaneous adipose tissue. CONCLUSION: Thus, the authors' data question the hypothesized potential of n3-PUFA as modulators of adipocyte-based thermogenesis and energy balance regulation.


Asunto(s)
Adipocitos Beige/efectos de los fármacos , Adipocitos Marrones/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Aceites de Pescado/farmacología , Grasa Subcutánea/efectos de los fármacos , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/efectos de los fármacos , Adulto , Animales , Suplementos Dietéticos , Ácidos Grasos Omega-3/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos , Persona de Mediana Edad , Aceite de Palma/farmacología , Aceites de Plantas/farmacología , Grasa Subcutánea/fisiología , Termogénesis/efectos de los fármacos , Termogénesis/fisiología , Ácido gammalinolénico/farmacología
13.
Lipids Health Dis ; 19(1): 198, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859217

RESUMEN

BACKGROUND: LI85008F is a proprietary combination of leaf extracts of Moringa oleifera, Murraya koeingii, and extract of Curcuma longa rhizome. This herbal extract combination is an effective weight loss supplement for overweight and obese subjects. The present study aimed to investigate the thermogenic potential of the LI85008F in high-fat diet (HFD)-induced obese Sprague Dawley rats. METHODS: Seven rats received a regular diet (RD), and twenty-one rats received a high-fat diet (HFD) for 56 days. On day 28, the HFD-fed rats were randomized into three groups (n = 7). Starting from day 29 through day 56, one HFD-fed group received daily oral gavage of 0.5% Carboxymethylcellulose Sodium (CMC) alone (HFD), and the remaining two groups received 100 and 250 mg/kg LI85008F (LI85008F-100 and LI85008F-250, respectively). Body weight, fat mass, fat cell size, liver weight, liver triglyceride were measured. The energy metabolism parameters were measured using indirect calorimetry. In serum, the metabolic and endocrine markers were analyzed. The adipogenic and thermoregulatory proteins expression in the white adipose tissue (WAT) were analyzed using an immunoblot assay. RESULTS: Supplementation with both doses of LI85008F significantly increased resting energy expenditure (REE) in the obese rats. The LI85008F-250 rats showed significant up-regulation of uncoupling protein-1 (UCP-1) expression, as compared with the HFD rats. LI85008F significantly reduced body weight gain, fat mass, fat cell size, liver weight, and hepatic triglycerides. Serum triglyceride, total cholesterol, glucose, leptin, and fat cell markers were significantly reduced in LI85008F-supplemented rats compared to the HFD rats. CONCLUSION: The present data suggest that LI85008F reduces body fat mass and controls body weight gain via increasing energy metabolism in combination with reduced lipogenesis in diet-fed obese rats.


Asunto(s)
Curcuma/química , Moringa oleifera/química , Murraya/química , Obesidad/metabolismo , Extractos Vegetales/química , Hojas de la Planta/química , Animales , Western Blotting , Calorimetría Indirecta , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Masculino , Obesidad/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Preparaciones de Plantas/uso terapéutico , Ratas , Ratas Sprague-Dawley
14.
Nutrients ; 12(6)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32516922

RESUMEN

We investigated the effect of evodiamine-containing microalga Dunaliella tertiolecta (DT) on the prevention of diet-induced obesity in a thermoneutral C57BL/6J male (30 °C). It attenuates the activity of brown adipose tissue (BAT), which accelerates diet-induced obesity. Nine-week-old mice were fed a high-fat diet supplemented with 10 g (Low group) or 25 g (High group) DT powder per kg food for 12 weeks. Compared to control mice without DT supplementation, body weight gain was significantly reduced in the High group with no difference in food intake. Tissue analyses indicated maintenance of multilocular morphology in BAT and reduced fat deposition in liver in DT-supplemented mice. Molecular analysis showed a significant decrease in mammalian target of rapamycin-ribosomal S6 protein kinase signaling pathway in white adipose tissue and upregulation in mRNA expression of brown fat-associated genes including fibroblast growth factor-21 (Fgf21) and uncoupling protein 1 (Ucp1) in BAT in the High group compared to the control. In the experiments using C3H10T1/2 adipocytes, DT extract upregulated mRNA expression of brown fat-associated genes in dose-dependent and time-dependent manners, accompanied by a significant increase in secreted FGF21 levels. Our data show the ability of DT as a nutraceutical to prevent brown fat attenuation and diet-induced obesity in vivo.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Microalgas/química , Obesidad/metabolismo , Obesidad/prevención & control , Quinazolinas/administración & dosificación , Quinazolinas/farmacología , Termogénesis/efectos de los fármacos , Aumento de Peso/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/etiología , Quinazolinas/aislamiento & purificación , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteína Desacopladora 1/metabolismo
15.
Acupunct Med ; 38(4): 264-271, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32195595

RESUMEN

OBJECTIVE: To investigate whether auricular acupuncture (AA) attenuates bodyweight and obese inflammation through the release of irisin from muscle tissue in mice. METHODS: Sixty 4-week-old mice were fed a high fat diet (HFD) for 4 weeks. These animals were divided into six groups that remained untreated (HFD) or underwent electrical AA (HFD+EAA), sham EAA (HFD+SEAA), adrenalectomy (HFD+AD), adrenalectomy and EAA (HFD+AD+EAA), or adrenalectomy and injection of recombinant lentivirus expressing fibronectin type III domain-containing protein 5 (rFNDC) (HFD+AD+rFNDC) in the ninth week. The EAA and SEAA were performed at two traditional auricular acupuncture points daily for 4 weeks. An additional 10 mice fed a control diet were included as a normal control (NC) group. At the end of the study, norepinephrine (NE) in the serum, tumour necrosis factor α (TNFα) and interleukin 1ß (IL-1ß) in the serum and white adipose tissue, irisin in the serum and muscle, uncoupling protein-1 (UCP-1) in the brown adipose tissue (BAT), and FNDC5 in the muscle, were analysed. RESULTS: The AD+EAA group exhibited better control of bodyweight and inflammation compared with the AD+SEAA and untreated HFD model groups (P<0.05), especially regarding the increased expression of NE, FNDC5, irisin and UCP-1 (P<0.05). After adrenalectomy, mice receiving EAA had less NE, FNDC5, irisin and UCP-1 as well as greater expression of inflammatory cytokines and bodyweight. However, lentiviral overexpression of rFNDC successfully reversed this situation in the AD mice and mimicked the effects of EAA on bodyweight, inflammation and expression of FNDC5, irisin and UCP-1, although it did not impact NE. CONCLUSIONS: EAA promoted NE release from the adrenal gland leading to further expression of FNDC5, irisin and UCP-1, which contributed to weight management and inflammatory inhibition.


Asunto(s)
Acupuntura Auricular/métodos , Peso Corporal , Fibronectinas/metabolismo , Inflamación/metabolismo , Obesidad/terapia , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Fibronectinas/sangre , Interleucina-1beta/sangre , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Norepinefrina/sangre , Obesidad/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Proteína Desacopladora 1/metabolismo
16.
J Ethnopharmacol ; 248: 112271, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31586693

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gui Zhi Tang, a well-known Chinese herbal formula recorded in the Eastern Han Dynasty, has been widely used to treat exogenous cold for thousands of years. Recent studies have shown that Gui Zhi Tang has the effect of regulating the body temperature. Because of its effect on heat production, protecting vital organs of the body and avoiding damage from the cold environment, Jiang Gui Fang (JG) was obtained from the Department of Traditional Chinese Medicine at the General Hospital of Northern Theatre Command where it has been used clinically for many years and has exhibited favourable efficacy. Based on research on Gui Zhi Tang, the principles of traditional Chinese medicine and survey of a large number of studies, this empirical formula was developed. The composition of JG included Dried ginger, Cassia twig, and Liquorice in Gui Zhi Tang, which play a major role in the treatment of exogenous cold, and combined these components with other Chinese medicines, such as Pueraria, Spatholobus, Acanthopanacis cortex, Evodiae fructus, and Codonopsis pilosula. AIM OF THE STUDY: To promote the core body temperature and prevent invasion of the major organs from the cold environment, we studied the effect of JG on the core body temperature of mice and then explored its regulation of interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and the possible mechanism. Finally, we determined the phytochemical composition of JG that plays a role in heat production. MATERIALS AND METHODS: In vivo study, we performed a 4-week treatment of JG in acute cold environment at -20 °C and chronic cold exposure at 4 °C. The core temperature, adipose tissue weight, serum parameters, and morphological observation of adipocytes, liver and kidney were measured. Then we investigated the expression levels of adipogenic factors, thermogenic factors and lipoprotein. In vitro, we determined the lipid droplet content, ATP content, and the maximum oxygen consumption of mitochondria. RESULTS: JG treatment promoted core temperature, inhibited eWAT weight, protected liver, and reduced glucose and lipids in Kunming (KM) mice. JG also increased the expression of BAT-associated thermogenic factors, including uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α). The levels of the lipogenic factor peroxisome proliferate-activator receptor gamma (PPARγ) and the lipolytic protein hormone-sensitive triglyceride lipase (HSL) in eWAT were elevated. The results of H&E and immunohistochemistry showed that JG significantly reduced the size of iBAT and eWAT and increased the content of UCP1. In vitro, JG reduced the content of lipid droplets and ATP in brown fat cells. The maximum oxygen consumption capacity of mitochondria and the expression levels of UCP1, PGC1α and silent mating type information regulation 2 homologue 1 (SIRT1) were enhanced after JG treatment. CONCLUSIONS: In vivo and in vitro studies, the results demonstrated that JG obviously increased the core temperature of mice by activating iBAT and inducing eWAT browning, which proved the mechanism is closely related to the PPARγ/SIRT1- PGC1α pathway. In this paper, we will provide a reference for further study of iBAT activation and eWAT browning.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuina 1/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Masculino , Ratones
17.
Diabetologia ; 63(1): 179-193, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31713010

RESUMEN

AIMS/HYPOTHESIS: Exposure to sunlight has the potential to suppress metabolic dysfunction and obesity. We previously demonstrated that regular exposure to low-doses of ultraviolet radiation (UVR) reduced weight gain and signs of diabetes in male mice fed a high-fat diet, in part via release of nitric oxide from skin. Here, we explore further mechanistic pathways through which low-dose UVR exerts these beneficial effects. METHODS: We fed mice with a luciferase-tagged Ucp1 gene (which encodes uncoupling protein-1 [UCP-1]), referred to here as the Ucp1 luciferase transgenic mouse ('Thermomouse') a high-fat diet and examined the effects of repeated exposure to low-dose UVR on weight gain and development of metabolic dysfunction as well as UCP-1-dependent thermogenesis in interscapular brown adipose tissue (iBAT). RESULTS: Repeated exposure to low-dose UVR suppressed the development of glucose intolerance and hepatic lipid accumulation via dermal release of nitric oxide while also reducing circulating IL-6 (compared with mice fed a high-fat diet only). Dietary nitrate supplementation did not mimic the effects of low-dose UVR. A single low dose of UVR increased UCP-1 expression (by more than twofold) in iBAT of mice fed a low-fat diet, 24 h after exposure. However, in mice fed a high-fat diet, there was no effect of UVR on UCP-1 expression in iBAT (compared with mock-treated mice) when measured at regular intervals over 12 weeks. More extensive circadian studies did not identify any substantial shifts in UCP-1 expression in mice exposed to low-dose UVR, although skin temperature at the interscapular site was reduced in UVR-exposed mice. The appearance of cells with a white adipocyte phenotype ('whitening') in iBAT induced by consuming the high-fat diet was suppressed by exposure to low-dose UVR in a nitric oxide-dependent fashion. Significant shifts in the expression of important core gene regulators of BAT function (Dio2, increased more than twofold), fatty acid transport (increased Fatp2 [also known as Slc27a2]), lipolysis (decreased Atgl [also known as Pnpla2]), lipogenesis (decreased Fasn) and inflammation (decreased Tnf), and proportions of macrophages (increased twofold) were observed in iBAT of mice exposed to low-dose UVR. These effects were independent of nitric oxide released from skin. CONCLUSIONS/INTERPRETATION: Our results suggest that non-burning (low-dose) UVR suppresses the BAT 'whitening', steatotic and pro-diabetic effects of consuming a high-fat diet through skin release of nitric oxide, with some metabolic and immune pathways in iBAT regulated by UVR independently of nitric oxide.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Óxido Nítrico/metabolismo , Rayos Ultravioleta , Tejido Adiposo Pardo/efectos de la radiación , Animales , Glucemia/metabolismo , Ingestión de Alimentos , Masculino , Ratones , Piel/metabolismo , Piel/efectos de la radiación , Temperatura , Proteína Desacopladora 1/metabolismo , Aumento de Peso/fisiología
18.
Asian-Australas J Anim Sci ; 33(3): 506-514, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31208177

RESUMEN

OBJECTIVE: We tested the hypothesis that increasing dietary copper (Cu) to gravid ewes would enhance brown adipose tissue (BAT) thermogenesis in their offspring. METHODS: Twin-bearing ewes were assigned on d 70 of gestation to diets containing 3, 10, or 20 ppm dietary Cu (n = 8 per group). Twin lambs were assigned at birth to a cold (6°C) or warm (28°C) environmental chamber for 48 h. Blood was collected from ewes and from lambs and perirenal BAT was collected after 48 h in the environmental chambers. RESULTS: Prenatal Cu exposure increased ewe plasma triiodothyronine (T3) and thyroxine concentration (T4) (p &lt; 0.01) but prenatal Cu exposure had no effect on lamb plasma concentrations of T3, T4, glucose, or nonesterified fatty acid concentration (p ≥ 0.08). The high level of prenatal Cu exposure depressed 48-h rectal temperature (p = 0.03). Cold exposure decreased BAT norepinephrine (NE) and increased BAT dopamine (p ≤ 0.01), but prenatal Cu exposure had no effect on BAT cytochrome C oxidase activity or BAT NE or dopamine (p ≥ 0.07). However, BAT of lambs from high-Cu ewes maintained higher uncoupling protein-1 (UCP1) gene expression than BAT of lambs from low- and medium-Cu ewes following warm or cold exposure in environmental chambers (p = 0.02). Cold exposure caused near depletion of BAT lipid by 48 h (p &lt; 0.001), increased BAT cytochrome c oxidase activity (p &lt; 0.01), and depressed plasma fatty acid concentrations (p &lt; 0.001). CONCLUSION: Although prenatal Cu exposure increased BAT UCP1 expression during warm and cold exposure, prenatal cold Cu exposure depressed 48-h rectal temperature. Cold exposure decreased BAT lipid content by over 80% and decreased lamb plasma fatty acid concentration by over 40%, indicating that fuel reserves for thermogenesis were nearly depleted by 48 h of cold exposure.

19.
J Ginseng Res ; 43(4): 589-599, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31695565

RESUMEN

BACKGROUND: Panax ginseng Meyer is known as a conventional herbal medicine, and ginsenoside Rg1, a steroid glycoside, is one of its components. Although Rg1 has been proved to have an antiobesity effect, the mechanism of this effect and whether it involves adipose browning have not been elucidated. METHODS: 3T3-L1 and subcutaneous white adipocytes from mice were used to access the thermogenic effect of Rg1. Adipose mitochondria and uncoupling protein 1 (UCP1) expression were analyzed by immunofluorescence. Protein level and mRNA of UCP1 were also evaluated by Western blotting and real-time polymerase chain reaction, respectively. RESULTS: Rg1 dramatically enhanced expression of brown adipocyte-specific markers, such as UCP1 and fatty acid oxidation genes, including carnitine palmitoyltransferase 1. In addition, it modulated lipid metabolism, activated 5' adenosine monophosphate (AMP)-activated protein kinase, and promoted lipid droplet dispersion. CONCLUSIONS: Rg1 increases UCP1 expression and mitochondrial biogenesis in 3T3-L1 and subcutaneous white adipose cells isolated from C57BL/6 mice. We suggest that Rg1 exerts its antiobesity effects by promoting adipocyte browning through activation of the AMP-activated protein kinase pathway.

20.
Nutrients ; 11(9)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31509935

RESUMEN

The alteration of white adipose tissue (WAT) "browning", a change of white into beige fat, has been considered as a new therapeutic strategy to treat obesity. In this study, we investigated the browning effect of black raspberry (Rubus coreanus Miquel) using in vitro and in vivo models. Black raspberry water extract (BRWE) treatment inhibited lipid accumulation in human mesenchymal stem cells (hMSCs) and zebrafish. To evaluate the thermogenic activity, BRWE was orally administered for 2 weeks, and then, the mice were placed in a 4 °C environment. As a result, BRWE treatment increased rectal temperature and inguinal WAT (iWAT) thermogenesis by inducing the expression of beige fat specific markers such as PR domain zinc-finger protein 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), and t-box protein 1 (TBX1) in cold-exposed mice. Furthermore, ellagic acid (EA), a constituent of BRWE, markedly promoted beige specific markers: UCP1, PGC1α, TBX1, and nuclear respiratory factor 1 in beige differentiation media (DM)-induced 3T3-L1 adipocytes. Our findings indicate that BRWE can promote beige differentiation/activation, and EA is the active compound responsible for such effect. Thus, we suggest the nature-derived agents BRWE and EA as potential agents for obesity treatment.


Asunto(s)
Adipocitos Beige/efectos de los fármacos , Adipocitos Blancos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Tejido Adiposo Beige/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Extractos Vegetales/farmacología , Termogénesis/efectos de los fármacos , Células 3T3-L1 , Adipocitos Beige/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Fármacos Antiobesidad/aislamiento & purificación , Frío , Regulación de la Expresión Génica , Humanos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/aislamiento & purificación , Rubus/química , Transducción de Señal , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA