Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 102: 154180, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35613516

RESUMEN

BACKGROUND: Wei-Tong-Xin (WTX) is a traditional Chinese medicine (TCM) that has been screened and improved in accordance with the famous ancient Chinese formula "Wan Ying Yuan". It has been shown to be clinically effective in treating gastric dysmotility, but its underlying molecular mechanism remains unclear. PURPOSE: This study primarily dealt with the effects and mechanisms of WTX on functional dyspepsia (FD) induced by chemotherapeutic drug cisplatin (CIS). METHODS: Firstly, the UPLC fingerprint and multi-component determination of WTX were established. In vivo, gastrointestinal motility of mice was detected by charcoal propulsion test. Besides, H&E, western blot and qRT-PCR were performed to evaluate the occurrence of gastric antral inflammation. ROS-DHE staining was used to detect ROS levels. Further, the gut microbiota were subjected to sequencing by 16S rRNA, and the levels of bacterial metabolites short-chain fatty acids (SCFAs) and lipopolysaccharide (LPS) were detected by GC-MS and Limulus kits, respectively. The levels of GLP-1 in gastric antrum were assessed by ELISA kits. Finally, siRNA-FFAR2 experiment was performed in Raw 264.7 cells. RESULTS: 23 common peaks were obtained from the UPLC fingerprint, and the content of 10 target components was determined. WTX increased the relative abundance of Firmicutes and decreased the number of Verrucomicrobia, accompanied by changes in the levels of SCFAs and LPS. By mediating the expression changes of free fatty acid receptor 2 (FFAR2) and toll-like receptor 4 (TLR4), WTX inhibited the phosphorylation of nuclear factor-κB (NF-κB), JNK and P38, decreased the levels of IL-1ß, inducible nitric oxide synthase (iNOS) and ROS, increased the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), IL-4 and arginase-1 (Arg-1). Decreased expressions of glucagon-like peptide 1 (GLP-1) induced by WTX promoted gastric motility in FD mice. In vitro, siRNA-FFAR2 of Raw 264.7 cells eliminated the effects of WTX on TLR4 signaling pathway. CONCLUSIONS: In this study, the chemical profile of WTX was first reported. Based on remodeling the gut microbiota structure and adjusting the levels of metabolites (SCFAs and LPS), WTX inactivated the TLR4/MyD88 signaling pathway to inhibit the occurrence of gastric antral inflammation, which reversed the inhibitory effect of GLP-1 on gastric motility, and improved CIS-induced FD symptoms.


Asunto(s)
Dispepsia , Microbioma Gastrointestinal , Animales , Dispepsia/tratamiento farmacológico , Dispepsia/metabolismo , Dispepsia/microbiología , Péptido 1 Similar al Glucagón , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , ARN Ribosómico 16S , ARN Interferente Pequeño , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo
2.
J Ethnopharmacol ; 293: 115282, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35405254

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The prescription of Wei-Tong-Xin (WTX) is improved based on the prescription "Wanyingyuan", a famous decoction documented in the book of Huatuozhongzangjing in the Han dynasty. Many years of clinical verification have demonstrated that WTX can be used to treat gastrointestinal diseases, especially gastric ulcer (GU). However, the potential pharmacological mechanism is undefined. AIM OF THE STUDY: This research was conducted to explore the pharmacological mechanisms under the consideration of the therapeutical effect of WTX against GU by combining the network pharmacology strategy and in-vivo verified experiments. MATERIALS AND METHODS: A prediction network describing the relationship between WTX and GU was established based on information collected from multiple databases. Then, the intersecting protein-protein interaction (PPI) network of the drug-disease overlapping gene targets was constructed, and several key targets related to both WTX and GU were obtained. Besides, the Gene Ontology (GO) biological enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to investigate the key target genes and pathways of WTX against GU. Then, the candidate targets and signaling pathways of network pharmacology were validated in a rat model of GU induced by indomethacin following the results and available proof. RESULTS: There are 243 targets obtained from the 65 active ingredients in WTX, and 1362 disease targets related to GU were identified. Then, 6 key targets were determined with the PPI interaction network, which was structured from 126 overlapping gene targets. GO and KEGG analyses revealed that the phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) signaling pathway might play a crucial role in the therapeutic mechanism of GU. In vivo verified experiments, WTX significantly reduced the ulcer area and improved the histopathological appearance of gastric tissues. Moreover, down-regulated the protein levels of IL6, TNF-α, and Caspase 3 in the gastric tissues while up-regulating the expression of p-PI3K, p-AKT, p-P53, and VEGFA compared to the model group. CONCLUSION: WTX, an ancient traditional Chinese medicine (TCM) compound prescription, may affect the inflammatory response and apoptosis process by regulating PI3K/AKT signaling pathway and related gene targets. Therefore, it is an effective drug candidate for the modern treatment of GU.


Asunto(s)
Medicamentos Herbarios Chinos , Úlcera Gástrica , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Farmacología en Red , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico
3.
Biomedicines ; 9(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34944677

RESUMEN

Bis-choline-tetrathiomolybdate, introduced as WTX101 (now known as ALXN1840), is a first-in-class copper-protein-binding agent for oral therapy of Wilson's disease. In contrast to other decoppering agents such as trientine or D-penicillamine it acts by forming a tripartite complex with copper and albumin, thereby detoxifying excess liver and blood copper through biliary excretion. Preclinical animal experimentation with this drug was typically done with the alternative ammonium salt of tetrathiomolybdate, which is expected to have identical properties in terms of copper binding. Here, we comparatively analyzed the therapeutic efficacy of ALXN1840, D-penicillamine and trientine in lowering hepatic copper content in Atp7b-/- mouse. Liver specimens were subjected to laser ablation inductively conductively plasma mass spectrometry and electron microscopic analysis. We found that ALXN1840 caused a massive increase of hepatic copper and molybdenum during early stages of therapy. Prolonged treatment with ALXN1840 reduced hepatic copper to an extent that was similar to that observed after administration of D-penicillamine and trientine. Electron microscopic analysis showed a significant increase of lysosomal electron-dense particles in the liver confirming the proposed excretory pathway of ALXN1840. Ultrastructural analysis of mice treated with dosages comparable to the bis-choline-tetrathiomolybdate dosage used in an ongoing phase III trial in Wilson's disease patients, as well as D-penicillamine and trientine, did not show relevant mitochondrial damage. In contrast, a high dose of ALXN1840 applied for four weeks triggered dramatic structural changes in mitochondria, which were notably characterized by the formation of holes with variable sizes. Although these experimental results may not be applicable to patients with Wilson's disease, the data suggests that ALXN1840 should be administered at low concentrations to prevent mitochondrial dysfunction and overload of hepatic excretory pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA