Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1370631, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606177

RESUMEN

Introduction: Rana dybowskii Guenther (RDG), as a traditional Chinese medicine, has been shown to have antioxidant effects. However, studies on the anti-aging effect of RDG are still limited. Methods: In this study, we prepared polysaccharides from the skin of RDG (RDGP) by hot water extraction, alcohol precipitation, ion-exchange chromatography and gel chromatography. The proteins were removed using the Sevage method in combination with an enzymatic method. The structural features were analyzed using high-performance gel permeation chromatography, ß-elimination reaction and Fourier transform infrared spectra. The anti-aging effect of RDGP was investigated by using D-Gal to establish an aging model in mice, and pathological changes in the hippocampus were observed under a microscope. Results: We obtained the crude polysaccharide DGP from the skin of RDG, with a yield of 61.8%. The free protein was then removed by the Sevage method to obtain DGPI and deproteinated by enzymatic hydrolysis combined with the Sevage method to further remove the bound protein to obtain the high-purity polysaccharide DGPII. Then, DGPIa (1.03 × 105 Da) and DGPIIa (8.42 × 104 Da) were obtained by gel chromatography, monosaccharide composition analysis showed that they were composed of Man, GlcA, GalNAc, Glc, Gal, Fuc with molar ratios of 1: 4.22 : 1.55: 0.18 : 8.05: 0.83 and 0.74 : 1.78: 1: 0.28: 5.37 : 0.36, respectively. The results of the ß-elimination reaction indicated the presence of O-glycopeptide bonds in DGPIa. The Morris water maze test indicated that mice treated with DGPIIa exhibited a significantly shorter escape latency and increased time spent in the target quadrant as well as an increase in the number of times they traversed the platform. Pathologic damage to the hippocampus was alleviated in brain tissue stained with hematoxylin-eosin. In addition, DGPIIa enhanced the activities of SOD, CAT, and GSH-Px and inhibited the level of MDA in the serum and brain tissues of aging mice. Discussion: These results suggest that RDGP has potential as a natural antioxidant and provide useful scientific information for anti-aging research.

2.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612532

RESUMEN

Cherry stems, prized in traditional medicine for their potent antioxidant and anti-inflammatory properties, derive their efficacy from abundant polyphenols and anthocyanins. This makes them an ideal option for addressing skin aging and diseases. This study aimed to assess the antioxidant and anti-inflammatory effects of cherry stem extract for potential skincare use. To this end, the extract was first comprehensively characterized by HPLC-ESI-qTOF-MS. The extract's total phenolic content (TPC), antioxidant capacity, radical scavenging efficiency, and its ability to inhibit enzymes related to skin aging were determined. A total of 146 compounds were annotated in the cherry stem extract. The extract effectively fought against NO· and HOCl radicals with IC50 values of 2.32 and 5.4 mg/L. Additionally, it inhibited HYALase, collagenase, and XOD enzymes with IC50 values of 7.39, 111.92, and 10 mg/L, respectively. Based on the promising results that were obtained, the extract was subsequently gently integrated into a cosmetic gel at different concentrations and subjected to further stability evaluations. The accelerated stability was assessed through temperature ramping, heating-cooling cycles, and centrifugation, while the long-term stability was evaluated by storing the formulations under light and dark conditions for three months. The gel formulation enriched with cherry stem extract exhibited good stability and compatibility for topical application. Cherry stem extract may be a valuable ingredient for creating beneficial skincare cosmeceuticals.


Asunto(s)
Antocianinas , Cosméticos , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología
3.
Molecules ; 29(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542911

RESUMEN

Polygonatum cyrtonema Hua, the dried rhizome of Polygonum multiflorum from the Liliaceae family, is a widely used medicinal herb with a long history of application. Its main active ingredients are polysaccharides, which have been demonstrated in contemporary studies to effectively delay the aging process. In the present study, homogeneous polysaccharide (PCP-1) was obtained after the purification and isolation of polysaccharides from Polygonatum cyrtonema Hua (PCP). The anti-aging activities of both were compared, and the possible mechanism of action for exerting anti-aging activity was explored using Caenorhabditis elegans (C. elegans). Research has indicated that PCP and PCP-1 exhibit potent anti-oxidant and anti-aging properties. Of particular note is that PCP-1 acts better than PCP. The two were able to prolong the lifespan of nematodes, improve the stress resistance of nematodes, reduce the accumulation of lipofuscin in the intestine, decrease the content of ROS and MDA in the body, increase the activity of the antioxidant enzymes SOD and CAT, promote the nuclear translocation of DAF-16, down-regulate the mRNA levels of the age-1 and daf-2 genes of the IIS pathway in nematodes, and up-regulate the expression of the daf-16, skn-1, sod-3, and hsp-16.2 genes. Based on the aforementioned findings, it is possible that the mechanism by which PCP and PCP-1 exert anti-aging effects may be through negative regulation of the IIS pathway, activation of the transcription factor DAF-16/FOXO, and enhancement of oxidative defenses and stress resistance in nematodes. Overall, the present study illustrated the great potential of polysaccharides from Polygonatum cyrtonema Hua in anti-aging and antioxidant activities. Specifically, PCP-1 demonstrated superior characteristics, which provides a reference for the future development of Polygonatum cyrtonema Hua polysaccharides.


Asunto(s)
Caenorhabditis elegans , Polygonatum , Animales , Caenorhabditis elegans/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Envejecimiento , Polisacáridos/farmacología , Polisacáridos/metabolismo , Superóxido Dismutasa/metabolismo
4.
Phytother Res ; 38(5): 2361-2387, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38429891

RESUMEN

As the global population ages, preventing lifestyle- and aging-related diseases is increasing, necessitating the search for safe and affordable therapeutic interventions. Among nutraceuticals, quercetin, a flavonoid ubiquitously present in various plants, has garnered considerable interest. This review aimed to collate and analyze existing literature on the therapeutic potentials of quercetin, especially its interactions with SIRTs and its clinical applicability based on its bioavailability and safety. This narrative review was based on a literature survey spanning from 2015 to 2023 using PUBMED. The keywords and MeSH terms used were: "quercetin" AND "bioavailability" OR "metabolism" OR "metabolites" as well as "quercetin" AND "SIRTuin" OR "SIRT*" AND "cellular effects" OR "pathway" OR "signaling" OR "neuroprotective" OR "cardioprotective" OR "nephroprotective" OR "antiatherosclerosis" OR "diabetes" OR "antidiabetic" OR "dyslipidemia" AND "mice" OR "rats". Quercetin demonstrates multiple therapeutic activities, including neuroprotective, cardioprotective, and anti-atherosclerotic effects. Its antioxidant, anti-inflammatory, antiviral, and immunomodulatory properties are well-established. At a molecular level, it majorly interacts with SIRTs, particularly SIRT1 and SIRT6, and modulates numerous signaling pathways, contributing to its therapeutic effects. These pathways play roles in reducing oxidative stress, inflammation, autophagy regulation, mitochondrial biogenesis, glucose utilization, fatty acid oxidation, and genome stability. However, clinical trials on quercetin's effectiveness in humans are scarce. Quercetin exhibits a wide range of SIRT-mediated therapeutic effects. Despite the compelling preclinical data, more standardized clinical trials are needed to fully understand its therapeutic potential. Future research should focus on addressing its bioavailability and safety concerns.


Asunto(s)
Quercetina , Sirtuinas , Quercetina/farmacología , Quercetina/uso terapéutico , Humanos , Animales , Sirtuinas/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Disponibilidad Biológica , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Sirtuina 1/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Mar Drugs ; 22(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38535468

RESUMEN

The extracts of Corydalis heterocarpa, a salt-tolerant plant, exhibit diverse physiological properties, including anti-inflammatory, anticancer, and antiadipogenic effects. However, the anti-aging effects of C. heterocarpa extract (CHE) on human skin cells have not yet been investigated. In the present study, we determined that CHE inhibited senescence-associated ß-galactosidase (SA-ß-gal)-stained senescent human dermal fibroblasts (HDFs). Furthermore, CHE markedly suppressed the expression of major regulatory proteins involved in senescence, including p53, p21, and caveolin-1. Interestingly, CHE promoted autophagic flux, as confirmed by the formation of microtubule-associated protein 1 light chain 3B (LC3B) puncta and lysosomal activity. Notably, using RNA sequencing (RNA-seq), we showed that CHE selectively regulated the gene expression of leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1), an important regulator of autophagy. The adenosine-monophosphate activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway, which is essential for autophagy regulation, was also modulated by CHE. LRSAM1 depletion not only inhibited LC3B expression but also decreased the autophagy flux induced by CHE. Moreover, the knockdown of LRSAM1 suppressed the reversal of CHE-induced senescence in old HDFs. Collectively, our study has revealed the rejuvenating effects and molecular mechanisms of CHE, suggesting that CHE may be a promising anti-aging agent.


Asunto(s)
Corydalis , Humanos , Autofagia , Piel , Envejecimiento , Extractos Vegetales , Ubiquitina-Proteína Ligasas
6.
J Ethnopharmacol ; 327: 118002, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437890

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Polygonati Rhizome (PR) is a plant that is extensively widespread in the temperate zones of the Northern Hemisphere. It is a member of the Polygonatum family of Asparagaceae. PR exhibits diverse pharmacological effects and finds applications in ethnopharmacology, serving as a potent tonic for more than two millennia. PR's compounds endow it with various pharmacological properties, including anti-aging, antioxidant, anti-fatigue, anti-inflammatory, and sleep-enhancing effects, as well as therapeutic potential for osteoporosis and age-related diseases. AIM OF THE STUDY: This review seeks to offer a thorough overview of the processing, purification, extraction, structural characterization, and biosynthesis pathways of PR. Furthermore, it delves into the anti-aging mechanism of PR, using organ protection as an entry point. MATERIALS AND METHODS: Information on PR was obtained from scientific databases (Google Scholar, Web of Science, ScienceDirect, SciFinder, PubMed, CNKI) and books, doctoral theses, and master's dissertations. RESULTS: In this investigation, 49 polysaccharides were extracted from PR, and the impact of various processing, extraction, and purification techniques on the structure and activity of these polysaccharides was evaluated. Additionally, 163 saponins and 46 flavonoids were identified, and three key biosynthesis pathways of secondary metabolites were outlined. Notably, PR and Polygonat Rhizomai polysaccharides (PRP) exhibit remarkable protective effects against age-induced injuries to the brain, liver, kidney, intestine, heart, and vessels, thereby promoting longevity and ameliorating the aging process. CONCLUSIONS: PR, a culinary and therapeutic herb, is rich in active components and pharmacological activities. Based on this review, PR plays a meaningful role in lifespan extension and anti-aging, which can be attributed to PRP. Future research should delve deeper into the structural aspects of PRP that underlie its anti-aging effects and explore potential synergistic interactions with other compounds. Moreover, exploring the potential applications of PR in functional foods and pharmaceutical formulations is recommended to advance the development of industries and resources focused on healthy aging.


Asunto(s)
Fitoterapia , Extractos Vegetales , Fitoterapia/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Rizoma , Etnofarmacología , Polisacáridos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
7.
Heliyon ; 10(5): e26131, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38449662

RESUMEN

Intrinsic and extrinsic aging affect the health of human skin. Extracellular matrix protein degradation, DNA damage and oxidative stress are known to disturb skin architecture and skin homeostasis leading to skin aging. Traditional Chinese Medicine (TCM) delivers a large amount of knowledge regarding the phytotherapeutic power of diverse plants. Panax ginseng, Polygonatum cyrtonema, Epiphyllum oxypetalum, Nelumbo nucifera and Osmanthus fragrans are five plants used in TCM for their protective effect. In this study, several combinations of these TCM plants were explored: first, an in silico analysis was performed to predict their potential to target biological activities in the skin and then, some predictions were verified with in vitro studies to underline the synergistic effect of plant extracts. The results showed a stronger anti-aging activity for the combination with the five plants compared to the combination with Panax ginseng, Polygonatum cyrtonema, Epiphyllum oxypetalum and, compared to Panax ginseng alone.

8.
J Ethnopharmacol ; 325: 117888, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336185

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (L.) Urban, is a medicinal herb with rich history of traditional use in Indian subcontinent. This herb has been valued for its diverse range of medicinal properties including memory booster, and also as a folk treatment for skin diseases, wound healing and mild diuretic. AIM OF STUDY: Aging is a gradual and continuous process of natural decay in the biological systems, including the brain. This work aims to evaluate the effectiveness of ethanolic extract of Centella asiatica (CAE) on age-associated cognitive impairments in rats, as well as the underlying mechanism. MATERIAL AND METHODS: Rats were allocated into five distinct groups of 5 animals each: Young rats (3 months old rats), middle-aged (m-aged) rats (13-14 months old), and the remaining three groups were comprised of m-aged rats treated with different concentrations of CAE, viz., 150, 300, and 450 mg/kg b. w., orally for 42 days. Y-maze, open field, novel object recognition, and elevated plus maze tests were used to assess animal behavior. The malondialdehyde (MDA), superoxide dismutase (SOD), and acetylcholinesterase (AChE) assays; and H&E staining were done in the rat brain to assess the biochemical and structural changes. CAE was also subjected to HPLC analysis, in vitro antioxidant and anti-cholinergic activity. The active compounds of CAE were docked with AChE and BuChE in molecular docking study. RESULTS: The results showed that CAE treatment improves behavioral performance; attenuates the age-associated increase in MDA content, SOD, and AChE activity; and reduces neuronal loss. In vitro study showed that CAE has concentration-dependent antioxidant and anti-AChE activity. Furthermore, the presence of Asiatic acid and Madecassic acid in CAE and their good binding with cholinergic enzymes (in silico) also suggest the anticholinergic effect of CAE. CONCLUSION: The findings of the current study show that the anticholinergic and antioxidant effects of CAE are attributable to the presence of Asiatic acid and Madecassic acid, which not only provide neuroprotection against age-associated cognitive decline but also reverse it.


Asunto(s)
Antioxidantes , Centella , Triterpenos Pentacíclicos , Triterpenos , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Función Ejecutiva , Acetilcolinesterasa/metabolismo , Centella/química , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Antagonistas Colinérgicos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Superóxido Dismutasa/metabolismo
9.
Comb Chem High Throughput Screen ; 27(12): 1840-1849, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38178682

RESUMEN

BACKGROUND: Traditional Chinese Medicine (TCM) has a rich history of use in preventing senescence for millennia in China. Nonetheless, a systematic method to study the antiaging properties and the underlying molecular mechanism of TCM remains absent. OBJECTIVE: The objective of this study is to decipher the anti-aging targets and mechanisms of Sisheng Bulao Elixir (SBE) using a systematic approach based on a novel aging database and network pharmacology. METHODS: Bioactive compounds and target proteins in SBE were identified via the Traditional Chinese Medicine System Pharmacology (TCMSP) database. Aging-related proteins were uncovered through alignment with the Ageing Alta database. A compound-target (CT) protein network analysis highlighted key flavonoids targeting aging. Core aging-related proteins were extracted through protein-protein interaction (PPI) network analysis. Molecular docking validated binding activities between core compounds and aging-related proteins. The antioxidant activity of SBE was confirmed using an in vitro senescent cells model. RESULTS: A total of 39 active compounds were extracted from a pool of 639 compounds in SBE. Through a matching process with the Aging Alta, 88 target proteins associated with the aging process were identified. Impressively, 80 out of these 88 proteins were found to be targeted by flavonoids. Subsequently, an analysis using CT methodology highlighted 11 top bioactive flavonoids. Notably, core aging-related proteins, including AKT1, MAPK3, TP53, VEGFA, IL6, and HSP90AA1, emerged through the PPI network analysis. Moreover, three flavonoids, namely quercetin, kaempferol, and luteolin, exhibited interactions with over 100 aging-related proteins. Molecular docking studies were conducted on these flavonoids with their shared three target proteins, namely AKT1, HSP90AA1, and IL6, to assess their binding activities. Finally, the antioxidant properties of SBE were validated using an in vitro model of senescent cells. CONCLUSION: This study offers novel insights into SBE's anti-aging attributes, providing evidence of its molecular mechanisms. It enhances our understanding of traditional remedies in anti-aging research.


Asunto(s)
Envejecimiento , Medicamentos Herbarios Chinos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Humanos , Envejecimiento/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Mapas de Interacción de Proteínas/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/química , Senescencia Celular/efectos de los fármacos
10.
Curr Med Chem ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38243982

RESUMEN

alanine (BA), being a non-proteinogenic amino acid, is an important constituent of L-carnosine (LC), which is necessary for maintaining the muscle buffering capacity and preventing a loss of muscle mass associated with aging effects. BA is also very important for normal human metabolism due to the formation of a part of pantothenate, which is incorporated into coenzyme A. BA is synthesized in the liver, and its combination with histidine results in the formation of LC, which accumulates in the muscles and brain tissues and has a well-defined physiological role as a good buffer for the pH range of muscles that caused its rapidly increased popularity as ergogenic support to sports performance. The main antioxidant mechanisms of LC include reactive oxygen species (ROS) scavenging and chelation of metal ions. With age, the buffering capacity of muscles also declines due to reduced concentration of LC and sarcopenia. Moreover, LC acts as an antiglycation agent, ultimately reducing the development of degenerative diseases. LC has an anti-inflammatory effect in autoimmune diseases such as osteoarthritis. As histidine is always present in the human body in higher concentrations than BA, humans have to get BA from dietary sources to support the required amount of this critical constituent to supply the necessary amount of LC synthesis. Also, BA has other beneficial effects, such as preventing skin aging and intestinal damage, improving the stress-- fighting capability of the muscle cells, and managing an age-related decline in memory and learning. In this review, the results of a detailed analysis of the role and various beneficial properties of BA and LC from the anti-aging perspective.

11.
BMC Complement Med Ther ; 24(1): 31, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212737

RESUMEN

Aging or senescence is part of human life development with many effects on the physical, mental, and physiological aspects which may lead to age-related deterioration in many organs. Genus Curcuma family Zingieraceae represents one of the well-studied and medically important genera with more than eighty species. The genus is reported to contain different classes of biologically active compounds that are mainly presented in diphenylheptanoids, diphenylpentanoids, diphenylalkanoids, phenylpropene derivatives, alkaloids, flavonoids, chromones, terpenoids, phenolic acids and volatile constituents. Rhizomes and roots of such species are rich with main phytoconstituents viz. curcumin, demethoxycurcumin and bis-demethoxycurcumin. A wide variety of biological activities were demonstrated for different extracts and essential oils of genus Curcuma members including antioxidant, anti-inflammatory, cytotoxic and neuroprotective. Thus, making them as an excellent safe source for nutraceutical products and as a continuous promising area of research on lead compounds that may help in the slowing down of the aging process especially the neurologic and mental deterioration that are usually experienced upon aging. In this review different species of the genus Curcuma were summarized with their phytochemical and biological activities highlighting their role as antiaging agents. The data were collected from different search engines viz. Pubmed®, Google Scholar®, Scopus® and Web of Science® limiting the search to the period between 2003 up till now.


Asunto(s)
Alcaloides , Diarilheptanoides , Fitoterapia , Humanos , Curcuma/química , Etnofarmacología , Alcaloides/química
12.
Gels ; 10(1)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38247768

RESUMEN

Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.

13.
J Oleo Sci ; 73(4): 429-435, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171737

RESUMEN

Sacha inchi (Plukenetia volubilis) oil is constituted with macronutrients and the health benefit fatty acids. In this context, the efficient of Sacha inchi oil for anti-aging product is presented. The light-clear yellowish seed oil of Sacha inchi was revealed on its physicochemical properties that are in the same range of the commercializing plant-oil supplied for topical products. The oil was GC/MS exhibited to be constituted with α-linolenic (51.72%) and linoleic (24.3%) acids, with unsaturated/saturated fatty acids ratio of 21.26. The oil was noted onto its potent in vitro antioxidant activity assessed by ABTS, DPPH and FRAP assays. In addition, the oil (1-3%) was proved to be safe in normal human fibroblast cells. Furthermore, the oil exhibited cellular antioxidant with inhibitory effect against MMP-2. Sacha inchi oil is therefore highlighted as a potential source of nutraceutical especially for anti-aging product. The oil is specified for the product development in terms of physicochemical, chemical and biological profiles. Innovative processing of Sacha inchi is therefore encouraged as the promising plant for anti-aging product.


Asunto(s)
Euphorbiaceae , Ácidos Grasos Insaturados , Humanos , Ácidos Grasos , Aceites de Plantas/farmacología , Aceites de Plantas/química , Envejecimiento , Antioxidantes/farmacología , Euphorbiaceae/química
14.
J Cosmet Dermatol ; 23(5): 1840-1849, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213091

RESUMEN

BACKGROUND: Sleep is one of the most important factors affecting overall health. During the night, the skin repairs damage caused by daily stresses. Melatonin plays a key role in this process. Toxins are removed, and cellular repair and growth hormone production are increased. Inter alia, this also decreases signs of intrinsic aging. AIMS: The current study was intended to demonstrate the impact of a unique fraction of Melaleuca alternifolia (FMA) essential oil, on sleep and skin quality. METHODS: The effect of FMA was investigated in vitro on skin cells, evaluating its antioxidant and anti-inflammatory properties, and in an ex-vivo study on human skin biopsies treated with FMA following stress induction. In addition, two clinical studies were performed on volunteers with life-style-related sleep complaints. In one study, sleep was measured using a noncontact monitoring device (SleepScore Labs, Max). A second study was conducted to assess skin anti-aging effects. RESULTS: In vitro application of FMA reduced IL-8 and reactive oxygen species (ROS) generation in skin cells. This was confirmed ex vivo through a decrease in inflammatory markers and an increase in antioxidant enzymes after stress induction. Interestingly, FMA also upregulated melatonin-associated genes. Real-world sleep tracking revealed that FMA significantly improved sleep quality, relative to unscented control. In vivo applications also showed a reduction in signs of aging. CONCLUSION: These results provide initial data to suggest that this unique FMA delivers skin anti-aging benefits via a two-pronged mode of action, improving sleep quality, and reducing skin inflammatory and oxidative stress.


Asunto(s)
Antioxidantes , Melatonina , Piel , Calidad del Sueño , Humanos , Melatonina/farmacología , Melatonina/administración & dosificación , Piel/efectos de los fármacos , Piel/metabolismo , Femenino , Adulto , Persona de Mediana Edad , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Envejecimiento de la Piel/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Interleucina-8/metabolismo , Masculino , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Melaleuca/química , Aceites Volátiles/farmacología , Aceites Volátiles/administración & dosificación
15.
Int J Biol Macromol ; 257(Pt 2): 128724, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103673

RESUMEN

Polygonum multiflorum Thunb (PM) is used to slow the aging process. Although polysaccharides are a major constituent of PM, their anti-aging properties have not been thoroughly investigated. Therefore, this study aimed to examine the anti-aging effects of polysaccharides extracted from PM using the Caenorhabditis elegans (C. elegans) model. Two types of water-soluble heteropolysaccharides, namely a neutral polysaccharide (RPMP-N) and an acidic polysaccharide (RPMP-A), were obtained from PM. Their structures were elucidated by various methods. The effects of these polysaccharides on the lifespan, levels of antioxidants, and activities of antioxidant-related enzymes in C. elegans were also evaluated. The results showed that RPMP-A had higher GalA content compared with RPMP-N. The average molecular weights of RPMP-N and RPMP-A were 245.30 and 28.45 kDa, respectively. RPMP-N is a α-1,4-linked dextran as the main chain, and contains a small amount of branched dextran with O-6 as the branched linkage site;RPMP-A may be a complex of α-1,4-linked dextran, HG and RG-I. Treatment with RPMP-N and RPMP-A increased the mean lifespan of C. elegans, and significantly regulated oxidative stress. RPMP-A exhibited stronger anti-aging effects compared with RPMP-N. These findings suggest that RPMP-A may be a potent antioxidant and anti-aging component that can be used for developing functional food products and effective dietary supplements.


Asunto(s)
Caenorhabditis elegans , Fallopia multiflora , Animales , Antioxidantes/farmacología , Dextranos/farmacología , Envejecimiento , Estrés Oxidativo , Polisacáridos/farmacología , Polisacáridos/química
16.
Heliyon ; 9(12): e22970, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144278

RESUMEN

Background: Cardiac aging progressively decreases physiological function and drives chronic/degenerative aging-related heart diseases. Therefore, it is crucial to postpone the aging process of heart and create products that combat aging. Aims & methods: The objective of this study is to examine the effects of parishin, a phenolic glucoside isolated from traditional Chinese medicine Gastrodia elata, on anti-aging and its underlying mechanism. To assess the senescent biomarkers, cardiac function, cardiac weight/body weight ratio, cardiac transcriptomic changes, and cardiac histopathological features, heart tissue samples were obtained from young mice (12 weeks), aged mice (19 months) treated with parishin, and aged mice that were not treated. Results: Parishin treatment improved cardiac function, ameliorated aging-induced cardiac injury, hypertrophy, and fibrosis, decreased cardiac senescence biomarkers p16Ink4a, p21Cip1, and IL-6, and increased the "longevity factor" SIRT1 expression in heart tissue. Furthermore, the transcriptomic analysis demonstrated that parishin treatment alleviated the cardiac aging-related Gja1 downregulation and Cyp2e1, Ccna2, Cdca3, and Fgf12 upregulation in the heart tissues. The correlation analysis suggested a strong connection between the anti-aging effect of parishin and its regulation of gut microbiota and metabolism in the aged intestine. Conclusion: The present study demonstrates the protective role and underlying mechanism of parishin against cardiac aging in naturally aged mice.

17.
Clin Interv Aging ; 18: 1813-1825, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915546

RESUMEN

Purpose: The availability of a simple and reliable marker of biological age might allow an acceleration of the research in the field of longevity extension. Previous studies suggest that this marker might be the N-terminal of B-type natriuretic peptide precursor (NT-proBNP), from which proBNPage, a biological age surrogate, can be calculated. Objectives of the study: 1) To fine-tune the method of proBNPage progression assessment and 2) To establish whether 4 "anti-aging" treatments, which provided promising results in previous studies, can modify proBNPage progression. Patients and Methods: This is a double-blind randomized placebo-controlled clinical trial on 120 adults aged 65-80 years, free of cardiovascular diseases. Participants will be randomized into 3 groups: A) Coenzyme Q10 100 mg bid + Selenium 100 mcg; B) Resveratrol 350 mg bid + TA-65 (Astragalus Membranaceus extract) 100U; C) Placebo-1 bid + Placebo-2. They will be followed for 2 years and checked 8 times, to assess both proBNPage progression and treatment safety. Secondary variables (handgrip strength, aerobic capacity at the step test and quality of life) will also be assessed. Primary outcome will be the demonstration of significant changes of proBNPage, compared to baseline, in the 3 groups at 6, 12, 18 and 24 months. Secondary outcome will be the demonstration of similar changes of secondary variables. Statistical analyses will be mainly performed by repeated measures ANOVA (both according to intention to treat and per protocol) and paired t tests. The study was approved by the Ethics Committee Area Vasta Emilia Centro, Emilia-Romagna Region, ID: 64/2022/Sper/AOUBo. Trial registration: ClinicalTrials.gov, NCT05500742. Conclusion: The use of proBNPage as a surrogate of biological age may prove an easy method to select anti-aging treatments worthy of further, more complex assessments.


Asunto(s)
Enfermedades Cardiovasculares , Calidad de Vida , Humanos , Anciano , Fuerza de la Mano , Suplementos Dietéticos , Envejecimiento , Método Doble Ciego , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto
18.
Molecules ; 28(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959789

RESUMEN

Torch ginger, Etlingera elatior, is a Zingiberaceae plant with various red, pink, and white inflorescence. The wound healing potential and anti-aging effects of freeze-dried torch ginger inflorescence extracts (FTIEs) from three varieties were compared. The red FTIE had the highest content of phenolic, flavonoid, caffeoylquinic acid, and chlorogenic acid, followed by the white and pink FTIE. Consistent with the chemical constituents, the red FTIE demonstrated the greatest capacities for free radical scavenging, anti-tyrosinase, and anti-collagenase activity, followed by the white and pink FTIE. In cell-based studies, FTIEs displayed cytotoxicity to B16F10 melanoma cells, with the red FTIE showing the greatest activity (LC50 of 115.5 µg/mL). In contrast, the pink and the white FTIEs had less cytotoxicity impact. Nonetheless, at 1000 µg/mL, all three FTIE variants were safe on L929 fibroblasts or RAW 264.7 monocyte cells. White FTIE (500 µg/mL) exhibited the highest activity in stimulating collagen production and the greatest impact on cell migration, whereas the pink and red FTIE had a lesser effect. All FTIEs slightly suppressed the pro-inflammatory cytokines produced by lipopolysaccharide-stimulated monocytes, with no significant variation between FTIE variants. In conclusion, all FTIEs revealed promising potential for anti-aging cosmeceuticals and wound care products at specific concentrations.


Asunto(s)
Extractos Vegetales , Zingiberaceae , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inflorescencia , Zingiberaceae/química , Cicatrización de Heridas
19.
Plants (Basel) ; 12(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005770

RESUMEN

Quercus species have been widely used in traditional medicine, and recently, researchers' attention has focused on galls of the genus Quercus as a source of health-promoting phytochemicals. This review presents a summary of the most recent findings on the phytochemistry and bioactivity of oak galls, following the screening of scientific papers published in two relevant databases, PubMed and Embase, between January 2018 and June 2023. The oak galls are rich in active compounds, mostly gallotannins and phenolic acids. Due to these secondary metabolites, the reviewed studies have demonstrated a wide range of biological activities, including antioxidant and anti-inflammatory actions, antimicrobial properties, tissue-protective effects, and antitumor, anti-aging, and hypoglycemic potential. Thus, oak galls are a promising natural matrix, to be considered in obtaining pharmaceutical and cosmetic preparations used in anti-aging strategies and, together with medications, in the management of age-related diseases. In further evaluations, the valuable functional properties of oak galls, reported mostly in preclinical studies, should be confirmed with clinical studies that would also take into account the potential health risks of their use.

20.
Biomolecules ; 13(11)2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-38002355

RESUMEN

Many natural products have been acquired from plants for their helpful properties. Medicinal plants are used for treating a variety of pathologies or symptoms. The axes of many pathological processes are inflammation, oxidative stress, and senescence. This work is focused on identifying Mexican medicinal plants with potential anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence effects through network analysis and chemoinformatic screening of their phytochemicals. We used computational methods to analyze drug-like phytochemicals in Mexican medicinal plants, multi-target compounds, and signaling pathways related to anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence mechanisms. A total of 1373 phytochemicals are found in 1025 Mexican medicinal plants, and 148 compounds showed no harmful functionalities. These compounds displayed comparable structures with reference molecules. Based on their capacity to interact with pharmacological targets, three clusters of Mexican medicinal plants have been established. Curatella americana, Ximenia americana, Malvastrum coromandelianum, and Manilkara zapota all have anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence effects. Plumeria rubra, Lonchocarpus yucatanensis, and Salvia polystachya contained phytochemicals with anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence reported activity. Lonchocarpus guatemalensis, Vallesia glabra, Erythrina oaxacana, and Erythrina sousae have drug-like phytochemicals with potential anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence effects. Between the drug-like phytochemicals, lonchocarpin, vallesine, and erysotrine exhibit potential anti-oxidant, anti-inflammatory, anti-aging, and anti-senescence effects. For the first time, we conducted an initial virtual screening of selected Mexican medicinal plants, which was subsequently confirmed in vivo, evaluating the anti-inflammatory activity of Lonchocarpus guatemalensis Benth in mice.


Asunto(s)
Plantas Medicinales , Animales , Ratones , Plantas Medicinales/química , Antioxidantes/farmacología , Quimioinformática , Envejecimiento , Antiinflamatorios/farmacología , Fitoquímicos/química , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA