Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 448: 139127, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608399

RESUMEN

To address the food safety issues caused by toxins, we established a fluorescent copper nanocluster biosensor based on magnetic aptamer for the visual and quantitative detection of ZEN. Specifically, we utilized the docking-aided rational tailoring (DART) strategy to analyze intermolecular force and interaction sites between zearalenone (ZEN) and the aptamer, and optimize the long-chain aptamer step by step to enhance the binding affinity by 3.4 times. The magnetic bead-modified aptamer underwent conformational changes when competing with complementary sequences to bind with ZEN. Then, the released complementary sequences will be amplified in template-free mode with the presence of the terminal deoxynucleotidyl transferase (TdT), and generating T-rich sequences as the core sequences for the luminescence of copper nanoclusters. The luminescence could be visualized and quantitatively detected through ultraviolet irradiation. The proposed label-free aptasensor exhibited high sensitivity and specificity, with a low limit of detection (LOD) of 0.1 ng/mL.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Cobre , Zearalenona , Zearalenona/análisis , Zearalenona/química , Cobre/química , Técnicas Biosensibles/instrumentación , Aptámeros de Nucleótidos/química , Contaminación de Alimentos/análisis , Límite de Detección , Simulación del Acoplamiento Molecular , Nanopartículas del Metal/química , Fluorescencia
2.
J Sep Sci ; 47(5): e2300870, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38471979

RESUMEN

Mycotoxin contamination is widespread in plants and herbs, posing serious threats to the consumer and human health. Of them, alternariol (AOH) has attracted great attention as an "emerging" mycotoxin in medicinal herbs. However, a specific and high-throughput extraction method for AOH is currently lacking. Thus, developing an efficient pre-treatment technique for AOH detection is extremely vital. Here, a novel automated magnetic solid-phase extraction method was proposed for the highly efficient extraction of AOH. Combining the aptamer-functionalized magnetic nanoparticles (AMNPs) and the automatic purification instrument, AOH could be extracted in medicinal herbs in high throughput (20 samples) and a short time (30 min). The main parameters affecting extraction were optimized, and the method was finally carried out by incubation AMNPs with 3 mL of sample solution for 10 min, and then desorption in 75% methanol for liquid-phase detection. Under optimal conditions, good reproducibility, stability, and selectivity were realized with an adsorption capacity of 550.84 ng/mg. AOH extraction in three edible herbs showed good resistance to matrix interference with recovery rates from 86% to 111%. In combination with AMNPs and the automatic purification instrument, high-throughput and labor-free extraction of AOH in different complex matrices was achieved, which could be extended in other complex matrices.


Asunto(s)
Lactonas , Nanopartículas de Magnetita , Micotoxinas , Plantas Medicinales , Humanos , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Micotoxinas/análisis , Oligonucleótidos , Extracción en Fase Sólida/métodos
3.
Talanta ; 274: 125944, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537347

RESUMEN

In this study, we present a one-pot, one-step, label-free miRNA detection method through a structural transition of a specially designed dumbbell-shape probe, initiating a rolling circle transition (RCT). In principle, target miRNA binds to right loop of the dumbbell probe (DP), which allows structural change of the DP to circular form, exposing a sequence complementary to the T7 promoter (T7p) previously hidden within the stem. This exposure allows T7 RNA polymerase to initiate RCT, producing a repetitive Mango aptamer sequence. TO1-biotin, fluorescent dye, binds to the aptamer, inducing a detectable enhancement of fluorescence intensity. Without miR-141, the DP stays closed, RCT is prevented, and the fluorescence intensity remains low. By employing this novel strategy, target miRNA was successfully identified with a detection of 73 pM and a dynamic linear range of 0-10 nM. Additionally, the method developed enables one-pot, one-step, and label-free detection of miRNA, demonstrating potential for point-of-care testing (POCT) applications. Furthermore, the practical application of the designed technique was demonstrated by reliably detecting the target miRNA in the human serum sample. We also believe that the conceived approach could be widely used to detect not only miRNAs but also diverse biomolecules by simply replacing the detection probe.


Asunto(s)
Aptámeros de Nucleótidos , MicroARNs , Proteínas Virales , MicroARNs/análisis , MicroARNs/sangre , Humanos , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Límite de Detección , Conformación de Ácido Nucleico , Espectrometría de Fluorescencia , ARN Polimerasas Dirigidas por ADN/química
4.
J Exp Clin Cancer Res ; 43(1): 92, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532439

RESUMEN

BACKGROUND: Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting single-ligand nanomedicine due to the complexity of the tumor microenvironment. METHODS: Gold-core/silica-shell nanoparticles embedding a water-soluble iridium(III) complex as photosensitizer and luminescent probe (Iren-AuSiO2_COOH) were efficiently decorated with amino-terminated EGFR (CL4) and PDGFRß (Gint4.T) aptamers (Iren-AuSiO2_Aptamer). The targeting specificity, and the synergistic photodynamic and photothermal effects of either single- and dual-aptamer-decorated nanoparticles have been assessed by confocal microscopy and cell viability assays, respectively, on different human cell types including mesenchymal subtype triple-negative breast cancer (MES-TNBC) MDA-MB-231 and BT-549 cell lines (both EGFR and PDGFRß positive), luminal/HER2-positive breast cancer BT-474 and epidermoid carcinoma A431 cells (only EGFR positive) and adipose-derived mesenchymal stromal/stem cells (MSCs) (only PDGFRß positive). Cells lacking expression of both receptors were used as negative controls. To take into account the tumor-stroma interplay, fluorescence imaging and cytotoxicity were evaluated in preclinical three-dimensional (3D) stroma-rich breast cancer models. RESULTS: We show efficient capability of Iren-AuSiO2_Aptamer nanoplatforms to selectively enter into target cells, and kill them, through EGFR and/or PDGFRß recognition. Importantly, by targeting EGFR+ tumor/PDGFRß+ stromal cells in the entire tumor bulk, the dual-aptamer-engineered nanoparticles resulted more effective than unconjugated or single-aptamer-conjugated nanoparticles in either 3D spheroids cocultures of tumor cells and MSCs, and in breast cancer organoids derived from pathologically and molecularly well-characterized tumors. CONCLUSIONS: Our study proposes smart, novel and safe multifunctional nanoplatforms simultaneously addressing cancer-stroma within the tumor microenvironment, which are: (i) actively delivered to the targeted cells through highly specific aptamers; (ii) localized by means of their luminescence, and (iii) activated via minimally invasive light, launching efficient tumor death, thus providing innovative precision therapeutics. Given the unique features, the proposed dual targeted nanoformulations may open a new door to precision cancer treatment.


Asunto(s)
Aptámeros de Nucleótidos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Células del Estroma/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Fototerapia , Receptores ErbB/metabolismo , Organoides/metabolismo , Microambiente Tumoral
5.
Biosens Bioelectron ; 252: 116146, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417286

RESUMEN

Staphylococcus aureus contamination in food supplements poses substantial challenges to public health and large-scale production but the sensitive detection in a timely manner remains a bottleneck. Drawing inspiration from the sea hedgehog, gold nanostars (AuNSs) were leveraged to design an ultrasensitive surface-enhanced Raman scattering (SERS) biosensor for the determination of Staphylococcus aureus in food supplements. Besides the surface enhancement furnished by the AuNSs, Raman reporter molecules and specific aptamers sequentially self-assembled onto these AuNSs to construct the "three-in-one" SERS biosensor probe for label-based quantitation of Staphylococcus aureus. Following incubation with contaminated health product samples, the gold nanostars@Raman reporter-aptamer specifically recognize and assemble around Staphylococcus aureus cells, forming a distinctive sea hedgehog structure. This unique configuration results in an amplified Raman signal at 1338 cm-1 and an enhancement factor of up to 6.71 × 107. The entire quantitative detection process can be completed within 30 min, boasting an exceptional limit of detection as low as 1.0 CFU mL-1. The method exhibits a broad working range for the determination of Staphylococcus aureus, with concentrations spanning 2.15 CFU mL-1 to 2.15 × 105 CFU mL-1. Furthermore, it demonstrates outstanding precision, with relative standard deviation values consistently below 5.0%. As a showcase to validate the practicality of the SERS method, we conducted tests on determining Staphylococcus aureus in a herbal food supplement, i.e., Ginkgo Biloba extract (GBE); the results align closely with those obtained through the conventional lysogeny broth agar plate method, pointing to the potential applicability in real-world scenarios.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Animales , Staphylococcus aureus , Nanopartículas del Metal/química , Erizos , Espectrometría Raman/métodos , Técnicas Biosensibles/métodos , Oro/química , Aptámeros de Nucleótidos/química , Suplementos Dietéticos
6.
Food Chem ; 442: 138384, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219567

RESUMEN

A nucleic acid aptamer based thermally oxidized porous silicon/zinc oxide microarray chip was constructed for the detection of ochratoxin A. The hybrid chains formed by aptamer and complementary chains labeled with fluorescent groups and fluorescent burst groups were used as recognition molecules, and the detection of toxins was accomplished on the chip by the principle of fluorescence signal burst and recovery. The modified QuEChERS method was used for sample pretreatment and the performance of the method was evaluated. The results showed that the linear range was 0.02 âˆ¼ 200 ng/kg with the detection limit of 0.0196 ng/kg under the optimal detection conditions. The method was applied to different cereals with the recoveries of 90.30 âˆ¼ 111.69 %. The developed microarray chip has the advantages of being cost-effective, easy to prepare, sensitive and specific, and can provide a new method for the detection of other toxins.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Ácidos Nucleicos , Ocratoxinas , Óxido de Zinc , Silicio , Grano Comestible/química , Porosidad , Zinc , Límite de Detección , Aptámeros de Nucleótidos/genética , Ocratoxinas/análisis , Dióxido de Silicio , Compuestos Orgánicos , Técnicas Biosensibles/métodos
7.
ACS Appl Mater Interfaces ; 15(48): 55358-55368, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38008903

RESUMEN

Tumor-derived extracellular vesicles (T-EVs) hold great promise for understanding cancer biology and improving cancer diagnostics and therapeutics. Herein, we developed multivalent DNA flowers (DFs) containing repeated and equidistant EpCAM aptamers for the efficient isolation of T-EVs. The multivalent aptamer chains in DFs had good flexibility to adapt to the surface morphology of T-EVs and achieved multivalent ligand-receptor interactions, thus showing enhanced isolation ability compared to monovalent aptamers. Compared with other materials for isolation of EVs, DFs were generated by rolling circle amplification (RCA) and self-assembled into microspheres in a one-pot reaction, and the recognition molecules (aptamers) were directly replicated and assembled during the RCA reaction instead of chemical modification and immobilization on the surface of solid materials. Moreover, as optically transparent biomaterials, the content of EpCAM+ EVs could be directly reflected via membrane-based hydrophobic assembly of signaling modules in DFs@EpCAM+ EVs complex, and we found that the amount of EpCAM+ EVs showed greater accuracy in cancer diagnosis than total EVs (88.3 vs 69.7%) and was also higher than the clinically commonly used marker carcinoembryonic antigen (CEA) (88.3 vs 76.7%). In addition, T-EVs could be released by lysis of DFs with the nuclease, gently and easily, keeping high intact and activity of EVs for downstream biological function studies. These results demonstrated that DFs are efficient and nondestructive tools for isolation, detection, and release of T-EVs.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Molécula de Adhesión Celular Epitelial/análisis , ADN/química , Oligonucleótidos/análisis , Neoplasias/diagnóstico , Vesículas Extracelulares/química
8.
Anal Chim Acta ; 1279: 341838, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37827653

RESUMEN

BACKGROUND: COVID-19 (coronavirus disease 2019) pandemic has had enormous social and economic impacts so far. The nucleocapsid protein (N protein) is highly conserved and is a key antigenic marker for the diagnosis of early SARS-CoV-2 infection. RESULTS: In this study, the N protein was first captured by an aptamer (Aptamer 58) coupled to magnetic beads (MBs), which in turn were bound to another DNA sequence containing the aptamer (Aptamer 48-Initiator). After adding 5'-biotinylated hairpin DNA Amplifier 1 and Amplifier 2 with cohesive ends for complementary hybridization, the Initiator in the Aptamer 48-Initiator began to trigger the hybridization chain reaction (HCR), generating multiple biotin-labeled DNA concatamers. When incubated with synthetic streptavidin-invertase-Ca3(PO4)2 hybrid nanoflower (SICa), DNA concatamers could specifically bind to SICa through biotin-streptavidin interaction with high affinity. After adding sucrose, invertase in SICa hydrolyzed sucrose to glucose, whose concentration could be directly read with a portable glucometer, and its concentration was positively correlated with the amount of captured N protein. The method is highly sensitive with a detection limit as low as 1 pg/mL. SIGNIFICANCE: We believe this study provided a practical solution for the early detection of SARS-CoV-2 infection, and offered a new method for detecting other viruses through different target proteins.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , COVID-19 , Humanos , Biotina , Estreptavidina , SARS-CoV-2/genética , beta-Fructofuranosidasa , COVID-19/diagnóstico , ADN/genética , Oligonucleótidos , Proteínas de la Nucleocápside/genética , Sacarosa , Técnicas Biosensibles/métodos , Límite de Detección
9.
Molecules ; 28(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37836816

RESUMEN

The toxic effects of antimony pose risks to human health. Therefore, simple analytical techniques for its widescale monitoring in water sources are in demand. In this study, a sensitive microplate apta-enzyme assay for Sb3+ detection was developed. The biotinylated aptamer A10 was hybridized with its complementary biotinylated oligonucleotide T10 and then immobilized on the surface of polysterene microplate wells. Streptavidin labeled with horseradish peroxidase (HRP) bound to the biotin of a complementary complex and transformed the 3,3',5,5'-tetramethylbenzidine substrate, generating an optical signal. Sb3+ presenting in the sample bounded to an A10 aptamer, thus releasing T10, preventing streptavidin-HRP binding and, as a result, reducing the optical signal. This effect allowed for the detection of Sb3+ with a working range from 0.09 to 2.3 µg/mL and detection limit of 42 ng/mL. It was established that the presence of Ag+ at the stage of A10/T10 complex formation promoted dehybridization of the aptamer A10 and the formation of the A10/Sb3+ complex. The working range of the Ag+-enhanced microplate apta-enzyme assay for Sb3+ was determined to be 8-135 ng/mL, with a detection limit of 1.9 ng/mL. The proposed enhanced approach demonstrated excellent selectivity against other cations/anions, and its practical applicability was confirmed through an analysis of drinking and spring water samples with recoveries of Sb3+ in the range of 109.0-126.2% and 99.6-106.1%, respectively.


Asunto(s)
Aptámeros de Nucleótidos , Plata , Humanos , Estreptavidina , Oligonucleótidos , Cationes , Pruebas de Enzimas/métodos , Peroxidasa de Rábano Silvestre , Agua , Límite de Detección
10.
Anal Chim Acta ; 1276: 341618, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37573108

RESUMEN

Due to their superparamagnetism and enzyme-like activity, iron oxide (Fe3O4) nanozymes can be readily used for sample pretreatment and the generation of detection signals, and have, thus, attracted much attention in the field of bioanalysis and diagnosis. However, the low catalytic activity of Fe3O4 nanozymes does reduce the sensitivity of Fe3O4-based methods, limiting their application. In this study, Fe3O4@Cu@poly(pyrrole-2-carboxylic acid) yolk-shell nanozymes (Fe3O4@Cu@PCPy YSNs) were synthesized using a facile approach and selective chemical etching technology. Compared with Fe3O4 nanozymes, the Fe3O4@Cu@PCPy YSNs demonstrated a three-fold increase in the peroxidase-like activity, good dispersity and strong superparamagnetism. In addition, the flower-shaped structure of aptamer-complementary strand (Apt-CS) conjugates was designed on the surface of the Fe3O4@Cu@PCPy YSNs, which effectively inhibited their peroxidase-like activity by creating a physical barrier that hindered the access of substrates to the center of the Fe3O4@Cu@PCPy YSNs. Based on this principle, a robust and facile colorimetric aptasensor was developed for detecting Salmonella Typhimurium. The flower-shaped Apt-CS were dissociated in the presence of S. Typhimurium, promoting the recovery of Fe3O4@Cu@PCPy YSN catalytic activity. Under optimized conditions, this proposed aptasensor successfully detected S. Typhimurium in a linear range of 3 to 3 × 106 CFU/mL, achieving a detection limit of 1 CFU/mL. Finally, the feasibility of this novel aptasensor was further validated by three actual samples, with recoveries of between 84.3% and 102%, thereby demonstrating the huge potential of the proposed aptasensor for detecting S. Typhimurium in foods.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Salmonella typhimurium , Colorimetría , Aptámeros de Nucleótidos/química , Peroxidasas , Límite de Detección , Técnicas Biosensibles/métodos
11.
Genes Dis ; 10(3): 1075-1089, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37396505

RESUMEN

Major challenges such as nuclease degradation, rapid renal clearance, non-specific delivery, poor cellular uptake and inflammatory response have limited the clinical application of small RNA-mediated gene silencing. To overcome these challenges, we designed a novel targeting small RNA delivery platform comprising of three oligonucleotides: (1) a guide RNA sequence, (2) part of a passenger sequence linked to a DNA aptamer via a PEG linker, and (3) another passenger sequence conjugated to cholesterol, which assemble through complementary base pair annealing. Remarkably, in the presence of magnesium, this molecule self-assembled into a nanoparticle with a hydrophobic cholesterol core, hydrophilic RNA oligonucleotide shell and PEG-linked DNA aptamer flare. The nanoparticles conferred protection to the RNA oligonucleotides against nuclease degradation, which increased bioavailability, and reduced systemic inflammatory responses. The aptamer allowed targeted delivery of RNA therapeutics through cell-specific surface markers, and once inside the cell, the nanoparticles induced lysosomal leakage that released the RNA oligonucleotides into the cytosol to achieve gene silencing. We created a c-Kit-targeting miR-26a delivery particle that specifically accumulated in c-Kit+ breast cancer, significantly increased T cell recruitment, and inhibited tumor growth. Regression of large established tumors were achieved when the nanoparticle was used in combination with anti-CTLA-4 monoclonal antibody.

12.
Colloids Surf B Biointerfaces ; 229: 113437, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37437411

RESUMEN

The combination of phototherapy and chemotherapy has become attractive and effective cancer treatment. However, the accurate delivery of both chemo-phototherapy drugs to the target site as well as the development of high-efficient phototherapy and chemotherapy drugs remain major challenges. In this study, indocyanine green (ICG) and paclitaxel (PTX)-loaded aptamer ferritin (HAS1411-PTX-ICG) was developed as a biocompatible nanoplatform for combined chemo/photothermal/photodynamic (PTT/PDT) therapy that was safe and highly effective against tumors. HAS1411 was prepared by coupling aptamer AS1411 to the surface of human H chain ferritin (HFtn) by the carbon diimide method to further enhance the targeting of HFtn. Both ICG and PTX were effectively encapsulated in the HAS1411 by incubation at 60 â„ƒ. Moreover, under near-infrared (NIR) light irradiation, HAS1411 enhanced the photothermal effect and cell internalization of ICG, as well as the production of reactive oxygen species in cancer cells. HAS1411-PTX-ICG displayed effective cytotoxicity and a significant tumor spheroids inhibitory effect owning to the improved internalization of PTX and ICG mediated by TfR1 and nucleolin dual receptors. Co-loaded PTX combined with ICG can produce chemo/PTT/PDT under near-infrared (NIR) light irradiation, enhancing the anti-tumor effect. The dual-targeting HAS1411 nanocarrier developed in this study can be a promising delivery system for cancer therapy and the fabricated HAS1411-PTX-ICG possesses potential application in chemo-phototherapy.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Paclitaxel/farmacología , Verde de Indocianina/farmacología , Ferritinas , Fototerapia/métodos , Antineoplásicos/farmacología , Línea Celular Tumoral
13.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445772

RESUMEN

This study proposes a label-free aptamer biosensor for the sensitive detection of malachite green(MG) using gold nanoparticles/multi-walled carbon nanotubes @ titanium dioxide(AuNPs/MWCNTs@TiO2). The nanocomposite provides a large surface area and good electrical conductivity, improving current transfer and acting as a platform for aptamer immobilization. The aptamer and the complementary chain(cDNA) are paired by base complementary to form the recognition element and fixed on the AuNPs by sulfhydryl group, which was modified on the cDNA. Since DNA is negatively charged, the redox probe in the electrolyte is less exposed to the electrode surface under the repulsion of the negative charge, resulting in a low-electrical signal level. When MG is present, the aptamer is detached from the cDNA and binds to MG, the DNA on the electrode surface is reduced, and the rejection of the redox probe is weakened, which leads to an enhanced electrical signal and enables the detection of MG concentration by measuring the change in the electrical signal. Under the best experimental conditions, the sensor demonstrates a good linear relationship for the detection of MG from 0.01 to 1000 ng/mL, the limit of detection (LOD)is 8.68 pg/mL. This sensor is stable, specific, and reproducible, allowing for the detection of various small-molecule pollutants by changing the aptamer, providing an effective method for detecting small-molecule pollutants.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Nanocompuestos , Nanotubos de Carbono , Oro/química , ADN Complementario , Nanotubos de Carbono/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Nanocompuestos/química , Técnicas Biosensibles/métodos , Electrodos , Límite de Detección
14.
J Nanobiotechnology ; 21(1): 186, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301952

RESUMEN

Targeted chemo-phototherapy has received widespread attention in cancer treatment for its advantages in reducing the side effects of chemotherapeutics and improving therapeutic effects. However, safe and efficient targeted-delivery of therapeutic agents remains a major obstacle. Herein, we successfully constructed an AS1411-functionalized triangle DNA origami (TOA) to codeliver chemotherapeutic drug (doxorubicin, DOX) and a photosensitizer (indocyanine green, ICG), denoted as TOADI (DOX/ICG-loaded TOA), for targeted synergistic chemo-phototherapy. In vitro studies show that AS1411 as an aptamer of nucleolin efficiently enhances the nanocarrier's endocytosis more than 3 times by tumor cells highly expressing nucleolin. Subsequently, TOADI controllably releases the DOX into the nucleus through the photothermal effect of ICG triggered by near-infrared (NIR) laser irradiation, and the acidic environment of lysosomes/endosomes facilitates the release. The downregulated Bcl-2 and upregulated Bax, Cyt c, and cleaved caspase-3 indicate that the synergistic chemo-phototherapeutic effect of TOADI induces the apoptosis of 4T1 cells, causing ~ 80% cell death. In 4T1 tumor-bearing mice, TOADI exhibits 2.5-fold targeted accumulation in tumor region than TODI without AS1411, and 4-fold higher than free ICG, demonstrating its excellent tumor targeting ability in vivo. With the synergetic treatment of DOX and ICG, TOADI shows a significant therapeutic effect of ~ 90% inhibition of tumor growth with negligible systemic toxicity. In addition, TOADI presents outstanding superiority in fluorescence and photothermal imaging. Taken together, this multifunctional DNA origami-based nanosystem with the advantages of specific tumor targeting and controllable drug release provides a new strategy for enhanced cancer therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Animales , Ratones , Sistemas de Liberación de Medicamentos/métodos , Hipertermia Inducida/métodos , Fototerapia/métodos , Doxorrubicina , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , ADN/uso terapéutico , Concentración de Iones de Hidrógeno , Nanopartículas/uso terapéutico , Liberación de Fármacos , Línea Celular Tumoral
15.
Anal Chim Acta ; 1264: 341302, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37230722

RESUMEN

Aristolochic Acid I (AAI) is an environmental and foodborne toxin found in the Aristolochia and Asarum species of plants that are widespread all over the world. Therefore, there is an urgent need to develop a sensitive and specific biosensor for identifying AAI. Aptamers as a powerful biorecognition element provide the most viable options for solving this problem. In this study, we used library-immobilized SELEX to isolate an AAI-specific aptamer with a KD value of 86 ± 13 nM. To verify the practicability of the selected aptamer, a label-free colorimetric aptasensor was designed. This aptasensor exhibited a low detection limit of 225 nM. Besides, it had been further applied for the determination of AAI in real samples and the recoveries ranged from 97.9% to 102.4%. In the future, AAI aptamer will provide a promising tool for safety evaluation in various fields of agriculture, food, and medication.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Límite de Detección , Extractos Vegetales , Técnica SELEX de Producción de Aptámeros
16.
ACS Appl Mater Interfaces ; 15(22): 26241-26251, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37232130

RESUMEN

Synergetic photothermal/photodynamic/chemotherapy receives significant attention for precise in vivo cancer treatment. Despite plenty of encouraging photosensitizers explored, integrated nanoagents with multiple functions are still highly desired. In this study, novel nanocomposites coupling black phosphorus (BP) nanosheets, gold nanorods (AuNRs), carbon nanodots (CDs), and doxorubicin (Dox) are prepared. The nanoagents exhibit high antitumor activity on account of their broad light absorption, excellent catalytic ability, and significant photothermal and photodynamic effects. CDs not only emit bright fluorescence for accurate diagnosis and guiding of tumor treatment but also catalyze the generation of ROS for photodynamic therapy (PDT). The released Dox induces apoptosis of cells and increases the levels of H2O2 to promote PDT. AuNRs are the main photothermal therapy (PTT) material that converts light into heat. Moreover, BP can be used to enhance both PTT and PDT efficiencies, and the two therapy modes can be cooperatively reinforced. It is also found that the local immune microenvironment of the tumors is activated. The strategy makes good use of the features of each component. Satisfactory antitumor phenomena are well confirmed by in vitro and in vivo results. This study provides new insights into enhanced synergetic therapy, highlighting the great utility of BP-based nanoagents in the field of nanomedicine.


Asunto(s)
Nanotubos , Neoplasias , Fotoquimioterapia , Humanos , Carbono/uso terapéutico , Línea Celular Tumoral , Oro/uso terapéutico , Peróxido de Hidrógeno , Neoplasias/tratamiento farmacológico , Fósforo/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Microambiente Tumoral
17.
Anticancer Res ; 43(3): 1053-1064, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36854538

RESUMEN

BACKGROUND/AIM: Circulating tumor cells (CTC) are tumor cells which can be disseminated at distance of the primary tumor and form metastatic niche. Moreover, their quantity is an important parameter which can induce cluster metastasis. A solution, can be the creation of a system that allow the capture and elimination from the blood of patients by using the medical device developed which is an inert bioceramic functionalized by aptamer target to CTC. MATERIALS AND METHODS: Herein we develop chemical reactions to bind a modified MUC1 specific DNA aptamer on an alumina (Al2O3) dense ceramic surface. In fact, MUC1 biomarker is very present on the surface of tumor cells. RESULTS: The specific developed chemical reactions led to the covalent binding of the aptamer while preserving its biological characteristics. CONCLUSION: This functionalization of dense alumina would allow the potential capture of circulating tumor cells.


Asunto(s)
Aptámeros de Nucleótidos , Eliminación de Componentes Sanguíneos , Células Neoplásicas Circulantes , Humanos , Óxido de Aluminio , Eliminación de Componentes Sanguíneos/métodos , Cerámica/química , Química Clic/métodos , Aptámeros de Nucleótidos/química
18.
Viruses ; 15(1)2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36680191

RESUMEN

(1) Background: Largemouth bass virus (LMBV) is a major viral pathogen in largemouth bass (Micropterus salmoides) aquaculture that often causes high mortality and heavy economic losses, thus developing treatments to combat this pathogen is of great commercial importance. Green tea is a well-known medicinal plant that contains active ingredients with antiviral, antibacterial, and other biological activities. The goals of this study were to explore the effect and mechanism of green tea source compounds on LMBV and provide data to serve as the basis for the screening of targeted drugs in the future. In this study, we evaluated the effects of the main component of green tea, epigallocatechin-3-gallate (EGCG), against LMBV infection. (2) Methods: The safe working concentration of EGCG was identified by cell viability detection and light microscopy. The antiviral activity and mechanism of action of EGCG against LMBV infection were evaluated with light microscopy, an aptamer 6-carboxy-fluorescein-based fluorescent molecular probe, and reverse transcription quantitative PCR. (3) Results: The safe working concentration of EGCG was ≤10 µg/mL. EGCG showed significant anti-LMBV infection activity in a concentration-dependent manner, and it also destroyed the structure of virus particles. EGCG impacted the binding of virus particles to cell receptors and virus invasion into the host cells. Inhibitory effects of EGCG on LMBV particles, LMBV binding to the host-cell membrane, and LMBV invasion were 84.89%, 98.99%, and 95.23%, respectively. Meanwhile, the effects of EGCG subsequently were verified in vivo. The fatality rate of the LMBV + EGCG group was significantly lower than that of the LMBV group. (4) Conclusions: Our results suggest that EGCG has effective antiviral properties against LMBV and may be a candidate for the effective treatment and control of LMBV infections in largemouth bass aquaculture.


Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Virosis , Animales , Antivirales/farmacología ,
19.
Curr Med Chem ; 30(8): 935-952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35220933

RESUMEN

Black phosphorus nanostructures (nano-BPs) mainly include BP nanosheets (BP NSs), BP quantum dots (BPQDs), and other nano-BPs-based particles at nanoscale. Firstly discovered in 2014, nano-BPs are one of the most popular nanomaterials. Different synthesis methods are discussed in short to understand the basic concepts and developments in synthesis. Exfoliated nano-BPs, i.e. nano-BPs possess high surface area, high photothermal conversion efficacy, excellent biocompatibility, high charge carrier mobility (~1000 cm-2V-1s-1), thermal conductivity of 86 Wm-1K-1; and these properties make it a highly potential candidate for fabrication of biosensing platform. These properties enable nano-BPs to be promising photothermal/drug delivery agents as well as in electrochemical data storage devices and sensing devices; and in super capacitors, photodetectors, photovoltaics and solar cells, LEDs, super-conductors, etc. Early diagnosis is very critical in the health sector scenarios. This review attempts to highlight the attempts made towards attaining stable BP, BP-aptamer conjugates for successful biosensing applications. BP-aptamer- based platforms are reviewed to highlight the significance of BP in detecting biological and physiological markers of cardiovascular diseases and cancer; to be useful in disease diagnosis and management.


Asunto(s)
Nanoestructuras , Neoplasias , Puntos Cuánticos , Humanos , Fósforo/química , Nanoestructuras/química , Puntos Cuánticos/química , Oligonucleótidos , Biomarcadores
20.
Anal Sci ; 39(1): 51-57, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36242755

RESUMEN

Ochratoxin A (OTA) is a common mycotoxin with high carcinogenicity; therefore, it is crucial to establish a simple, rapid, and sensitive method for its detection. In this study, we developed a "turn-on" fluorescence assay for detecting OTA based on guanine quenching of the aptamer. The method uses fluorescein (FAM) fluorophore to label the complementary strand of the OTA aptamer, Fc-DNA. In the absence of OTA, the Fc-DNA hybridizes with the aptamer to form a double strand. Due to the occurrence of photo-induced electron transfer (PET), the FAM fluorescence signal is quenched as the FAM on the Fc-DNA approaches the guanine of the aptamer at the 5' end. When OTA is present, the aptamer binds to it and thus, is unable to hybridize with Fc-DNA to form a double strand; the FAM fluorescence signal is restored as FAM moves away from the guanine of the aptamer. The assay achieved OTA detection at a detection limit of 28.4 nM. The application of the original guanine of the aptamer as the quenching agent helps avoid the complex designing and labeling of the aptamer, which ensures the high affinity of the aptamer for OTA. Meanwhile, this "turn-on" detection mode helps avoid potential false-positive results as in the "turn-off" mode and improves the assay's sensitivity. Additionally, the method has good selectivity and can be used to detect OTA in traditional Chinese medicine. This method provides a simple, low-cost, and rapid method for OTA detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Ocratoxinas , Límite de Detección , Aptámeros de Nucleótidos/metabolismo , Ocratoxinas/análisis , Colorantes Fluorescentes , Técnicas Biosensibles/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA