RESUMEN
This investigation delves into the dynamic metabolic shifts within barley grains during the roasting process, employing UPLC-QqQ-MS/MS analysis. The complex spectrum of metabolites before and after roasting is revealed. The resulting data, unveils substantial transformations in chemical composition during roasting. A total of 62 chromatographic peaks spanning phenolic compounds, flavones, Millard Reaction Products, amino acids, lignans, vitamins, folates, and anthocyanins were annotated. Leveraging UPLC-QqQ-MS/MS analysis, we scrutinized the intricate metabolite profile before and after roasting where the roasting process was found to trigger dynamic changes across diverse metabolite classes particularly Millard Reaction Products, produced through the Maillard reaction, with dihydro-5-methyl-5H-cyclopentapyrazine, maltol and hydroxy maltol emerging as discerning markers of roasting progression. Amino acids and sugars showed degradation, while beta-glucan, a signature barley sugar, experienced notable decline. Folate derivatives witnessed pronounced reduction, aligning with the heat sensitivity of folates. Harnessing the power of multivariate data analysis, the consequences of roasting materialize through distinct clusters in PCA and OPLS-DA plots. Noteworthy, roasting duration governs the trajectory of metabolic divergence, culminating in the identification of roasting-specific markers. Epigallocatechin, procyanidin B, 10-HCO-H4 folate, and hordatine A emerge as pivotal discriminators. Orthogonal Projection to Latent Structure (OPLS) analysis linked anti-inflammatory activity with 30-min, 1-hour, and 1.5-hour roasted samples, with hordatine B in addition to some Millard Reaction Products being correlated with pro-inflammatory marker downregulation.. This study encapsulates the intricate metabolic metamorphosis ignited by roasting in barley grains, offering a holistic comprehension of their potential health-enhancing attributes. Key metabolites act as poignant indicators of these transformations, substantiating the complex interplay between roasting and the barley grain metabolome.
Asunto(s)
Hordeum , Hordeum/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Antocianinas/análisis , Quimiometría , Aminoácidos/análisis , Ácido FólicoRESUMEN
Endophytic fungi produced attractive primary and secondary metabolites for industries, pharmacology, and biotechnology. The bioactive potential of HE19ct, identified as Penicillium brevicompactum according to ITS-BenA-caM, was addressed. Antimicrobial and antioxidant activities and secondary metabolite contents using four culture media in Agar-plate (ApF) and Submerged (SmF) fermentation were evaluated. Some plant growth-promoting (PGP) traits and their related genes were tested. HE19ct exhibited antimicrobial activity against Staphylococcus aureus, Enterococcus faecalis, Candida albicans, C. tropicalis, Fusarium sp., Geotrichum candidum, and Alternaria sp. All cultures showed DPPH scavenging activity and phenolic compounds, where ethyl acetate extract of SmF with malt extract showed higher activity and SmF/ApF with potato-dextrose exhibited higher yield, respectively. HE19ct solubilized tricalcium-phosphate and produced siderophore, endoglucanase, proteinase, and amylase. It enhanced the alfalfa's germination at 15 °C, root development, and phenols production at 15 and 24 °C. Phenols, tannins, anthraquinones, triterpenoids/steroids, and alkaloids production were detected depending on culture media. Polyketide synthase type I gene (PksI), subtilisin-like protease prb 1 (Pbr), and siderophore D (sidD) were PCR-amplified. Finally, HE19CT could be a promising source of interesting bioactive compounds for pharmacology and agriculture mainly in extreme conditions, then metabolomic and functional genetic research must be performed to support their appropriate application.
Asunto(s)
Antiinfecciosos , Plantas Medicinales , Medios de Cultivo , Fenoles , SideróforosRESUMEN
BACKGROUND: Herbal medicinal products containing Vaccinium myrtillus L. (bilberry) fruits and fruit extracts are widely available in the market. Although bilberry leaves and stems are considered as bio-waste, they contain much higher levels of phenolic compounds than fruits. The study aimed to investigate the antimicrobial and anticancer potential of aerial part extracts from Vaccinium myrtillus L. (V. myrtillus, VM) plants harvested at high altitudes in Armenian landscape and characterize the bioactive phytochemicals. MATERIAL AND METHODS: For evaluation of antioxidant properties, chemical-based tests (total phenolic and flavonoid content, and antiradical activity in 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) tests) and cellular antioxidant activity (CAA) assay were applied. Genotoxicity and anticancer properties of the extract alone and in combination with fluorouracil were explored in human cancer and normal cell lines. Antibacterial properties of V. myrtillus extract alone and in combination with antibiotics, as well as their effect on proton-flux rate through cell membrane were explored on bacterial strains. The characterization of active phytochemicals was done using Liquid Chromatography-Quadrupole-Orbitrap High-Resolution Mass Spectrometry (LC-Q-Orbitrap HRMS). RESULTS: The V. myrtillus aerial part extract demonstrated promising antioxidant properties in all tests. The selective cytotoxic activity was documented against various cancer cell lines (human colon adenocarcinoma (HT29), human breast cancer (MCF-7) and human cervical carcinoma (HeLa)), while it did not inhibit the growth of tested human normal primary renal mixed epithelial cells (HREC) even at 10-fold higher concentrations. The extract did not have genotoxic properties in comet assay making it a potential source for the development of anticancer preparations. The investigated extract did not directly inhibit the growth of Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) strains at up to 1 mg/mL concentration. However, V. myrtillus extract enhanced the kanamycin intake and increased its efficiency against E. coli strain. The phytochemical characterization of the extract showed the presence of different groups of phenolics. CONCLUSIONS: Based on obtained data, we suggest the aerial parts of the V. myrtillus plant as an alternative source of bioactive natural products for food supplements, nutraceuticals, functional foods and medicine.
Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Vaccinium myrtillus , Humanos , Vaccinium myrtillus/química , Vaccinium myrtillus/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Antibacterianos/farmacología , Escherichia coli , Fenoles/análisis , Fenoles/química , Fenoles/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/metabolismo , Extractos Vegetales/farmacologíaRESUMEN
Medicinal plants are hosts to an infinite number of microorganisms, commonly referred to as endophytes which are rich in bioactive metabolites yielding favorable biological activities. The endophytes are known to have a profound impact on their host plant by promoting the accumulation of secondary metabolites which are beneficial to humankind. In the present study, the fungal endophyte, Fusarium solani (ABR4) from the medicinal plant Tinospora cordifolia, was assessed for its bioactive secondary metabolites employing fermentation on a solid rice medium. The crude ABR4 fungal extract was sequentially purified using the solvent extraction method and characterized using different spectroscopic and analytical techniques namely TLC, UV spectroscopic analysis, HRESI-MS, FTIR, and GC-MS analysis. The GC-MS analysis revealed the presence of pyridine, benzoic acid, 4-[(trimethylsilyl)oxy]-trimethylsilyl ester, hexadecanoic acid trimethylsilyl ester, and oleic acid trimethylsilyl ester. The cytotoxic ability of ABR4 was evaluated by MTT assay against lung cancer (A549) and breast cancer (MCF-7) cell lines. The compounds did not exhibit significant cytotoxicity against the tested cell lines. The endophytic ABR4 extract was evaluated for its antimicrobial potential against human pathogens (S. aureus, B. cereus, E. coli, S. typhimurium, P. aeruginosa, and C. albicans) by recording 47 to 54% inhibition. Taken together, the endophytic fungal strain ABR4 demonstrated a remarkable antimicrobial activity against the tested pathogens. Furthermore, the functional metabolites isolated from the endophytic strain ABR4 reveal its broader usage as antimicrobial agents for newer drug development in the pharmaceutical industry.
RESUMEN
The rapid increase in global population and shrinkage of agricultural land necessitates the use of cost-effective renewable sources as alternative to excessive resource-demanding agricultural crops. Microalgae seem to be a potential substitute as it rapidly produces large biomass that can serve as a good source of various functional ingredients that are not produced/synthesized inside the human body and high-value nonessential bioactive compounds. Microalgae-derived bioactive metabolites possess various bioactivities including antioxidant, anti-inflammatory, antimicrobial, anti-carcinogenic, anti-hypertensive, anti-lipidemic, and anti-diabetic activities, thereof rapidly elevating their demand as interesting option in pharmaceuticals, nutraceuticals and functional foods industries for developing new products. However, their utilization in these sectors has been limited. This demands more research to explore the functionality of microalgae derived functional ingredients. Therefore, in this review, we intended to furnish up-to-date knowledge on prospects of bioactive metabolites from microalgae, their bioactivities related to health, the process of microalgae cultivation and harvesting, extraction and purification of bioactive metabolites, role as dietary supplements or functional food, their commercial applications in nutritional and pharmaceutical industries and the challenges in this area of research.
RESUMEN
Fungal endophytes are friendly microorganisms that colonize plants and are important in the interactions between plants and their environment. They generate valuable secondary metabolites that are valuable to both plants and humans. Endophytic fungi with bioactivities were isolated from the leaves of the medicinal plant Ziziphus spina-christi. An efficient isolate was selected and identified as Pestalotiopsis neglecta based on nucleotide sequencing of the internal transcribed spacer region (ITS 1-5.8S-ITS 2) of the 18S rRNA gene (NCBI accession number OP529850); the 564 bp had 99 to 100% similarity with P. neglecta MH860161.1, AY682935.1, KP689121.1, and MG572407.1, according to the BLASTn analysis, following preliminary phytochemical and antifungal screening. The biological activities of this fungus' crude ethyl acetate (EtOAc) extract were assessed. With an efficient radical scavenging activity against 2,2'-diphenyl-1-picrylhydrazyl and an IC50 value of 36.6 µg mL-1, P. neglecta extract has shown its potential as an antioxidant. Moreover, it displayed notable cytotoxic effects against MCF-7 (breast carcinoma, IC50 = 22.4 µg mL-1), HeLa (cervical carcinoma, IC50 = 28.9 µg mL-1) and HepG-2 (liver carcinoma, IC50 = 28.9 µg mL-1). At 10 µg mL-1, EtOAc demonstrated significant DNA protection against hydroxyl radical-induced damage. Based on FT-IR and GC-MS spectral analysis, it was detected that the EtOAc of P. neglecta product contains multiple bioactive functional groups. Subsequently, this validated the features of major different potent compounds; tolycaine, 1H-pyrazol, 1,3,5-trimethyl-, eugenol, 2,5-cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethyl), and bis(2-ethylhexyl) phthalate. Since these compounds are biologically relevant in various aspects, and distinct biological activities of fungal extract were acceptable in vitro, this suggests that endophytic fungus P. neglecta may be a viable source of bioactive natural products. This could be a good starting point for pharmaceutical applications.
RESUMEN
Assam, India being the pool for ethnomedicinal plants harbors diverse endophytic fungi constituting major bioactive metabolites. The present study was designed to screen the antioxidant, antibacterial activities along with the chemical constituents of the endophytic fungi isolated from the fruits of Dillenia indica (commonly known as Otenga in Assam). Screening of such metabolic compounds and their antioxidant, antibacterial activities can have tremendous potential in suppressing certain diseases. Agar well diffusion method has been used to carry out the antibacterial assay against three pathogenic bacteria two gram positive [Bacillus subtilis (MTCC No. 441); Staphylococcus aureus (MTCC No. 740)] and one gram negative [Escherichia coli (MTCC No. 739)]. Aspergillus fumigatus of ethyl acetate extract showed a prominent activity against Staphylococcus aureus followed by Aspergillus flavus and Aspergillus niger. Antioxidants have the potential to neutralize and inhibit the action of free radicals. The highest scavenging activity was exhibited by ethyl acetate extract of Aspergillus fumigatus in DPPH assay. Furthermore, the phytochemical screening revealed the presence of flavonoids, alkaloids, terpenoids and saponins. Result showed that ethyl acetate extract of Aspergillus fumigatus showed the highest phenolic content (236.81 ± 0.2 mg.g-1) and least was shown by Aspergillus flavus (92.12 ± 1.4 mg.g-1). Total flavonoids content for Aspergillus fumigatus (39.08 ± 0.2 mg.g-1) was found to be highest compared to other isolates. Molecular identification of the endophytic fungus showing highest activity was done based on 18S rRNA. The sequenced was submitted in Genbank with accession number MH540721 showing high similarities with Aspergillus fumigatus strain 3,162,954. A. fumigatus strain is subjected to GC/MS analysis that revealed the chemical constituents 2-isopropyl-5-methyl-1-heptanol, dodecane, 1-fluoro-pentanoic acid, 2-ethylhexyl ester, 1-octanol, 2-butyl-1-dodecanol. Thus, the present work reveals that endophytic fungi colonizing in ethnomedicinal plant Dillenia indica could be a promising source for antioxidant and antibacterial activity. Further work is needed to add value in various therapeutic and pharmaceutical fields.
Asunto(s)
Dilleniaceae , Plantas Medicinales , Antioxidantes/farmacología , Antioxidantes/química , Plantas Medicinales/microbiología , Hongos , Antibacterianos/metabolismo , Aspergillus fumigatus , Aspergillus niger , Flavonoides/metabolismoRESUMEN
Moringa oleifera is a traditional food crop widespread in Asiatic, African, and South American continents. The plant, able to grow in harsh conditions, shows a high nutritional value and medicinal potential evidencing cardioprotective, anti-inflammatory, antioxidant, and antimicrobial properties. The purpose of this study was the phytochemical analysis of M. oleifera and the identification of the antimicrobial compounds by combining a chemical approach with in vitro tests. The metabolite profile of M. oleifera polar and apolar extracts of leaves and seeds were investigated by using Nuclear Magnetic Resonance spectroscopy and Gas Chromatography-Mass Spectrometry. The antimicrobial activity of all of the obtained extract was evaluated against four bacterial pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Salmonella enterica). The chemical analysis provided a wide set of metabolites that were identified and quantified. Moreover, apolar extracts from seeds showed a significant concentration-dependent antimicrobial activity against S. aureus and S. epidermidis, (4 mg/mL reduced the viability up to 50%) that was associated to the content of specific fatty acids. Our results remarked the advantages of an integrated approach for the identification of plant metabolites and its use in association with biological tests to recognize the compounds responsible for bioactivity without compounds purification.
Asunto(s)
Antiinfecciosos , Moringa oleifera , Moringa oleifera/química , Staphylococcus aureus , Extractos Vegetales/química , Cromatografía de Gases y Espectrometría de Masas , Semillas/química , Hojas de la Planta/química , Antiinfecciosos/farmacología , Antiinfecciosos/análisisRESUMEN
INTRODUCTION: Ficus deltoidea Jack (Moraceae) is a plant used in Malaysia to treat various ailments, including diabetes. The presence of several varieties raises essential questions regarding which is the potential bioactive variety and what are the bioactive metabolites. OBJECTIVES: Here, we explored the phytochemical diversity of the seven varieties from Peninsular Malaysia using Nuclear Magnetic Resonance (NMR) and Liquid Chromatography-Mass Spectrometry (LC-MS) analyses and correlated it with the α-glucosidase inhibitory activity. METHODOLOGY: The Nuclear Overhauser Effect Spectroscopy (NOESY) One-Dimensional (1D)-NMR and LC-MS data were processed, annotated, and correlated with in vitro α-glucosidase inhibitory using multivariate data analysis. RESULTS: The α-glucosidase results demonstrated that different varieties have varying inhibitory effects, with the highest inhibition rate being F. deltoidea var. trengganuensis and var. kunstleri. Furthermore, diverse habitats and plant ages could also influence the inhibitory rate. The heat map from NMR and LC-MS profiles showed unique patterns according to varying levels of α-glucosidase inhibition rate. The Partial Least Squares (PLS) model constructed from both NMR and LC-MS further confirmed the correlation between the α-glucosidase inhibition rate of F. deltoidea varieties and its metabolite profiles. The Variable Influence on Projection (VIP) and correlation coefficient (p(corr)) values values were used to determine the highly relevant metabolites for explaining the anticipated inhibitory action. CONCLUSION: NMR and LC-MS annotations allow the identification of flavan-3-ols and proanthocyanidins as the key bioactive factors. Our current results demonstrated the value of multivariate data analysis to predict the quality of herbal materials from both biological and chemical aspects.
Asunto(s)
Ficus , Ficus/química , alfa-Glucosidasas , Cromatografía Liquida , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Metabolómica , Espectroscopía de Resonancia Magnética , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/químicaRESUMEN
The highly infectious coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a new coronavirus that has been spreading since late 2019 and has caused millions of deaths worldwide. COVID-19 continues to spread rapidly worldwide despite high vaccination coverage; therefore, it is crucial to focus on prevention. Most patients experience only mild symptoms of COVID-19. However, in some cases, serious complications can develop mainly due to an exaggerated immune response; that is, a so-called cytokine storm, which can lead to acute respiratory distress syndrome, organ failure, or, in the worst cases, death. N-3 polyunsaturated fatty acids and their metabolites can modulate inflammatory responses, thus reducing the over-release of cytokines. It has been hypothesized that supplementation of n-3 polyunsaturated fatty acids could improve clinical outcomes in critically ill COVID-19 patients. Some clinical trials have shown that administering n-3 polyunsaturated fatty acids to critically ill patients can improve their health and shorten the duration of their stay in intensive care. However, previous clinical studies have some limitations; therefore, further studies are required to confirm these findings.
Asunto(s)
COVID-19 , Ácidos Grasos Omega-3 , Enfermedad Crítica , Citocinas , Ácidos Grasos Omega-3/uso terapéutico , Humanos , SARS-CoV-2RESUMEN
The ongoing rise in the number of cancer cases raises concerns regarding the efficacy of the various treatment methods that are currently available. Consequently, patients are looking for alternatives to traditional cancer treatments such as surgery, chemotherapy, and radiotherapy as a replacement. Medicinal plants are universally acknowledged as the cornerstone of preventative medicine and therapeutic practices. Annona muricata is a member of the family Annonaceae and is familiar for its medicinal properties. A. muricata has been identified to have promising compounds that could potentially be utilized for the treatment of cancer. The most prevalent phytochemical components identified and isolated from this plant are alkaloids, phenols, and acetogenins. This review focuses on the role of A. muricata extract against various types of cancer, modulation of cellular proliferation and necrosis, and bioactive metabolites responsible for various pharmacological activities along with their ethnomedicinal uses. Additionally, this review highlights the molecular mechanism of the role of A. muricata extract in downregulating anti-apoptotic and several genes involved in the pro-cancer metabolic pathways and decreasing the expression of proteins involved in cell invasion and metastasis while upregulating proapoptotic genes and genes involved in the destruction of cancer cells. Therefore, the active phytochemicals identified in A. muricata have the potential to be employed as a promising anti-cancer agent.
RESUMEN
BACKGROUND: Recently, the coronavirus (COVID-19) pandemic is a chief public health disaster caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are no established effective preventive or therapeutic anti-COVID-19 drugs available except for some recently approved vaccines. Still, countless recent studies recommend various alternative and complementary approaches against COVID-19, which are medicinal herbs employed as traditional remedies to enhance immunity to struggle with viral infections. In addition, physicians worldwide are highly interested in vitamin and mineral supplements to help them combat COVID-19 either through protection or treatment. Dietary supplements specifically vitamin D, vitamin C, and zinc provide good prophylactic and therapeutic support to the presently available treatment regimens. In the present work, we have focused on plant-based remedies with promising anti-COVID-19 activities. AIM: To enable investigators and researchers to identify potential herbal compounds with anti-COVID activity to be used as promising therapies to combat this pandemic. MAIN BODY: This review highlights the recently published studies concerning natural traditional herbs, herbal bioactive metabolites, dietary supplements, and functional foods that could help prevent and/or treat COVID-19. Herein, we explored medicinal herbs as potential inhibitors of SARS-CoV-2 and discussed how these studies help form larger discussions of diet and disease. Moreover, by investigating the herbal bioactive components, we have outlined several medicinal herbs that can fight against COVID-19 by hindering SARS-CoV-2 replication and entry to its host cells, deterring the cytokine storm, and several other means. Finally, we have summarized various herbal products, functional foods, and dietary supplements with potent bioactive compounds which can inhibit and/or prevent COVID-19 disease progression. CONCLUSIONS: Based on the studies reviewed in this work, it was concluded with no doubt that phytochemical components present in various herbs could have a starring role in the deterrence and cure of coronavirus contagion.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Plantas Medicinales , Ácido Ascórbico , Humanos , Pandemias/prevención & control , Fitoquímicos , Plantas Medicinales/química , SARS-CoV-2 , Vitamina D/uso terapéutico , Vitaminas/uso terapéutico , ZincRESUMEN
Inflammatory skin diseases, including atopic dermatitis (AD) and psoriasis, are increasing in populations worldwide. The treatment of patients with AD and other forms of skin inflammation is mainly based on the use of topical corticosteroids or calcineurin inhibitors, which can cause significant side effects with long-term use. Therefore, there is a great need for the development of more effective and less toxic anti-inflammatory agents suitable for the treatment of chronic skin lesions. Here, we screened a number of strains from the ASIB 505 terrestrial algae collection and identified a green algae Chromochloris zofingiensis with pronounced anti-inflammatory properties. We found that a crude nonpolar extract of C. zofingiensis (ID name NAE_2022C), grown upon nitrogen deprivation, acts as a bioactive substance by inhibiting TNFR/NF-κB responses in human skin keratinocyte HaCaT cells. We also found that NAE_2022C suppressed the secretion of pro-inflammatory cytokine tumor necrosis factor α (TNFα) and several Th1- and Th2-related chemokines in a reconstituted human epidermis. The TNFR/NF-κB pathway analysis showed multiple inhibitory effects at different levels and disclosed a direct targeting of IKKß by the extract. Bioassay-guided fractionation followed by high-resolution mass spectrometry detected diacylglyceryl-trimethylhomoserine (DGTS), Lyso-DGTS (LDGTS), 5-phenylvaleric acid, theophylline and oleamide as leading metabolites in the active fraction of NAE_2022C. Further analysis identified betaine lipid DGTS (32:0) as one of the active compounds responsible for the NAE_2022C-mediated NF-κB suppression. Overall, this study presents an approach for the isolation, screening, and identification of anti-inflammatory secondary metabolites produced by soil algae.
Asunto(s)
Dermatitis Atópica , FN-kappa B , Antiinflamatorios/uso terapéutico , Dermatitis Atópica/patología , Humanos , FN-kappa B/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , SueloRESUMEN
Wild mushrooms are rich sources of natural compounds with potent bioactive properties. Several important metabolites have been reported from mushrooms, which possess clinically important bioactive properties like antibacterial, anticancer, antidiabetic, and neuroprotective activity. In this study, we have evaluated the antimicrobial activity of Trametes coccinea fruiting body extracts against different bacterial isolates, viz., Bacillus subtilis, Bacillus cereus, and Escherichia coli. Fruiting bodies of three T. coccinea samples, of which two were collected from Santipur, Arunachal Pradesh and one collected from Jorhat, Assam, were used for extraction using methanol. The extracts showed significant antimicrobial activity against all the test bacteria. Minimum Inhibitory Concentration (MIC) of the extracts against Bacillus subtilis, Bacillus cereus, and Escherichia coli was recorded as 400 µg/ml, 400 µg/ml, and 300 µg/ml, respectively. Furthermore, the bioactive compounds of the extract were separated and detected using Thin Layer Chromatography (TLC). Presence of cinnabarinic acid (CBA)-a potent antimicrobial compound- was detected in TLC, which was further confirmed through High Performance Liquid Chromatography (HPLC) and Electrospray Ionization-Mass Spectrometry (ESI-MS). Cinnabarinic acid was able to inhibit the formation of biofilms in Bacillus subtilis and B. cereus, suggesting that the compound can be beneficial in the management of biofilm-based antimicrobial resistance.
Asunto(s)
Extractos Vegetales , Trametes , Antibacterianos/farmacología , Bacillus cereus , Biopelículas , Cuerpos Fructíferos de los Hongos , Pruebas de Sensibilidad Microbiana , Oxazinas , PolyporaceaeRESUMEN
Numerous mushroom bioactive metabolites, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been studied in life-threatening conditions and diseases such as diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity attempting to identify natural therapies. These bioactive metabolites have shown potential as antiviral and immune system strengthener natural agents through diverse cellular and physiological pathways modulation with no toxicity evidence, widely available, and inexpensive. In light of the emerging literature, this paper compiles the most recent information describing the molecular mechanisms that underlie the nutraceutical potentials of these mushroom metabolites suggesting their effectiveness if combined with existing drug therapies while discussing the food functionality of mushrooms. The findings raise hope that these mushroom bioactive metabolites may be utilized as natural therapies considering their therapeutic potential while anticipating further research designing clinical trials and developing new drug therapies while encouraging their consumption as a natural adjuvant in preventing and controlling life-threatening conditions and diseases. PRACTICAL APPLICATIONS: Diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity are among the world's largest life-threatening conditions and diseases. Several mushroom bioactive compounds, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been found potential in tackling these diseases through diverse cellular and physiological pathways modulation with no toxicity evidence, suggesting their use as nutraceutical foods in preventing and controlling these life-threatening conditions and diseases.
Asunto(s)
Agaricales , Neoplasias , Antivirales , Suplementos Dietéticos , Neoplasias/tratamiento farmacológico , PolisacáridosRESUMEN
For the first time, electromembrane extraction (EME) combined LC-MS/MS was applied to extract and determine α-solanine and α-chaconine in different potato tissues using NPOE containing 20% (v/v) DEHP as supported liquid membrane (SLM). Under the optimal conditions, the proposed EME-LC-MS/MS method was evaluated using spiked fresh potato peel sample. The linear range for α-solanine and α-chaconine was 5-1000 ng mL-1 (R2 > 0.9991), with LOD and LOQ of 1.2-1.5 ng mL-1 and 4.1-5.2 ng mL-1, respectively. Repeatability for α-solanine and α-chaconine at three concentration levels was satisfactory (<4.9%), and recoveries ranged from 73% to 106%. Finally, the EME-LC-MS/MS method has been successfully employed to determine α-solanine and α-chaconine in sprouted potato peel and tuber samples, indicating that EME exhibited high selectivity and efficient sample clean-up capability. Consequently, EME showed great potential for extraction and purification of toxic and bioactive basic compounds from complex plant tissues.
Asunto(s)
Solanina , Solanum tuberosum , Cromatografía Liquida , Espectrometría de Masas en TándemRESUMEN
This study presents the current knowledge on chemical composition, biological activity, and possible medicinal applications of Phellinus igniarius, Phellinus pini, Phellinus pomaceus, and Phellinus robustus. These inedible arboreal species are phytopathogens that cause the enzymatic decomposition of wood. These species belong to the medicinal mushrooms and have been known for centuries in the traditional medicine of the Far East. They have been used as an effective remedy for stomach and intestinal ailments, diarrhea, and hemorrhages. Mycochemical studies have proved the presence of polysaccharides, phenolic compounds, and terpenoids. These compounds show biological activities such as anticancer, antioxidant, antiangiogenic, and antiviral. Research studies conducted using modern analytical methods have advanced the knowledge on the potential therapeutic use of compounds isolated not only from the fruiting bodies but also from biomass obtained with inâ vitro biotechnological methods.
Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Antivirales/farmacología , Phellinus/química , Inhibidores de la Angiogénesis/química , Antineoplásicos/química , Antioxidantes/química , Antivirales/química , Medicina Tradicional , Fenoles/química , Fenoles/farmacología , Polisacáridos/química , Polisacáridos/farmacología , Especificidad de la Especie , Terpenos/química , Terpenos/farmacologíaRESUMEN
Untargeted (NMR) and targeted (RP-HPLC-PDA-ESI-MSn, RP-HPLC-FD) analytical methodologies were used to determine the bioactive components of 19 tea samples, characterized by different production processes (common tea and GABA tea), degrees of fermentation (green and oolong teas), and harvesting season (autumn and spring). The combination of NMR data and a multivariate statistical approach led to a statistical model able to discriminate between GABA and non-GABA teas and green and oolong teas. Targeted analyses showed that green and GABA green teas had similar polyphenol and caffeine contents, but the GABA level was higher in GABA green teas than in regular green tea samples. GABA oolong teas showed lower contents of polyphenols, caffeine, and amino acids, and a higher content of GABA, in comparison with non-GABA oolong teas. In conclusion, the results of this study suggest that the healthy properties of teas, especially GABA teas, have to be evaluated via comprehensive metabolic profiling rather than only the GABA content.