Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 985
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Br Poult Sci ; 65(4): 455-464, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38598261

RESUMEN

1. Tibial dyschondroplasia (TD) is a skeletal disorder in broilers that has financial implications, necessitating dietary modifications to reduce the prevalence of this disease. This study explored how arginine silicate inositol complex (ASI) supplementation affected tibial growth plate (TGP) and overall bone health in broilers with manganese (Mn) deficiency-induced TD.2. A total of 240 broiler chicks were divided into four groups, each consisting of 60 birds (15 replicates of four broilers each) as follows: i) Control, with 60 mg Mn per kg of diet; ii) ASI, with 60 mg Mn and 1 g ASI per kg of diet; iii) TD, with 22 mg Mn per kg of diet, and iv) TD+ASI, with 22 mg Mn and 1 g ASI per kg of diet.3. It was found that ASI supplementation increased tibial bone length in Mn-deficient TD broilers (p = 0.007). There was no Mn x ASI interaction for other bone morphometry variables (p > 0.05). However, both tibial bone mineral content and density were affected by Mn and ASI (p < 0.05). With ASI supplementation, serum bone-specific alkaline phosphatase and osteocalcin levels were elevated in the TD+ASI group compared to the TD group (p < 0.001). In the TD group, osteoprotegerin (OPG) levels in the TGP decreased compared to the control groups (p < 0.001).4. In contrast, ASI supplementation in the TD broilers counteracted the decrease in OPG compared to TD broilers without ASI supplementation (p < 0.001). The Mn level and ASI supplementation significantly influenced the OPG/receptor activator of the nuclear factor-κB ligand ratio (p < 0.001).5. In conclusion, the results demonstrated that inclusion of ASI in broiler diets could enhance bone formation variables by controlling OPG levels in the TGP, potentially serving as an effective method to decrease the occurrence of TD.


Asunto(s)
Alimentación Animal , Arginina , Pollos , Dieta , Suplementos Dietéticos , Inositol , Manganeso , Osteocondrodisplasias , Enfermedades de las Aves de Corral , Tibia , Animales , Pollos/crecimiento & desarrollo , Manganeso/administración & dosificación , Manganeso/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Osteocondrodisplasias/veterinaria , Osteocondrodisplasias/metabolismo , Tibia/efectos de los fármacos , Dieta/veterinaria , Arginina/administración & dosificación , Inositol/administración & dosificación , Masculino , Densidad Ósea/efectos de los fármacos , Silicatos/administración & dosificación , Distribución Aleatoria
2.
Front Immunol ; 15: 1357072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638435

RESUMEN

Introduction: Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods: In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion: The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1ß, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-ß (TGF-ß), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.


Asunto(s)
Arginina , Toxinas Bacterianas , Proteínas de Unión al Calcio , Interleucina-6 , Fosfolipasas de Tipo C , Animales , Masculino , Arginina/farmacología , Toxinas Bacterianas/toxicidad , Proteína X Asociada a bcl-2 , Pollos/genética , Inflamación , Diana Mecanicista del Complejo 1 de la Rapamicina , ARN Mensajero/genética , Serina-Treonina Quinasas TOR/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo
3.
Curr Gene Ther ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38644716

RESUMEN

L-arginine is a semi-essential amino acid that plays a critical role in various physiological processes, such as protein synthesis, wound healing, immune function, and cardiovascular regulation. The use of L-arginine in pregnancy has been an emerging topic in the field of pharmacogenomics. L-arginine, an amino acid, plays a crucial role in the production of nitric oxide, which is necessary for proper placental development and fetal growth. Studies have shown that L-arginine supplementation during pregnancy can have positive effects on fetal growth, maternal blood pressure, and the prevention of preeclampsia. This emerging pharmacogenomic approach involves using genetic information to personalize L-arginine dosages for pregnant women based on their specific genetic makeup. By doing so, it may be possible to optimize the benefits of L-arginine supplementation during pregnancy and improve pregnancy outcomes. This paper emphasizes the potential applications of L-arginine in pregnancy and the use of pharmacogenomic approaches to enhance its effectiveness. Nonetheless, the emerging pharmacogenomic approach to the application of L-arginine offers exciting prospects for the development of novel therapies for a wide range of diseases.

4.
Curr Res Food Sci ; 8: 100731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623273

RESUMEN

Nitrates and nitrites, which are synthetic additives, are traditionally used as curing agents in meat-based products. These synthetic additives are employed in the preparation of fermented meat foods to improve quality characteristics and microbiological safety, develop distinct flavours and red-colour stability, and counteract lipid oxidation. Nitrites also display significant bacteriostatic and bactericidal action against spoilage microorganisms and foodborne pathogens (such as Clostridium botulinum and Listeria monocytogenes). However, meat curing is currently under scrutiny because of its links to cardiovascular diseases and colorectal cancer. Based on the current literature, this review provides recent scientific evidence on the potential utilisation of coagulase-negative staphylococci (CNS) as nitrate and nitrite substitutes in meat-based foods. Indeed, CNS are reported to reproduce the characteristic red pigmentation and maintain the typical high-quality traits of cured-meats, thanks to their arginine degradation pathway, thus providing the nitrite-related desirable attributes in cured meat. The alternative strategy, still based on the NOS pathway, consisting of supplementing meat with arginine to release nitric oxide (NO) and obtain a meat characterised by the desired pinkish-red colour, is also reviewed. Exploiting NOS-positive CNS strains seems particularly challenging because of CNS technological adaptation and the oxygen dependency of the NOS reaction; however, this exploitation could represent a turning point in replacing nitrates and nitrites in meat foods.

5.
Front Neural Circuits ; 18: 1385908, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590628

RESUMEN

Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.


Asunto(s)
Hipotálamo , Núcleo Supraquiasmático , Animales , Núcleo Supraquiasmático/metabolismo , Hipotálamo/metabolismo , Ritmo Circadiano/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Sueño , Arginina Vasopresina/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(16): e2401313121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38602916

RESUMEN

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.


Asunto(s)
Arginina , Ligasas , Arginina/metabolismo , Citrulina/metabolismo , Amoníaco , Ornitina/genética , Adenosina Trifosfato/metabolismo , Fosfatos , Adenosina , Catálisis
7.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38612442

RESUMEN

MELAS syndrome, characterized by mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes, represents a devastating mitochondrial disease, with the stroke-like episodes being its primary manifestation. Arginine supplementation has been used and recommended as a treatment for these acute attacks; however, insufficient evidence exists to support this treatment for MELAS. The mechanisms underlying the effect of arginine on MELAS pathophysiology remain unclear, although it is hypothesized that arginine could increase nitric oxide availability and, consequently, enhance blood supply to the brain. A more comprehensive understanding of these mechanisms is necessary to improve treatment strategies, such as dose and regimen adjustments; identify which patients could benefit the most; and establish potential markers for follow-up. This review aims to analyze the existing evidence concerning the mechanisms through which arginine supplementation impacts MELAS pathophysiology and provide the current scenario and perspectives for future investigations.


Asunto(s)
Acidosis Láctica , Síndrome MELAS , Accidente Cerebrovascular , Humanos , Síndrome MELAS/tratamiento farmacológico , Arginina/uso terapéutico , Suplementos Dietéticos
8.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612797

RESUMEN

Carbon (C) and nitrogen (N) metabolisms participate in N source-regulated secondary metabolism in medicinal plants, but the specific mechanisms involved remain to be investigated. By using nitrate (NN), ammonium (AN), urea (UN), and glycine (GN), respectively, as sole N sources, we found that N sources remarkably affected the contents of diterpenoid lactone components along with C and N metabolisms reprograming in Andrographis paniculata, as compared to NN, the other three N sources raised the levels of 14-deoxyandrographolide, andrographolide, dehydroandrographolide (except UN), and neoandrographolide (except AN) with a prominent accumulation of farnesyl pyrophosphate (FPP). These N sources also raised the photosynthetic rate and the levels of fructose and/or sucrose but reduced the activities of phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoenolpyruvate carboxylase (PEPC) and pyruvate dehydrogenase (PDH). Conversely, phosphoenolpyruvate carboxykinase (PEPCK) and malate enzyme (ME) activities were upregulated. Simultaneously, citrate, cis-aconitate and isocitrate levels declined, and N assimilation was inhibited. These results indicated that AN, UN and GN reduced the metabolic flow of carbohydrates from glycolysis into the TCA cycle and downstream N assimilation. Furthermore, they enhanced arginine and GABA metabolism, which increased C replenishment of the TCA cycle, and increased ethylene and salicylic acid (SA) levels. Thus, we proposed that the N sources reprogrammed C and N metabolism, attenuating the competition of N assimilation for C, and promoting the synthesis and accumulation of andrographolide through plant hormone signaling. To obtain a higher production of andrographolide in A. paniculata, AN fertilizer is recommended in its N management.


Asunto(s)
Andrographis paniculata , Diterpenos , Extractos Vegetales , Carbono , Plantones
9.
J Tissue Viability ; 33(2): 239-242, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38448329

RESUMEN

INTRODUCTION: Various nutrients play a physiological role in the healing process of pressure ulcers (PUs). Nutritional interventions include the administration of enteral nutritional supplements and formulas containing arginine, glutamine, and micronutrients. The aim of this systematic review is to evaluate the effectiveness of enteral nutritional supplements and formulas containing arginine and glutamine on wound-related outcomes. These include (1) time to healing, (2) changes in wound size, (3) local wound infection, (4) PU recurrence, and (5) PU-related pain. MATERIALS AND METHODS: This protocol was developed according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). A search will be conducted in the Cochrane Library, EMBASE, PubMed (MEDLINE), CINAHL (EBSCOhost interface) and Web of Science. In addition, a manual search will be conducted to identify relevant records. Except for systematic reviews, no restrictions will be placed on the study design, the population studied or the setting. Studies that do not address PUs, in vitro studies and studies that do not report wound-related outcomes will be excluded. Study selection, risk of bias assessment and data extraction will be performed independently by three researchers. Depending on the extent of heterogeneity of interventions, follow-up time and populations, results will be summarised either by meta-analysis or narrative synthesis. CONCLUSIONS: This is the first systematic review to identify, evaluate and summarise the current evidence for enteral arginine and glutamine supplementation on wound-related outcomes in PUs. The review will provide a solid basis for deriving valid and clinically relevant conclusions in this area.


Asunto(s)
Arginina , Glutamina , Úlcera por Presión , Revisiones Sistemáticas como Asunto , Cicatrización de Heridas , Úlcera por Presión/tratamiento farmacológico , Arginina/uso terapéutico , Arginina/farmacología , Arginina/administración & dosificación , Glutamina/uso terapéutico , Glutamina/farmacología , Glutamina/administración & dosificación , Humanos , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología
10.
J Dent ; 148: 104965, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38548164

RESUMEN

OBJECTIVE: The study objectives were to examine the physical properties and enamel remineralization potential of fluoride (F) varnishes incorporated with arginine (Arg). METHODS: Four commercial F varnishes: 1) Duraphat®; 2) Flúor Protector®, 3) Fluor Protector S®, and 4) Fluorimax™ were supplemented with 2% w/v. Arg. The control/experimental varnishes underwent rheometric analysis to assess varnish density (δ), velocity (ν), and associated viscosity, both quantitatively (ν/δ) and qualitatively based on determined mass, volume, distance flow, and time under experimentation. The varnish wet/dry weights (at 2 h) were also analysed. Further, sound enamel specimens (T0) with artificial incipient caries-like lesions (T1) were treated with control/experimental varnishes and subjected to remineralization assay with artificial saliva for 6 h. Thereafter (T2), the specimens were characterized to estimate precipitated Ca and net enamel F uptake. Additionally, mineral density (MD) was assessed using micro-CT at T0, T1, and T2 to derive mineral gain (MG) and % remineralization for the treatment groups. RESULTS: When Arg is incorporated, the physical properties of the F-containing varnishes undergo a significant transformation, resulting in higher density, varnish weight, dry varnish weight, and viscosity compared to their respective control varnishes (p < 0.05). Incorporating Arg-in Duraphat®, Fluor Protector S®, and Fluorimax™ significantly improved both enamel Ca precipitation and F uptake compared to the respective controls (p < 0.05). Additionally, the enamel F uptake was significantly higher with all the tested varnishes when enriched with Arg (p < 0.05). The combined data for MD, MG, and % remineralization suggests that the remineralization potential of F-varnishes significantly increased when enriched with Arg (p < 0.05). CONCLUSION: Incorporating Arg in inorganic F varnishes improves their physical properties and enhances the enamel remineralization potential of the varnishes. CLINICAL SIGNIFICANCE: This study highlights the possibility of incorporating Arg in distinct F-source varnishes. The synergism between active components (Arg-F) aids in enhanced remineralization and superior varnish physical properties, demonstrating a promising approach for high caries-risk patients.


Asunto(s)
Arginina , Cariostáticos , Esmalte Dental , Fluoruros Tópicos , Remineralización Dental , Arginina/uso terapéutico , Arginina/farmacología , Esmalte Dental/efectos de los fármacos , Remineralización Dental/métodos , Fluoruros Tópicos/farmacología , Cariostáticos/uso terapéutico , Cariostáticos/farmacología , Viscosidad , Microtomografía por Rayos X , Fluoruro de Sodio/uso terapéutico , Fluoruro de Sodio/farmacología , Animales , Calcio , Caries Dental , Humanos , Reología , Ensayo de Materiales , Saliva Artificial/química , Bovinos , Fluoruros/uso terapéutico
11.
mSphere ; 9(3): e0077423, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38426801

RESUMEN

Diabetic foot ulcers (DFUs) are the most common complications of diabetes resulting from hyperglycemia leading to ischemic hypoxic tissue and nerve damage. Staphylococcus aureus is the most frequently isolated bacteria from DFUs and causes severe necrotic infections leading to amputations with a poor 5-year survival rate. However, very little is known about the mechanisms by which S. aureus dominantly colonizes and causes severe disease in DFUs. Herein, we utilized a pressure wound model in diabetic TALLYHO/JngJ mice to reproduce ischemic hypoxic tissue damage seen in DFUs and demonstrated that anaerobic fermentative growth of S. aureus significantly increased the virulence and the severity of disease by activating two-component regulatory systems leading to expression of virulence factors. Our in vitro studies showed that supplementation of nitrate as a terminal electron acceptor promotes anaerobic respiration and suppresses the expression of S. aureus virulence factors through inactivation of two-component regulatory systems, suggesting potential therapeutic benefits by promoting anaerobic nitrate respiration. Our in vivo studies revealed that dietary supplementation of L-arginine (L-Arg) significantly attenuated the severity of disease caused by S. aureus in the pressure wound model by providing nitrate. Collectively, these findings highlight the importance of anaerobic fermentative growth in S. aureus pathogenesis and the potential of dietary L-Arg supplementation as a therapeutic to prevent severe S. aureus infection in DFUs.IMPORTANCES. aureus is the most common cause of infection in DFUs, often resulting in lower-extremity amputation with a distressingly poor 5-year survival rate. Treatment for S. aureus infections has largely remained unchanged for decades and involves tissue debridement with antibiotic therapy. With high levels of conservative treatment failure, recurrence of ulcers, and antibiotic resistance, a new approach is necessary to prevent lower-extremity amputations. Nutritional aspects of DFU treatment have largely been overlooked as there has been contradictory clinical trial evidence, but very few in vitro and in vivo modelings of nutritional treatment studies have been performed. Here we demonstrate that dietary supplementation of L-Arg in a diabetic mouse model significantly reduced duration and severity of disease caused by S. aureus. These findings suggest that L-Arg supplementation could be useful as a potential preventive measure against severe S. aureus infections in DFUs.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Infecciones Estafilocócicas , Animales , Ratones , Staphylococcus aureus , Virulencia , Nitratos , Infecciones Estafilocócicas/complicaciones , Pie Diabético/tratamiento farmacológico , Pie Diabético/complicaciones , Pie Diabético/microbiología , Factores de Virulencia , Suplementos Dietéticos
12.
Heliyon ; 10(6): e27589, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38509962

RESUMEN

Angelica dahurica is a medicinal herb of the Umbelliferae family. The dried root of A. dahurica, also known as Angelicae dahuricae Radix, is widely used in clinical treatment. However, the aboveground part of A. dahurica which accounted for over 70% of the total plant was abandoned in the field. In order to develop the value of the aboveground part of A. dahurica, the chemical constituents and arginine kinase (AK) inhibitory activity of A. dahurica leaves were studied. 85 volatile components were identified from A. dahurica leaves by GC-MS; 39 non-volatile components including sugars, amino acids and organic acids were identified by pre-column derivatization GC-MS analysis; and 7 coumarins were qualitatively and quantitatively analyzed by HPLC. Then, an inhibitory enzyme-linked immunosorbent assay (iEIA) was applied for evaluation of AK inhibitory activity. The extracts of A. dahurica leaves exhibited well inhibitory effects on AK. Further, potential AK inhibitors were screened by grey relational analysis and their inhibitory activities were validated by iEIA. l-aspartic acid exhibited strongest inhibitory effect on AK with its IC50 value was 0.558 mM, which was much lower than that of chlorpheniramine (6.644 mM). The obtained chemical profiles displayed chemical diversity of A. dahurica leaves and will provide data support for the future development and utilization of A. dahurica leaves. The screened potential AK inhibitors from A. dahurica leaves could be candidates for development of antiallergic substances or insecticides.

13.
Clin Nutr ; 43(3): 660-673, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38309228

RESUMEN

BACKGROUND: Arginine, a conditionally essential amino acid, is key component in metabolic pathways including immune regulation and protein synthesis. Depletion of arginine contributes to worse outcomes in severely ill and surgical patient populations. We assessed prognostic implications of arginine levels and its metabolites and ratios in polymorbid medical inpatients at nutritional risk regarding clinical outcomes and treatment response. METHODS: Within this secondary analysis of the randomized controlled Effect of early nutritional support on Frailty, Functional Outcomes, and Recovery of malnourished medical inpatients Trial (EFFORT), we investigated the association of arginine, its metabolites and ratios (i.e., ADMA and SDMA, ratios of arginine/ADMA, arginine/ornithine, and global arginine bioavailability ratio) measured on hospital admission with short-term and long-term mortality by means of regression analysis. RESULTS: Among the 231 patients with available measurements, low arginine levels ≤90.05 µmol/l (n = 86; 37 %) were associated with higher all-cause mortality at 30 days (primary endpoint, adjusted HR 3.27, 95 % CI 1.86 to 5.75, p < 0.001) and at 5 years (adjusted HR 1.50, 95 % CI 1.07 to 2.12, p = 0.020). Arginine metabolites and ratios were also associated with adverse outcome, but had lower prognostic value. There was, however, no evidence that treatment response was influenced by admission arginine levels. CONCLUSION: This secondary analysis focusing on medical inpatients at nutritional risk confirms a strong association of low plasma arginine levels and worse clinical courses. The potential effects of arginine-enriched nutritional supplements should be investigated in this population of patients. CLINICAL TRIAL REGISTRATION: clinicaltrials.gov as NCT02517476 (registered 7 August 2015).


Asunto(s)
Arginina , Pacientes Internos , Humanos , Pronóstico , Disponibilidad Biológica , Aminoácidos Esenciales
14.
Mol Genet Metab ; 141(3): 108112, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301530

RESUMEN

OBJECTIVE: Liver transplantation (LTx) is an intervention when medical management is not sufficiently preventing individuals with urea cycle disorders (UCDs) from the occurrence of hyperammonemic events. Supplementation with L-citrulline/arginine is regularly performed prior to LTx to support ureagenesis and is often continued after the intervention. However, systematic studies assessing the impact of long-term L-citrulline/arginine supplementation in individuals who have undergone LTx is lacking to date. METHODS: Using longitudinal data collected systematically, a comparative analysis was carried out by studying the effects of long-term L-citrulline/arginine supplementation vs. no supplementation on health-related outcome parameters (i.e., anthropometric, neurological, and cognitive outcomes) in individuals with UCDs who have undergone LTx. Altogether, 52 individuals with male ornithine transcarbamylase deficiency, citrullinemia type 1 and argininosuccinic aciduria and a pre-transplant "severe" disease course who have undergone LTx were investigated by using recently established and validated genotype-specific in vitro enzyme activities. RESULTS: Long-term supplementation of individuals with L-citrulline/arginine who have undergone LTx (n = 16) does neither appear to alter anthropometric nor neurocognitive endpoints when compared to their severity-adjusted counterparts that were not supplemented (n = 36) after LTx with mean observation periods between four to five years. Moreover, supplementation with L-citrulline/arginine was not associated with an increase of disease-specific plasma arithmetic mean values for the respective amino acids when compared to the non-supplemented control cohort. CONCLUSION: Although supplementation with L-citrulline/arginine is often continued after LTx, this pilot study does neither identify altered long-term anthropometric or neurocognitive health-related outcomes nor does it find an adequate biochemical response as reflected by the unaltered plasma arithmetic mean values for L-citrulline or L-arginine. Further prospective analyses in larger samples and even longer observation periods will provide more insight into the usefulness of long-term supplementation with L-citrulline/arginine for individuals with UCDs who have undergone LTx.


Asunto(s)
Trasplante de Hígado , Trastornos Innatos del Ciclo de la Urea , Masculino , Humanos , Citrulina/uso terapéutico , Arginina/metabolismo , Proyectos Piloto , Trastornos Innatos del Ciclo de la Urea/tratamiento farmacológico , Trastornos Innatos del Ciclo de la Urea/cirugía , Suplementos Dietéticos , Urea/metabolismo
15.
Int Immunopharmacol ; 130: 111638, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38373387

RESUMEN

L-arginine, as an essential substance of the immune system, plays a vital role in innate immunity. MiR155, a multi-functional microRNA, has gained importance as a regulator of homeostasis in immune cells. However, the immunoregulatory mechanism between L-arginine and miR155 in bacterial infections is unknown. Here, we investigated the potential role of miR155 in inflammation and the molecular regulatory mechanisms of L-arginine in Streptococcus uberis (S. uberis) infections. And we observed that miR155 was up-regulated after infection, accompanying the depletion of L-arginine, leading to metabolic disorders of amino acids and severe tissue damage. Mechanically, the upregulated miR155 mediated by the p65 protein played a pro-inflammatory role by suppressing the suppressor of cytokine signaling 6 (SOCS6)-mediated p65 ubiquitination and degradation. This culminated in a violently inflammatory response and tissue damage. Interestingly, a significant anti-inflammatory effect was revealed in L-arginine supplementation by reducing miR155 production via inhibiting p65. This work firstly uncovers the pro-inflammatory role of miR155 and an anti-inflammatory mechanism of L-arginine in S.uberis infection with a mouse mastitis model. Collectively, we provide new insights and strategies for the prevention and control of this important pathogen, which is of great significance for ensuring human food health and safety.


Asunto(s)
Arginina , Mastitis , MicroARNs , Infecciones Estreptocócicas , Animales , Femenino , Humanos , Ratones , Arginina/metabolismo , Inflamación/metabolismo , MicroARNs/genética , Infecciones Estreptocócicas/metabolismo , Streptococcus/fisiología , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Mastitis/inmunología , Mastitis/metabolismo
16.
Adv Sci (Weinh) ; 11(14): e2307526, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38298064

RESUMEN

Arginine and lysine, frequently appearing as a pair on histones, have been proven to carry diverse modifications and execute various epigenetic regulatory functions. However, the most context-specific and transient effectors of these marks, while significant, have evaded study as detection methods have thus far not reached a standard to capture these ephemeral events. Herein, a pair of complementary photo-arginine/δ-photo-lysine (R-dz/K-dz) probes is developed and involve these into histone peptide, nucleosome, and chromatin substrates to capture and explore the interactomes of Arg and Lys hPTMs. By means of these developed tools, this study identifies that H3R2me2a can recruit MutS protein homolog 6 (MSH6), otherwise repelDouble PHD fingers 2 (DPF2), Retinoblastoma binding protein 4/7 (RBBP4/7). And it is disclosed that H3R2me2a inhibits the chromatin remodeling activity of the cBAF complex by blocking the interaction between DPF2 (one component of cBAF) and the nucleosome. In addition, the novel pairs of H4K5 PTMs and respective readers are highlighted, namely H4K5me-Lethal(3)malignant brain tumor-like protein 2 (L3MBTL2), H4K5me2-L3MBTL2, and H4K5acK8ac-YEATS domain-containing protein 4 (YEATS4). These powerful tools pave the way for future investigation of related epigenetic mechanisms including but not limited to hPTMs.


Asunto(s)
Lisina , Nucleosomas , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Histonas/metabolismo , Cromatina , Arginina/metabolismo
17.
J Neuroinflammation ; 21(1): 59, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419038

RESUMEN

We previously identified solute carrier family 7 member 2 (SLC7A2) as one of the top upregulated genes when normal Huntingtin was deleted. SLC7A2 has a high affinity for L-arginine. Arginine is implicated in inflammatory responses, and SLC7A2 is an important regulator of innate and adaptive immunity in macrophages. Although neuroinflammation is clearly demonstrated in animal models and patients with Huntington's disease (HD), the question of whether neuroinflammation actively participates in HD pathogenesis is a topic of ongoing research and debate. Here, we studied the role of SLC7A2 in mediating the neuroinflammatory stress response in HD cells. RNA sequencing (RNA-seq), quantitative RT-PCR and data mining of publicly available RNA-seq datasets of human patients were performed to assess the levels of SLC7A2 mRNA in different HD cellular models and patients. Biochemical studies were then conducted on cell lines and primary mouse astrocytes to investigate arginine metabolism and nitrosative stress in response to neuroinflammation. The CRISPR-Cas9 system was used to knock out SLC7A2 in STHdhQ7 and Q111 cells to investigate its role in mediating the neuroinflammatory response. Live-cell imaging was used to measure mitochondrial dynamics. Finally, exploratory studies were performed using the Enroll-HD periodic human patient dataset to analyze the effect of arginine supplements on HD progression. We found that SLC7A2 is selectively upregulated in HD cellular models and patients. HD cells exhibit an overactive response to neuroinflammatory challenges, as demonstrated by abnormally high iNOS induction and NO production, leading to increased protein nitrosylation. Depleting extracellular Arg or knocking out SLC7A2 blocked iNOS induction and NO production in STHdhQ111 cells. We further examined the functional impact of protein nitrosylation on a well-documented protein target, DRP-1, and found that more mitochondria were fragmented in challenged STHdhQ111 cells. Last, analysis of Enroll-HD datasets suggested that HD patients taking arginine supplements progressed more rapidly than others. Our data suggest a novel pathway that links arginine uptake to nitrosative stress via upregulation of SLC7A2 in the pathogenesis and progression of HD. This further implies that arginine supplements may potentially pose a greater risk to HD patients.


Asunto(s)
Enfermedad de Huntington , Estrés Nitrosativo , Animales , Humanos , Ratones , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina , Línea Celular , Enfermedad de Huntington/genética , Inflamación , Enfermedades Neuroinflamatorias
18.
J Chromatogr A ; 1719: 464732, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38387153

RESUMEN

The extraction methods for traditional Chinese medicine (TCM) may have varying therapeutic effects on diseases. Currently, Pueraria lobata (PL) is mostly extracted with ethanol, but decoction, as a TCM extraction method, is not widely adopted. In this study, we present a strategy that integrates targeted metabolomics, 16 s rDNA sequencing technology and metagenomics for exploring the potential mechanism of the water extract of PL (PLE) in treating myocardial infarction (MI). Using advanced analytical techniques like ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we comprehensively characterized PLE's chemical composition. Further, we tested its efficacy in a rat model of MI induced by ligation of the left anterior descending branch of the coronary artery (LAD). We assessed cardiac enzyme levels and conducted echocardiograms. UPLC-MS/MS was used to compare amino acid differences in serum. Furthermore, we investigated fecal samples using 16S rDNA sequencing and metagenomic sequencing to study intestinal flora diversity and function. This study demonstrated PLE's effectiveness in reducing cardiac injury in LAD-ligated rats. Amino acid metabolomics revealed significant improvements in serum levels of arginine, citrulline, proline, ornithine, creatine, creatinine, and sarcosine in MI rats, which are key compounds in the arginine metabolism pathway. Enzyme-linked immunosorbent assay (ELISA) results showed that PLE significantly improved arginase (Arg), nitric oxide synthase (NOS), and creatine kinase (CK) contents in the liver tissue of MI rats. 16 s rDNA and metagenome sequencing revealed that PLE significantly improved intestinal flora imbalance in MI rats, particularly in taxa such as Tuzzerella, Desulfovibrio, Fournierella, Oscillibater, Harryflintia, and Holdemania. PLE also improved the arginine metabolic pathway in the intestinal microorganisms of MI rats. The findings indicate that PLE effectively modulates MI-induced arginine levels and restores intestinal flora balance. This study, the first to explore the mechanism of action of PLE in MI treatment considering amino acid metabolism and intestinal flora, expands our understanding of the potential of PL in MI treatment. It offers fresh insights into the mechanisms of PL, guiding further research and development of PL-based medicines.


Asunto(s)
Medicamentos Herbarios Chinos , Infarto del Miocardio , Pueraria , Ratas , Animales , Arginina , Cromatografía Liquida , Espectrometría de Masas en Tándem , Metabolómica/métodos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Aminoácidos , ADN Ribosómico
19.
Food Sci Nutr ; 12(2): 1095-1104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370070

RESUMEN

Three-spot seahorse (Hippocampus trimaculatus) has been consumed as traditional Chinese medicine in Asian society. This study was designed to analyze the bioactive compounds of the solvent extracts from cultured three-spot seahorse by high pressure liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI/MS/MS). Subsequently, their biological activities were evaluated and confirmed by cell modes and Western blot analysis. Experimental results indicated that taurine and arginine were the primary bioactive compounds identified and quantified without pre- or post-column derivatization within 20 min retention time. The analytical method was established and validated with intraday/interday RSD from 0.25% to 3.34% and with recovery from 87.8% to 91.2%. As compared to other extracts, water layer extract (WLE) contained the most taurine and arginine contents of 6.807 and 0.437 mg/g (dry basis), respectively. In the meanwhile, WLE also showed anti-inflammatory activity on LPS-induced NO production and inhibited the protein expression of TNF-α and COX-2 by Western blot analysis with better cell viability.

20.
Aging Cell ; 23(4): e14081, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38236004

RESUMEN

Aging-induced cognitive impairment is associated with a loss of metabolic homeostasis and plasticity. An emerging idea is that targeting key metabolites is sufficient to impact the function of other organisms. Therefore, more metabolism-targeted therapeutic intervention is needed to improve cognitive impairment. We first conducted untargeted metabolomic analyses and 16S rRNA to identify the aging-associated metabolic adaption and intestinal microbiome change. Untargeted metabolomic analyses of plasma revealed L-arginine metabolic homeostasis was altered during the aging process. Impaired L-arginine metabolic homeostasis was associated with low abundance of intestinal Akkermansia muciniphila (AKK) colonization in mice. Long-term supplementation of AKK outer membranes protein-Amuc_1100, rescued the L-arginine level and restored cognitive impairment in aging mice. Mechanically, Amuc_1100 acted directly as a source of L-arginine and enriched the L-arginine-producing bacteria. In aged brain, Amuc_1100 promoted the superoxide dismutase to alleviated oxidation stress, and increased nitric oxide, derivatives of L-arginine, to improve synaptic plasticity. Meanwhile, L-arginine repaired lipopolysaccharide-induced intestinal barrier damage and promoted growth of colon organoid. Our findings indicated that aging-related cognitive impairment was closely associated with the disorders of L-arginine metabolism. AKK-derived Amuc_1100, as a potential postbiotic, targeting the L-arginine metabolism, might provide a promising therapeutic strategy to maintain the intestinal homeostasis and cognitive function in aging.


Asunto(s)
Disfunción Cognitiva , Verrucomicrobia , Ratones , Animales , ARN Ribosómico 16S , Homeostasis , Arginina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA