Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Ethnopharmacol ; 329: 118163, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38588986

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Plants in the genus Hypericum (Hypericaceae), include more than 500 species worldwide, and many are valued for their medicinal properties, and are used as traditional herbal medicines. However, only H. perforatum is officially recognized as herbal drug in several pharmacopoeias, and used as an antidepressant clinically. Hypericum perforatum had been used as an herbal medicine since the Han Dynasty (206 B.C. -220 A.D.) in China. It taxonomically belongs to the section Hypericum in the genus Hypericum. There are about 42 species in the section Hypericum, with six species occurring in China. All six are recorded as traditional herbal medicines for treating aliments, including hepatitis, malaria, traumatic hemorrhage, irregular menstruation, wounds, and bruises. AIM OF THE STUDY: The study aimed to characterize the chemical profiles of five phylogenetically related Hypericum species, and compare their metabolites with three H. perforatum products. Informed by ethnobotanical use, the extracts prepared from the five species were further investigated into anticancer, anti-inflammatory and antiplasmodial activity. This study tested the hypothesis that systematic metabolomic and bioactivity characterization of species in section Hypericum will help to validate their phytotherapeutic use and reveal potential drug lead compounds. MATERIALS AND METHODS: Targeted and non-targeted metabolic analyses coupled with chemometrics were conducted on H. perforatum and four medicinal species, H. attenuatum, H. enshiense, H. erectum, and H. faberi, native to China from section Hypericum. UPLC-QTOF-MS/MS and UPLC-TQD-MS/MS were used for non-targeted and targeted metabolic analyses, respectively. Cytotoxicity bioassays on four cancer cell lines, anti-inflammation tests and anti-plasmodial activity on Plasmodium falciparum 3D7, selected based on traditional medicinal use, were evaluated on extracts from Hypericum species. Progenesis QI and EZinfo were used for chemometrics analysis to link the chemical profile and bioassay activity to aid in the identification of bioactive compounds. RESULTS: In total, 58 compounds were identified from the five species, including compounds with well-characterized bioactivity. Hypericum attenuatum, H. erectum, and H. perforatum, displayed the highest cytotoxicity, and contain the cytotoxic compounds petiolin A, prolificin A, and hypercohin G, respectively. Hypericum faberi and H. perforatum showed the highest anti-inflammatory activity, with pseudohypericin, quercetin and chlorogenic acid being observed at higher concentrations. Hypericum perforatum and H. erectum showed anti-plasmodial activity, with higher hyperforin and xanthones in these species that may account for the anti-plasmodial activity. CONCLUSIONS: This study characterized the chemical differences among five Hypericum species using metabolomics. These ethnomedically important species were tested for their biological activities in three distinct in vitro assays. The ethnobotanical data were useful for identifying bioactive Hypericum species. Hypericum attenuatum, H. erectum and H. faberi are promising phytotherapeutic species, although they are much less studied than H. perforatum, St. John's wort. Combining ethnobotanical surveys with chemometric analyses and bioactivity screening can greatly enhance the discovery of promising active constituents.


Asunto(s)
Hypericum , Metabolómica , Extractos Vegetales , Hypericum/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología , Antimaláricos/farmacología , Antimaláricos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Plasmodium falciparum/efectos de los fármacos , Animales
2.
Int J Parasitol Drugs Drug Resist ; 24: 100530, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447332

RESUMEN

As etiological agents of malaria disease, Plasmodium spp. parasites are responsible for one of the most severe global health problems occurring in tropical regions of the world. This work involved compiling marine cyanobacteria metabolites reported in the scientific literature that exhibit antiplasmodial activity. Out of the 111 compounds mined and 106 tested, two showed antiplasmodial activity at very low concentrations, with IC50 at 0.1 and 1.5 nM (peptides: dolastatin 10 and lyngbyabellin A, 1.9% of total tested). Examples of chemical derivatives generated from natural cyanobacterial compounds to enhance antiplasmodial activity and Plasmodium selectivity can be found in successful findings from nostocarboline, eudistomin, and carmaphycin derivatives, while bastimolide derivatives have not yet been found. Overall, 57% of the reviewed compounds are peptides with modified residues producing interesting active moieties, such as α- and ß-epoxyketone in camaphycins. The remaining compounds belong to diverse chemical groups such as alkaloids, macrolides, polycyclic compounds, and halogenated compounds. The Dolastatin 10 and lyngbyabellin A, compounds with antiplasmodial high activity, are cytoskeletal disruptors with different protein targets.


Asunto(s)
Alcaloides , Antimaláricos , Cianobacterias , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Malaria/tratamiento farmacológico , Alcaloides/química , Extractos Vegetales
3.
Nat Prod Res ; : 1-5, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497278

RESUMEN

Rauvolfia mannii is a plant from western and eastern areas of African continent and is widely used in folk medicine for the treatment of various diseases including malaria. Herein, one previously undescribed acylated triterpene (1), together with five already published natural products (2-6) were removed from its roots. The chemical structures of these compounds were determined by spectroscopic and spectrometric means (NMR, HRESIMS, IR and UV). In addition to the isolated triterpenoids, components 5 and 6 are also newly reported from the genus Rauvolfia. Moreover, some constituents were further tested against the chloroquine-sensitive strain of P. falciparum (3D7). It has been found that 3 and 4 showed a moderate antiplasmodial activity with IC50 values of 46.25 and 39.79 µM respectively.

4.
J Ethnopharmacol ; 325: 117839, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38310984

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Djibouti was a country where malaria has been endemic for centuries. The local population use the plants as repellents or first aid for uncomplicated malaria. AIM OF THE STUDY: The aim was, for the first time, to collect and identify plants used by the local population to treat malaria and select the most interesting plants (those that are more commontly used, more available, and have fewer studies). These plants were evaluated for their antiplasmodial activity as well as their cytotoxicity on human cell lines for the most active ones. MATERIALS AND METHODS: A semi-structured questionnaire was developed for this study to collect information about the use and identity of botanical drugs used to treat malaria. The use-reports (percentage) of each plant were recorded to determine their use importance. Also, the availability status of the plants was assessed; and those in critical condition were discarded excluded from further study. Fifteen plants, out of the 41 listed, were extracted with hydro alcohol, ethyl acetate, and dichloromethane for biological testing. Chloroquine-resistant strain FcB-1 of P. falciparum and a human diploid embryonic lung cell line were used for the antiplasmodial test, and to assess the cytotoxicity for human cells respectively. Preliminary analysis of extract constituents was carried out using thin layer chromatography (TLC). RESULTS: This study identifies 41 plant taxa belonging to 32 families and records their use against malaria. Balanites rodunfolia, belonging to the Zygophyllaceae family, was the most commonly used plant, representing 44 % of use-reports. It was followed by Cadaba rodunfolia (15 %) from the Capparaceae family, and then the three species of Aloe: Aloe djiboutiensis (8.2 %), Aloe ericahenriettae (3.4 %), and Aloe rigens (3.4 %) from the Asphodelaceae family. The leaves are the most commonly used part of the plants to treat malaria, accounting for 76 % of usage. The preparation methods were decoction (52 %), maceration (29 %), and boiling (19 %). The administration routes were by oral (80 %), inhalation 19 %), and bathing (1 %). The best antiplasmodial activities were observed in the dichloromethane extracts of Cymbopogon commutatus and the ethyl acetate extracts of Aloe rigens and Terminalia brownii, with IC50 values of 9.8, 5, and 7.5 µg/mL, respectively. Their toxicity/activity levels were very favorable with selectivity indices of 5.6, 8.1, and 11.8 for C. commutatus, A. rigens, and T. Brownii, respectively. CONCLUSION: Forty-one species of botanical drugs were listed as being used to treat malaria in Djibouti. All fifteen selected species showed antiplasmodial activity (IC50 < 50 µg/mL). This work will help guide the valorization of botanical drugs used to treat malaria in Djibouti.


Asunto(s)
Aloe , Antimaláricos , Malaria Falciparum , Malaria , Plantas Medicinales , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plantas Medicinales/química , Preparaciones Farmacéuticas , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Djibouti , Cloruro de Metileno/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum
5.
Food Res Int ; 176: 113739, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163694

RESUMEN

Sorghum is a gluten-free cereal commonly used in foods, and its consumption has been associated with the prevention of human chronic conditions such as obesity and cancer, due to the presence of dietary fiber and phenolic compounds. This study aimed to evaluate, for the first time, the antiproliferative, antioxidant, anti-adhesion, anti-invasion, and antimalarial activities of phenolic extracts from toasted white and tannin sorghum flours to understand how different phenolic profiles contribute to sorghum biological activities. Water and 70 % ethanol/water (v/v), eco-friendly solvents, were used to obtain the phenolic extracts of toasted sorghum flours, and their phenolic profile was analyzed by UPLC-MSE. One hundred forty-five (145) phenolic compounds were identified, with 23 compounds common to all extracts. The solvent type affected the phenolic composition, with aqueous extract of both white sorghum (WSA) and tannin sorghum (TSA) containing mainly phenolic acids. White sorghum (WSE) and tannin sorghum (TSE) ethanolic extracts exhibited a higher abundance of flavonoids. WSE demonstrated the lowest IC50 on EA.hy926 (IC50 = 46.6 µg/mL) and A549 cancer cells (IC50 = 33.1 µg/mL), while TSE showed the lowest IC50 (IC50 = 70.8 µg/mL) on HCT-8 cells (human colon carcinoma). Aqueous extracts also demonstrated interesting results, similar to TSE, showing selectivity for cancer cells at higher IC50 concentrations. All sorghum extracts also reduced the adhesion and invasion of HCT-8 cells, suggesting antimetastatic potential. WSE, rich in phenolic acids and flavonoids, exhibited greater toxicity to both the W2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive) strains of Plasmodium falciparum (IC50 = 8 µg GAE/mL and 22.9 µg GAE/mL, respectively). These findings underscore the potential health benefits of toasted sorghum flours, suggesting diverse applications in the food industry as a functional ingredient or even as an antioxidant supplement. Moreover, it is suggested that, besides the phenolic concentration, the phenolic profile is important to understand the health benefits of sorghum flours.


Asunto(s)
Antimaláricos , Sorghum , Humanos , Taninos , Antioxidantes/farmacología , Antioxidantes/análisis , Antimaláricos/farmacología , Extractos Vegetales/farmacología , Grano Comestible/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Fenoles/análisis , Flavonoides , Solventes , Agua , Cloroquina
6.
J Ethnopharmacol ; 323: 117613, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38185259

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Solanum incanum L. is commonly used in traditional herbal medicine (THM) in Kenya for treating various ailments. Recent developments in disease treatment have introduced the concept of host-directed therapy (HDT). This approach involves targeting factors within the host cell that can impede the growth or replication of a pathogen. One such host factor is delta aminolevulinate dehydratase (δ-ALAD), the second enzyme in the heme biosynthesis pathway utilized by Plasmodium for growth. Studies using mice models have shown an increase in δ-ALAD expression during Plasmodium berghei infection. Another plant in the Solanum genus, S. guaranticum, has been found to inhibit δ-ALAD in red blood cells in vitro and in the brain in vivo. Is it possible that the bioactive compounds in S. incanum extracts could also be effective in HDT for malaria treatment? AIM OF STUDY: To better assess the effectiveness of S. incanum leaf extracts as a curative and prophylaxis in malaria parasite infection, and to test the plant's ability to decrease δ-ALAD expression. MATERIALS AND METHODS: The leaves of S. incanum were collected, dried, and pulverized before being subjected to a successive extraction protocol to obtain crude, hexane, ethyl acetate, and aqueous extract fractions. Phytochemical analysis was conducted on all extract fractions, followed by GC-MS analysis of the fraction with the most potent antimalarial activity. An acute toxicity study was also performed on the extracted fractions. The potency of the extract fractions as curative and prophylactic antimalarial was then evaluated in THM using Plasmodium berghei-infected mice at a dose of 100 mg/kg. The extract fraction with the highest activity was further evaluated at varying doses and its effect on δ-ALAD was measured using RT-qPCR. The percentage of parasitemia and chemosuppression, and mean survival time were used as indices of activity. RESULTS: Phytochemical analysis revealed that the ethyl acetate and aqueous extract fractions contained high terpenoids, flavonoids, and phenols levels. However, alkaloids were only present in moderate quantities in the aqueous extract, and quinones were found in high levels only in the crude extract. Additionally, all extract fractions contained saponins in high levels but lacked tannins. While the plant extracts were found to be non-toxic, they did not exhibit curative antimalarial activity. However, all extract fractions showed prophylactic antimalarial activity, with the ethyl acetate extract having the highest percentage of chemosuppression even at doses of 250 and 1000 mg/kg. In the negative control, the expression of δ-ALAD was 5.4-fold, but this was significantly reduced to 2.3-fold when mice were treated with 250 mg/kg of the ethyl acetate fraction. GC-MS analysis of the ethyl acetate fraction revealed high percentages of 2-methyloctacosane, tetracosane, and decane. CONCLUSION: The fractions extracted from S. incanum leaves have been found to possess only antimalarial prophylactic properties, with the ethyl acetate extract fraction showing the most effective results. The activity of this fraction may be attributed to its ability to decrease the expression of δ-ALAD, as it contains an alkane compound implicated with enzyme-inhibitory activity.


Asunto(s)
Acetatos , Antimaláricos , Malaria , Plantas Medicinales , Solanum , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Porfobilinógeno Sintasa/farmacología , Porfobilinógeno Sintasa/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/parasitología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Plasmodium berghei , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
7.
Nat Prod Res ; 38(5): 885-890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37029625

RESUMEN

This report describes the isolation and characterization of xanthones from Garcinia bancana Miq. and evaluates their antiplasmodial and anticancer activities. Macluraxanthone (1), isojacareubin (2), and gerontoxanthone C (3) were isolated from the stem bark of G. bancana Miq. for the first time. In silico molecular docking studies revealed the hydrogen bonding and steric interactions between xanthones (1-3) and PfLDH/VEGFR2. The in vitro antiplasmodial activity was assayed against the chloroquine-sensitive Plasmodium falciparum strain 3D7 by the lactate dehydrogenase (LDH) method. The anticancer evaluation was evaluated against the A549, MCF-7, HeLa, and B-16 cancer cell lines. Compounds (1) (IC50 8.45-16.71 µM) and (3) (IC50 9.69-14.86 µM) showed more potent anticancer activity than compound (2) (IC50 25.46-31.31 µM), as well for their antiplasmodial activity (4.28 µM, 5.52 µM, 11.45 µM). Our findings indicated the potential of G. bancana Miq. as a natural resource of antiplasmodial and anticancer compounds.


Asunto(s)
Antimaláricos , Garcinia , Xantonas , Antimaláricos/farmacología , Xantonas/farmacología , Simulación del Acoplamiento Molecular , Cloroquina , Plasmodium falciparum , Extractos Vegetales
8.
J Ethnopharmacol ; 322: 117612, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38135228

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisinin (ART) showed enhanced antimalarial potency in the herb Artemisia annua L. (A. annua), from which ART is isolated. Increased absorption of ART with inhibited metabolism in the plant matrix is an underlying mechanism. Several synergistic components have been reported based on a "bottom-up" approach, i.e., traditional isolation followed by pharmacokinetic and/or pharmacodynamic evaluation. AIM OF THE STUDY: In this study, we employed a "top-down" approach based on in vivo antimalarial and pharmacokinetic studies to identify synergistic components in A. annua. MATERIALS AND METHODS: Two A. annua extracts in different chemical composition were obtained by extraction using ethyl acetate (EA) and petroleum ether (PE). The synergistic antimalarial activity of ART in two extracts was compared both in vitro (Plasmodium falciparum) and in vivo (murine Plasmodium yoelii). For the PD-PK correlation analysis, the pharmacokinetic profiles of ART and its major metabolite (ART-M) were investigated in healthy rats after a single oral administration of pure ART (20 mg/kg) or equivalent ART in each A. annua extract. A liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS)-based analytical strategy was then applied for efficient component classification and structural characterization of the differential components in the targeted extract with a higher antimalarial potency. Major components isolated from the targeted extract were then evaluated for their synergistic effect in the same proportion. RESULTS: Compared with pure ART (ED50, 5.6 mg/kg), ART showed enhanced antimalarial potency in two extracts in vivo (ED50 of EA, 2.9 mg/kg; ED50 of PE, 1.6 mg/kg), but not in vitro (IC50, 15.0-20.0 nM). A significant increase (1.7-fold) in ART absorption (AUC0-t) was found in rats after a single oral dose of equivalent ART in PE but not in EA; however, no significant change in the metabolic capability (AUCART-M/AUCART) was found for ART in either extract. The differential component analysis of the two extracts showed a higher composition of sesquiterpene compounds, especially component AB (3.0% in PE vs. 0.9% in EA) and component AA (14.1% in PE vs. 5.1% in EA). Two target sesquiterpenes were isolated and identified as arteannuin B (AB) and artemisinic acid (AA). The synergism between ART and AB/AA in the same proportion with PE extract (20:1.6:7.6, mg/kg) was verified by a pharmacokinetic study in rats. CONCLUSIONS: A "top-down" strategy based on PD-PK studies was successfully employed to identify synergistic components for ART in A. annua. Two sesquiterpene compounds (arteannuin B and artemisinic acid) could enhance the antimalarial potency of ART by increasing its absorption.


Asunto(s)
Antimaláricos , Artemisia annua , Artemisininas , Sesquiterpenos , Ratas , Ratones , Animales , Antimaláricos/química , Artemisia annua/química , Artemisininas/farmacocinética , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
BMC Complement Med Ther ; 23(1): 465, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104072

RESUMEN

BACKGROUND: In the last few decades, the use of plant extracts and their phytochemicals as candidates for the management of parasitic diseases has increased tremendously. Irises are aromatic and medicinal plants that have long been employed in the treatment of different infectious diseases by traditional healers in many cultures. This study aims to explore the potential of three common Iris species (I. confusa Sealy, I. pseudacorus L. and I. germanica L.) against infectious diseases. Their in vitro antiprotozoal potency against Plasmodium falciparum, Trypanosoma brucei brucei, T. b. rhodesiense, T. cruzi and Leishmania infantum beside their cytotoxicity on MRC-5 fibroblasts and primary peritoneal murine macrophages were examined. METHODS: The secondary metabolites of the tested extracts were characterized by UPLC-HRMS/MS and Pearsons correlation was used to correlate them with the antiprotozoal activity. RESULTS: Overall, the non-polar fractions (NPF) showed a significant antiprotozoal activity (score: sc 2 to 5) in contrast to the polar fractions (PF). I. confusa NPF was the most active extract against P. falciparum [IC50 of 1.08 µg/mL, selectivity index (S.I. 26.11) and sc 5] and L. infantum (IC50 of 12.7 µg/mL, S.I. 2.22 and sc 2). I. pseudacorus NPF was the most potent fraction against T. b. rhodesiense (IC50 of 8.17 µg/mL, S.I. 3.67 and sc 3). Monogalactosyldiacylglycerol glycolipid (18:3/18:3), triaceylglycerol (18:2/18:2/18:3), oleic acid, and triterpenoid irridals (spirioiridoconfal C and iso-iridobelamal A) were the top positively correlated metabolites with antiplasmodium and antileishmanial activities of I. confusa NPF. Tumulosic acid, ceramide sphingolipids, corosolic, maslinic, moreollic acids, pheophytin a, triaceylglycerols, mono- and digalactosyldiacylglycerols, phosphatidylglycerol (22:6/18:3), phosphatidylcholines (18:1/18:2), and triterpenoid irridal iso-iridobelamal A, were highly correlated to I. pseudacorus NPF anti- T. b. rhodesiense activity. The ADME study revealed proper drug likeness properties for certain highly corelated secondary metabolites. CONCLUSION: This study is the sole map correlating I. confusa and I. pseudacorus secondary metabolites to their newly explored antiprotozoal activity.


Asunto(s)
Antiprotozoarios , Enfermedades Transmisibles , Género Iris , Triterpenos , Ratones , Animales , Línea Celular , Antiprotozoarios/farmacología , Antiprotozoarios/química
10.
Front Pharmacol ; 14: 1268924, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927601

RESUMEN

Background: Medicinal plants have traditionally been used as remedies against malaria. The present review attempted to compile data on scientific research evidence on antimalarial medicinal plants screened at Kenya Medical Research Institute (KEMRI), Center for Traditional Medicine and Drug (CTMDR) Research from January 2003 to December 2021. Methods: A systematic review was conducted using a predefined protocol based on PRISMA. Search was performed in Google Scholar and PubMed. One hundred and eight journal articles were identified 37 of which published on antimalarial/antiplasmodial work. Thirty journal articles with at least one author from KEMRI-CTMDR and accessible in full were selected for analysis. Relevant data was captured in MS Excel format and descriptive statistics, percentages and tables used to summarize the findings. Results: Assessment of individual plant species was considered as an independent study resulting in 1170 antiplasmodial/antimalarial tests done from 197 plant species. One hundred and fifty plant species were screened in vitro, one in vivo and 46 were both in vivo and in vitro. Three hundred and forty-four of tests reported good activity (IC50 < 10 µg/mL or parasite suppression rate of ≥50%), 414 moderate activity (IC50 values of 10-49 µg/mL or parasite suppression rate of 30%-49%) and 412 were reports of inactivity (IC50 ˃ 50 µg/mL or parasite suppression rate of <30%). Fuerstia africana and Ludwigia erecta were reported to have the highest activities, with IC50 < 1 µg/mL against Plasmodium falciparum D6 strain and chemosuppression in mice at an oral dose of 100 mg/kg, was reported as 61.9% and 65.3% respectively. Fifty five antimalarial/antiplasmodial active compounds isolated from eight plant species were reported with resinone (39) having the best activity (IC50 < 1 µg/mL). Conclusion: Though 344 of tests reported promising antimalarial activity, it was noted that there was limited evaluation of these plants in animal models, with only 9.0% (105/1170) studies and no clinical trials. This highlights an important research gap emphasizing the need for drug development studies that aim to progress study findings from preclinical to clinical studies. There is still need for extensive research on promising plant species aimed at developing new plant based antimalarial drugs.

11.
J Tradit Complement Med ; 13(6): 550-560, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020553

RESUMEN

Background and aim: Malaria is a global health issue causing substantial morbidity and mortality. Screening of various traditionally important medicinal plants is a key source for the discovery of new antimalarials. We evaluated the antimalarial and antioxidant activities, and performed detailed phytochemical analyses of Toona ciliata MJ Roem aqueous methanolic leaf extract (TcMLE). Experimental procedures: In vitro antiplasmodial studies in Plasmodium falciparum (Pf) 3D7 and PfCam3.IR539T strains were performed by [3H]-hypoxanthine uptake assays. In vitro cytotoxicity in HeLa and HEK293T cell lines was evaluated using MTT assays. Hemolysis assay was performed using RBCs. Phytochemical analysis by GC-MS and in vitro antioxidant studies by DPPH and ABTS assays were performed. In vivo antimalarial studies in Pb-infected mice were carried out using Rane's test and Peters' 4-day test. Results and conclusions: TcMLE showed significant in vitro antioxidant activity and had phytochemicals reported for antimalarial activity. In vitro studies showed prominent antiplasmodial activity against Pf3D7 strain (IC50 ∼22 µg/ml) and PfCam3. IR539Tstrain (IC50 value ∼43 µg/ml). In vitro cytotoxicity studies, in vitro hemolytic assays, and in vivo acute toxicity studies further suggested that TcMLE is nontoxic. In vivo antimalarial studies using Rane's test showed a significant decrease in parasitemia by ∼70% at 1200 mg/kg doses and delayed the mortality of mice by ∼10-14 days. Peters' 4-day test also showed a similar pattern. The present study demonstrated the antimalarial potential of TcMLE. These findings deliver a platform for further studies to identify the active components of TcMLE and discover new antimalarials.

12.
Molecules ; 28(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37894704

RESUMEN

Plasmodium falciparum and Leishmania sp. resistance to antiparasitic drugs has become a major concern in malaria and leishmaniasis control. These diseases are public health problems with significant socioeconomic impacts, and mostly affect disadvantaged populations living in remote tropical areas. This challenge emphasizes the need to search for new chemical scaffolds that preferably possess novel modes of action to contribute to antimalarial and antileishmanial research programs. This study aimed to investigate the antimalarial and antileishmanial properties of a methanol extract (KS-MeOH) of the stem bark of the Cameroonian medicinal plant Khaya senegalensis and its isolated compounds. The purification of KS-MeOH led to the isolation of a new ordered limonoid derivative, 21ß-hydroxybourjotinolone A (1a), together with 15 known compounds (1bc-14) using a repeated column chromatography. Compound 1a was obtained in an epimeric mixture of 21α-melianodiol (1b) and 21ß-melianodiol (1c). Structural characterization of the isolated compounds was achieved with HRMS, and 1D- and 2D-NMR analyses. The extracts and compounds were screened using pre-established in vitro methods against synchronized ring stage cultures of the multidrug-resistant Dd2 and chloroquine-sensitive/sulfadoxine-resistant 3D7 strains of Plasmodium falciparum and the promastigote form of Leishmania donovani (1S(MHOM/SD/62/1S). In addition, the samples were tested for cytotoxicity against RAW 264.7 macrophages. Positive controls consisted of artemisinin and chloroquine for P. falciparum, amphotericin B for L. donovani, and podophyllotoxin for cytotoxicity against RAW 264.7 cells. The extract and fractions exhibited moderate to potent antileishmanial activity with 50% inhibitory concentrations (IC50) ranging from 5.99 ± 0.77 to 2.68 ± 0.42 µg/mL, while compounds displayed IC50 values ranging from 81.73 ± 0.12 to 6.43 ± 0.06 µg/mL. They were weakly active against the chloroquine-sensitive/sulfadoxine-resistant Pf3D7 strain but highly potent toward the multidrug-resistant PfDd2 (extracts, IC50 2.50 ± 0.12 to 4.78 ± 0.36 µg/mL; compounds IC50 2.93 ± 0.02 to 50.97 ± 0.37 µg/mL) with selectivity indices greater than 10 (SIDd2 > 10) for the extract and fractions and most of the derived compounds. Of note, the limonoid mixture [21ß-hydroxylbourjotinolone A (1a) + 21α-melianodiol (1b) + 21ß-melianodiol (1c)] exhibited moderate activity against P. falciparum and L. donovani. This novel antiplasmodial and antileishmanial chemical scaffold qualifies as a promising starting point for further medicinal chemistry-driven development of a dually active agent against two major infectious diseases affecting humans in Africa.


Asunto(s)
Antimaláricos , Antiprotozoarios , Limoninas , Malaria Falciparum , Meliaceae , Humanos , Antimaláricos/química , Limoninas/farmacología , Limoninas/análisis , Extractos Vegetales/química , Sulfadoxina/análisis , Corteza de la Planta/química , Antiprotozoarios/farmacología , Antiprotozoarios/análisis , Cloroquina , Meliaceae/química , Plasmodium falciparum
13.
Heliyon ; 9(9): e20103, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809863

RESUMEN

Introduction: Fadogiella stigmatoloba, Hygrophylla auriculata, Hylodesmum repandum and Porphyrostemma chevalieri are used against malaria in traditional medicine in the Democratic Republic of the Congo (DRC). To evaluate their potential in the treatment of this disease, the in vitro antiplasmodial property of these four plants was evaluated. All experiments were conducted on methanolic extracts performed on selected organ parts of these plants. Methods: The methanolic extracts, obtained by maceration, were firstly screened in vitro against the chloroquine sensitive (3D7) and resistant (W2) Plasmodium falciparum strains by the measurement of lactate dehydrogenase activity, and on human keratinocytes (HaCat) cells by the MTT assay to determine their selectivity indices (SI). Secondly, the antioxidant activity of the same extracts was evaluated using DPPH and FRAP assays. Finally, the presence of specific phytochemical constituents was evaluated using standard methods and tentatively identified by GC-MS. Results: An optimum antiplasmodial activity (IC50 = 3.4 ± 0.7 µg/mL, for 3D7, SI = 58.2; IC50 = 7 ± 1.0 µg/mL, for W2, SI = 28.3) was obtained with the leave extract of P. chevalieri. The leaves (for F. stigmatoloba and H. repandum), and the aerial part (for H. repandum) extracts showed promising and moderate antiplasmodial activities against respectively the 3D7 strain (IC50: <15 µg/mL), and W2 strain (IC50:15-50 µg/mL). All extracts presented a weak cytotoxic effect (IC50: >100 µg/mL) on HaCat cells. For the antioxidant test, the most interesting activity was obtained with the leaf extract of P. chevalieri. The GC-MS analysis of these four plants species extracts revealed the presence of various compounds, such as Ethyl 2-nonenoate, 2-(2-Hydroxy-2-phenylethyl)-3,5,6-trimethyl pyrazine, Palmitic Acid, Ethyl palmitate, Ethyl linolenate, and N-Acetyltyramine. Conclusion: Based on the obtained results, P. chevalieri could be selected for further investigations or /and for the management of malaria after standardization.

14.
Molecules ; 28(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513343

RESUMEN

Malaria remains a life-threatening health problem and is responsible for the high rates of mortality and morbidity in the tropical and subtropical regions of the world. The increasing threat of drug resistance to available artemisinin-based therapy warrants an urgent need to develop new antimalarial drugs that are safer, more effective, and have a novel mode of action. Natural plants are an excellent source of inspiration in searching for a new antimalarial agent. This research reports a systematic investigation for determining the antimalarial potential of the seeds of A. squamosa. The study shows that the crude seed extract (CSE), protein, saponin, and the oily fractions of the seeds were nontoxic at a 2000 mg/kg body weight dose when tested in Wistar rats, thus revealing high safety is classified as class 5. The oily fraction, Annomaal, demonstrated pronounced antimalarial activity with low IC50 (1.25 ± 0.183 µg/mL) against P. falciparum in vitro. The CSE and Annomaal significantly inhibited the growth of P. berghei parasites in vivo with 58.47% and 61.11% chemo suppression, respectively, while the standard drug artemether showed chemo suppression of 66.75%. Furthermore, the study demonstrated that oral administration of Annomaal at a daily dose of 250 mg/kg/day for 3 days was adequate to provide a complete cure to the P. berghei-infected mice. Annomaal thus holds promise as being patient-compliant due to the shorter treatment schedule, eliminating the need for frequent dosing for extended time periods as required by several synthetic antimalarial drugs. Further studies are needed to determine the active compounds in the oily fraction responsible for antimalarial activity.


Asunto(s)
Annona , Antimaláricos , Malaria Falciparum , Ratas , Animales , Ratones , Antimaláricos/farmacología , Plasmodium falciparum , Plasmodium berghei , Extractos Vegetales/farmacología , Ratas Wistar , Semillas
15.
J Ethnopharmacol ; 317: 116804, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37352945

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria is a leading cause of death in many developing countries, especially in sub-Saharan Africa. Nigeria is endowed with an abundance of medicinal plants, many of which are used to treat malaria. Celtis durandii Engl. is one such plant used as a traditional antimalarial remedy in southeast Nigeria. However, its antiplasmodial potential is poorly explored. AIM OF THE STUDY: The study aimed at identifying the antiplasmodial components of C. durandii root extract through antiplasmodial activity-guided fractionation. MATERIALS AND METHODS: Dichloromethane/methanol mixture extract (1:1 v/v) of C. durandii root was prepared and partitioned against water to obtain the organic phase, which was further separated by column chromatography into nine (C1 - C9) fractions. The antiplasmodial activity was evaluated by in vitro screening of the different fractions against drug-sensitive and drug-resistant Plasmodium falciparum strains. Further purification of the active column fractions resulted in a potent anti-Plasmodial compound that was subsequently investigated for its effect on ß-hematin formation. Additionally, the isolated compound was characterized and identified as marmesin using mass spectrometry and nuclear magnetic resonance spectroscopy. RESULTS: Celtis durandii root extract exhibited promising antiplasmodial activity {IC50 (µg/ml) 5.92, 6.04, and 6.92} against PfW2mef, PfINDO, and Pf3D7 respectively. Pooled fractions with good antiplasmodial activity {IC50 (µg/ml) Pf3D7: 3.99; PfINDO: 2.24} and selectivity for the parasites (SI: 21) yielded a compound that was fourteen-fold potent in antiplasmodial activity against Pf3D7(IC50: 0.28 µg/ml). It also inhibited ß-hematin formation with an IC50 = 150 µM. Further studies using spectral data, literature, and chemical databases identified the purified compound as marmesin. CONCLUSION: This work has demonstrated that Celtis durandii root extract has good antiplasmodial activity against drug-sensitive and drug-resistant P. falciparum. The inhibition of ß-hematin formation by marmesin accounts in part for this activity.


Asunto(s)
Antimaláricos , Malaria , Humanos , Extractos Vegetales/química , Malaria/tratamiento farmacológico , Plasmodium falciparum
16.
BMC Complement Med Ther ; 23(1): 211, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370061

RESUMEN

BACKGROUND: Dacryodes edulis is a plant that belongs to the Burseraceae family. It is widely used traditionally alone or in association with other plants in Cameroonian folk medicine to cure wounds, fever, headaches, and malaria. The aim of this work was to investigate the leaves and stem bark of D. edulis with an emphasis on the antiplasmodial and cytotoxic effects of extracts, fractions, and isolated compounds. METHODS: Extracts, fractions, and some isolated compounds were subjected to antiplasmodial activity screening in vitro against chloroquine-sensitive 3D7 and multidrug resistant Dd2 strains of Plasmodium falciparum using a SyBr Green fluorescence-based assay. The cytotoxicity of active extracts, fractions, and compounds was tested against mammalian Raw cell lines using an in vitro resazurin-based viability assay. The structures of the compounds were determined based on their NMR and MS data. The in vivo toxicity using female BALB/c mice was performed on the most active extract according to the protocol of OECD (2002), guideline 423. RESULTS: The hydroethanolic extract from the leaves of D. edulis displayed good antiplasmodial activity with IC50 values of 3.10 and 3.56 µg/mL respectively on sensitive (3D7) and multiresistant (Dd2) strains of P. falciparum. Of the sixteen compounds isolated, 3,3',4-tri-O-methylellagic acid (4) exhibited the highest antiplasmodial activity against PfDd2 strains with an IC50 value of 0.63 µg/mL. All extracts, fractions, and isolated compounds demonstrated no cytotoxicity against Raw cell lines with CC50 > 250 µg/mL. In addition, the most active extract on both strains of P. falciparum was nontoxic in vivo, with a LD50 greater than 2000 and 5000 mg/kg. A phytochemical investigation of the stem bark and leaves of D. edulis afforded sixteen compounds, including two xanthones (1-2), three ellagic acid derivatives (3-5), one phenolic compound (6), one depside (7), one triglyceride (8), one auranthiamide acetate (9), one gallic acid derivative (10), four triterpenoids (11-14), and two steroids (15-16). Compounds 1, 2, 5, 7, 8, and 9 were herein reported for the first time from the Burseraceae family. CONCLUSION: This work highlights the good in vitro antiplasmodial potency of the hydroethanolic extract of the leaves of this plant and that of two isolated constituents (3,3',4-tri-O-methylellagic acid and ethylgallate) from the plant. These biological results support the use of D. edulis in traditional medicine against malaria.


Asunto(s)
Antimaláricos , Burseraceae , Malaria Falciparum , Malaria , Animales , Ratones , Antimaláricos/toxicidad , Antimaláricos/química , Extractos Vegetales/química , Corteza de la Planta , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Hojas de la Planta/química , Mamíferos
17.
Front Plant Sci ; 14: 1173328, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304721

RESUMEN

Plants are a rich source of bioactive compounds and a number of plant-derived antiplasmodial compounds have been developed into pharmaceutical drugs for the prevention and treatment of malaria, a major public health challenge. However, identifying plants with antiplasmodial potential can be time-consuming and costly. One approach for selecting plants to investigate is based on ethnobotanical knowledge which, though having provided some major successes, is restricted to a relatively small group of plant species. Machine learning, incorporating ethnobotanical and plant trait data, provides a promising approach to improve the identification of antiplasmodial plants and accelerate the search for new plant-derived antiplasmodial compounds. In this paper we present a novel dataset on antiplasmodial activity for three flowering plant families - Apocynaceae, Loganiaceae and Rubiaceae (together comprising c. 21,100 species) - and demonstrate the ability of machine learning algorithms to predict the antiplasmodial potential of plant species. We evaluate the predictive capability of a variety of algorithms - Support Vector Machines, Logistic Regression, Gradient Boosted Trees and Bayesian Neural Networks - and compare these to two ethnobotanical selection approaches - based on usage as an antimalarial and general usage as a medicine. We evaluate the approaches using the given data and when the given samples are reweighted to correct for sampling biases. In both evaluation settings each of the machine learning models have a higher precision than the ethnobotanical approaches. In the bias-corrected scenario, the Support Vector classifier performs best - attaining a mean precision of 0.67 compared to the best performing ethnobotanical approach with a mean precision of 0.46. We also use the bias correction method and the Support Vector classifier to estimate the potential of plants to provide novel antiplasmodial compounds. We estimate that 7677 species in Apocynaceae, Loganiaceae and Rubiaceae warrant further investigation and that at least 1300 active antiplasmodial species are highly unlikely to be investigated by conventional approaches. While traditional and Indigenous knowledge remains vital to our understanding of people-plant relationships and an invaluable source of information, these results indicate a vast and relatively untapped source in the search for new plant-derived antiplasmodial compounds.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37266375

RESUMEN

Several regions of the world frequently use the species Moringa oleifera Lam. (Moringaceae) in traditional medicine. This situation is even more common in African countries. Many literature reports point to the antimalarial potential of this species, indicating the efficacy of its chemical compounds against malaria-causing parasites of the genus Plasmodium. From this perspective, the present study reviews the ethnobotanical, pharmacological, toxicological, and phytochemical (flavonoids) evidence of M. oleifera, focusing on the treatment of malaria. Scientific articles were retrieved from Google Scholar, PubMed®, ScienceDirect®, and SciELO databases. Only articles published between 2002 and 2022 were selected. After applying the inclusion and exclusion criteria, this review used a total of 72 articles. These documents mention a large use of M. oleifera for the treatment of malaria in African and Asian countries. The leaves (63%) of this plant are the main parts used in the preparation of herbal medicines. The in vivo antimalarial activity of M. oleifera was confirmed through several studies using polar and nonpolar extracts, fractions obtained from the extracts, infusion, pellets, and oils obtained from this plant and tested in rodents infected by the following parasites of the genus Plasmodium: P. berghei, P. falciparum, P. yoelii, and P. chabaudi. Extracts obtained from M. oleifera showed no toxicity in preclinical tests. A total of 46 flavonoids were identified in the leaves and seeds of M. oleifera by different chromatography and mass spectrometry methods. Despite the scarcity of research on the antimalarial potential of compounds isolated from M. oleifera, the positive effects against malaria-causing parasites in previous studies are likely to correlate with the flavonoids that occur in this species.

19.
Plants (Basel) ; 12(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37176870

RESUMEN

Resistance to antimalarial medicine remains a threat to the global effort for malaria eradication. The World Health Organization recently reported that artemisinin partial resistance, which was defined as delayed parasite clearance, was detected in Southeast Asia, particularly in the Greater Mekong subregion, and in Africa, particularly in Rwanda and Uganda. Therefore, the discovery of a potential new drug is important to overcome emerging drug resistance. Natural products have played an important role in drug development over the centuries, including the development of antimalarial drugs, with most of it influenced by traditional use. Recent research on traditional medicine used as an antimalarial treatment on Papua Island, Indonesia, reported that 72 plant species have been used as traditional medicine, with Alstonia scholaris, Carica papaya, Andrographis paniculata, and Physalis minima as the most frequently used medicinal plants. This review aimed to highlight the current research status of these plants for potential novel antiplasmodial development. In conclusion, A. paniculata has the highest potential to be developed as an antiplasmodial, and its extract and known bioactive isolate andrographolide posed strong activity both in vitro and in vivo. A. scholaris and C. papaya also have the potential to be further investigated as both have good potential for their antiplasmodial activities in vivo. However, P. minima is a less studied medicinal plant; nevertheless, it opens the opportunity to explore the potential of this plant.

20.
BMC Pharmacol Toxicol ; 24(1): 30, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170269

RESUMEN

BACKGROUND: The plants Aloe weloensis, Lepidium sativum, and Lobelia gibberoa have been used in Ethiopian folklore medicine to treat various diseases including malaria. METHOD: The in vitro anti-plasmodial activity of the three crude extracts was evaluated using parasite lactate dehydrogenase assay against the chloroquine (CQ)-sensitive D10 and the chloroquine (CQ)-resistant W2 strains. RESULT: The methanolic extract of L. gibberoa roots showed the highest in vitro anti-plasmodial effect against both D10 and W2 Plasmodium falciparum strains with IC50 value of 103.83 ± 26.17 µg/mL and 47.11 ± 12.46 µg/mL, respectively. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis were not active with an IC50 value > 200 µg/mL against both D10 and W2 strains. CONCLUSION: The methanolic extract of L. gibberoa roots showed a promising in vitro anti-plasmodial activity against the CQ-sensitive (D10) and CQ-resistant (W2) strains of P. falciparum. Thus, the anti-plasmodial activity of this plant partly justifies and may also support the traditional use against malaria. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis did not exert suppressive activity on the growth of P. falciparum strains.


Asunto(s)
Antimaláricos , Malaria , Plantas Medicinales , Etiopía , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antimaláricos/farmacología , Látex/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/parasitología , Medicina Tradicional , Cloroquina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA